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Myocardial perfusion imaging (MPI) is an essential tool used to diagnose and manage

patients with suspected or known coronary artery disease. Additionally, the General Data

Protection Regulation (GDPR) represents a milestone about individuals’ data security

concerns. On the other hand, Machine Learning (ML) has had several applications in

the most diverse knowledge areas. It is conceived as a technology with huge potential

to revolutionize health care. In this context, we developed ML models to evaluate their

ability to distinguish an individual’s sex from MPI assessment. We used 260 polar maps

(140 men/120 women) to train ML algorithms from a database of patients referred

to a university hospital for clinically indicated MPI from January 2016 to December

2018. We tested 07 different ML models, namely, Classification and Regression Tree

(CART), Naive Bayes (NB), K-Nearest Neighbors (KNN), Support Vector Machine (SVM),

Adaptive Boosting (AB), Random Forests (RF) and, Gradient Boosting (GB). We used

a cross-validation strategy. Our work demonstrated that ML algorithms could perform

well in assessing the sex of patients undergoing myocardial scintigraphy exams. All the

models had accuracy greater than 82%. However, only SVM achieved 90%. KNN, RF,

AB, GB had, respectively, 88, 86, 85, 83%. Accuracy standard deviation was lower in

KNN, AB, and RF (0.06). SVM and RF had had the best area under the receiver operating

characteristic curve (0.93), followed by GB (0.92), KNN (0.91), AB, and NB (0.9). SVM

and AB achieved the best precision. Our results bring some challenges regarding the

autonomy of patients who wish to keep sex information confidential and certainly add

greater complexity to the debate about what data should be considered sensitive to the

light of the GDPR.
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INTRODUCTION

Myocardial perfusion imaging (MPI) is an essential tool for
diagnosing and managing patients with suspected or known
coronary artery disease (1). Machine Learning (ML) has had
several applications in the most diverse areas of knowledge and
is conceived as a technology with huge potential to revolutionize
health care (2, 3). We found several applications for the diagnosis
(4–6), prognosis (7, 8), and treatment of diseases (9, 10). In
particular, the imaging area has significantly benefited from
its fruits (11–13). In this context, we highlight at least seven
challenges about AI: misuse, increased literacy, the need to
use data collected and processed appropriately (healthy data),
security, care management based on data, dealing with errors,
and the need for cooperation (14). About the concern about
the safety of individuals’ data, the publication of the General
Data Protection Regulation (GDPR) represents a milestone
(15). However, this does not exempt the appearance of diverse
normative questions, such as issues related to conditions of
trustworthiness of ML systems, transparency, explicability, and
responsibility (16). Article 9 of the GDPR provides for the
processing of particular data. Except in exceptional situations
provided for by law, GDPR states that data processing is
prohibited in the case of: “personal data revealing racial or
ethnic origin, political opinions, religious or philosophical beliefs,
or trade union membership, and the processing of genetic
data, biometric data to uniquely identify a natural person,
data concerning health or data concerning a natural person’s
sex life or sexual orientation” (15). It is worth to note that
sex was not mentioned in the referred GDPR article. In this
context, we developed ML models to evaluate their ability
to distinguish an individual’s sex from assessing myocardial
perfusion scintigraphy images. The next section presents an
example of a clinical case inserted in the debate, followed by
the methods used in this work, the results obtained, discussion,
and conclusions.

CASE EXAMPLE

Consider the following hypothetical example. A male at 18 years
old, was successfully submitted to a sex change surgery, having
changed his name (AST) and started to sign LMT. Perceiving
some people’s prejudice regarding her situation, she moved to
another city. No one knows about her past in the new city,
and she chose to keep this information with her again to avoid
falling victim to malicious comments and prejudices, and even
violent conduct. At the age of 30, she felt chest pain during
a soccer game, having had an electrocardiogram and ultra-
sensitive troponin, both without changes. An echocardiogram
was performed and showed the diagnosis of hypertrophic
cardiomyopathy. Days later, she was referred for myocardial
perfusion scintigraphy to assess cardiac function. The patient
omitted the sex-change surgery in all the consultations she
performed. What to say when an ML algorithm can reveal
this information?

MATERIALS AND METHODS

Our study is a single-retrospective center, designed to test
whether ML algorithms can correctly discern the sex of
myocardial perfusion polar maps in the stress and rest position.
All images were anonymized and processed by the same
physician (EMSF), and the evaluation report indicated an
abnormality in all of them. Sex information was obtained from
a.xml file associated with each image. A second expert (CTM)
reviewed all processes. We used 260 polar maps (140 men/120
women) to train ML algorithms from a database of patients
referred to a university hospital for clinically indicatedMPI in the
period of January 2016 to December 2018—all of them exported
from a GE Healthcare Xeleris R© workstation in.tiff format and
size 175× 175 (Figure 1).

We didn’t consider the prone position and clinical
information (except sex). Universidade Federal Fluminense’s
Ethics Committee (in Brazil) approved our work in agreement
with the Declaration of Helsinki. In line with ASNC guidelines
(17), all images were obtained from patients that performed
ECG-gated 2-day Tc-99m sestamibi myocardial perfusion
single-detector SPECT with R-R signal separated in eight-frame,
in rest and stress conditions, and supine position having a total
acquisition time of 21min and 64 projections in a 180◦ orbit.
Rest-stress doses were calculated based on the patients’ body
weight. Ordered-subsets Expectation Maximization (OSEM)
algorithm (04 subsets, 10 iterations, and a uniform initial
estimate) was used to reconstruct the transaxial emission image
(18). Emory Cardiac ToolboxTM (Emory University/ Syntermed,
Atlanta, GA) was used for reconstruction, generation, and axis
orientation of polar maps. We tested 07 different ML models,
namely, Classification and Regression Tree (CART) (19, 20),
Naive Bayes (NB) (21, 22), K-Nearest Neighbors (KNN) (23, 24),
Support Vector Machine (SVM) (25, 26), Adaptive Boosting
(AB) (27, 28), Random Forests (RF) (29, 30), and, Gradient
Boosting (GB) (31–33). To better assess the model’s predictive
capacity, the cross-validation strategy (34, 35) (with k = 10) was
used. Sensibility (recall), positive predictive value (precision),
F1 measure, and area under the receiver operating characteristic
curve (AUC) were used to evaluate the model’s performance.
We used an image slicing process to obtain image features
based on Ouali et al. (36). After generating the polar maps, we
implemented an algorithm to acquire information about the
intensity of each pixel in the image. Then, we divided each image
into 5 horizontal slices and 5 vertical slices (Figure 2). For each
generated slice, we calculated the sum of the intensities of each
pixel that composes it. After that, we analyzed 10 attributes
related to each summing. As it is a supervised learning process,
each image was also associated with a label indicating the sex
of the patient who selected it. Therefore, we obtained a matrix
with 11 columns per 260 rows (one row for each image). The
first 10 columns represent the features we used, and the last one
corresponds to the label indicating whether the polar map is for
a female or male patient. We implemented all ML algorithms
in Python 3 using open-source libraries (37, 38). We describe
the settings for each ML model in Supplementary Material 2.
In our work, only images from myocardial perfusion were used.
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FIGURE 1 | Examples of female polar maps (A1, A2, A3 and A4) and male polar maps (B1, B2, B3 and B4).

The Ethics Committee (Universidade Federal Fluminense) has
authorized us to use these images as long as they are anonymized
(approval number 91399418.2.0000.5243).

RESULTS

In Table 1, we can see that all the models had accuracy greater
than 82%. However, only SVM achieved 90%. KNN, RF, AB, GB
had, respectively, 88, 86, 85, 83%. Accuracy standard deviation
was lower in KNN, AB, and RF (0.06). SVM and RF had had the
best AUC (0.93), followed by GB (0.92), KNN (0.91), AB and NB
(0.9). F1 measure ranged from 77% (CART) to 89% (SVM) while
precision ranged from 79% (CART) to 86% (SVM, AB). SVM and
KNN had the best recall (93%) and CART the worst (80%). SVM
and AB achieved the best precision. Recall standard deviation,
precision standard deviation, and F1 standard deviation was
lower, respectively, in SVM (0.06), KNN (0.8), KNN, and AB
(0.06). All computational time was lesser than 2 seconds.

DISCUSSION

ML algorithms had a high performance to distinguish an
individual’s sex from myocardial perfusion polar maps.
Computational times were very low (<2 seconds), and the store
size of images was small because each polar map is less than
25KB. Three models obtained AUC higher than 90% and had
precision, F1, and recall >80%. However, SVM had the best
performance of all.

This technique has already been successfully applied in several
applications, including as the following: 1—the lung ventilation
heterogeneity prediction in patients with chronic obstructive
pulmonary disease (AUC: 82% and accuracy: 88%) (12); 2—
ventricular arrhythmia prediction using heart rate variability in
patients with implantable cardioverter defibrillators (AUC: 0.81
for a 5-min prediction) (39); 3—the assessment of the presence
of Alzheimer’s diagnosis from functional magnetic resonance
images (accuracy: 94.44%) (40).

Besides, it is necessary to understand the differentiation
between the aspects mentioned in the example case. Sex is related
to biological characteristics, and gender is not limited to defining
the difference between the sexes (male and female), emerging as
a category of analysis of historical, political, and social processes,
presented as a way of reflecting on the relationships established
with and between bodies (41). Also, returning to the previous
hypothetical clinical case, it is essential to highlight the patient’s
real intention of not divulging information about her sex, mainly
due to the prejudice previously suffered in the city where she
used to live. This conduct, it is worth commenting, is the
very exercise of human rights of Personality Recognition and
Free Development of Personality (42). The fact is that after the
assumption of a new gender identity, using sex-change surgery,
the patient started to self-determine and to affirm herself through
a new personality, which assured her the definitive dignity of her
human person (article 1) (42). In this context, information about
his/her biological sex has become strange and unnecessary data
for his/her new condition of physical-existential life. Besides, it
has come to represent a risk to his/her life and personal security
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FIGURE 2 | Feature extraction process.

(article 3) (42), if improperly revealed, it could be considered
as a unique species of iatrogenesis. For example, in Brazil, from
2000 to 2019, there were 4809 violent deaths of people victims of
prejudice and intolerance (43). We agree with Stucky et al. (44)
on the need for effective measures to reduce discrimination and
stigma toward not normative individuals. It is also important to
highlight that algorithms can also be used as a prejudice-inducing
element. In particular, our algorithm could be useful to uncover
information that patients do not want to divulge. Some people
may minimize the importance of a situation like this. However,
it is worth mentioning that discrimination (in its most diverse
types) is an emerging risk factor for various health outcomes (45).

On the other hand, it is essential to point out that
this sex information can also be predicted from 12-lead
electrocardiogram images, as shown by Attia et al. (46). They
trained convolutional neural networks with just under 500,000
images to assess whether this ML model could predict patients’
sex. The results were excellent (accuracy: 90% and AUC: 0.97).
Therefore, the patient in the clinical case could have the
information about her sex revealed in at least two different
situations, already known. It is safe to assume that the near
future could still demonstrate other techniques to achieve the
same end. Wang and Kosinski used neural networks to show

that information in a person’s photograph contains relevant
information, allowing these ML models to recognize the sexual
orientation of gays and lesbians. From the analysis of 5 images
of each person, the algorithm obtained an accuracy of 91% for
distinguishing heterosexual men from gay men and 83% for
determining heterosexual women from lesbians (47). In another
work, Kosinski demonstrated that facial recognition algorithms
could also assess people’s political orientation from realistic facial
images. The accuracy obtained was 72% (48). In this context,
Gilles et al. contrastedmathematical-computational tools and the
traditional understanding of medical images as pictures only for
visual interpretation (49). These tools can potentially enable a
data mining process that allows bringing out hidden information
in images—capable of helping the decision-making process and
bringing significant harm to people depending on how they are
used. The evaluation of image pixels using ML is quite different
from that of the human visual cortex, which is much more
complex. Still, the results obtained by these kinds of models can
be relevant.

Another important point related to the case concerns that the
patient possibly did not imagine that this type of processing of
her data would be possible. This raises some crucial questions
since the amount of different processing that can be performed
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TABLE 1 | Computational results.

AUC SD Accuracy SD Recall SD

CART 0.77 0.04 0.76 0.07 0.8 0.11

NB 0.9 0.07 0.82 0.1 0.82 0.12

KNN 0.91 0.05 0.88 0.06 0.93 0.08

SVM 0.93 0.05 0.9 0.07 0.93 0.06

AB 0.9 0.06 0.85 0.06 0.83 0.07

GB 0.92 0.05 0.83 0.07 0.81 0.08

RF 0.93 0.04 0.86 0.06 0.87 0.09

Precision SD F1 SD

CART 0.79 0.09 0.77 0.07

NB 0.81 0.14 0.81 0.1

KNN 0.84 0.08 0.88 0.06

SVM 0.86 0.09 0.89 0.07

AB 0.86 0.1 0.84 0.06

GB 0.83 0.09 0.82 0.07

RF 0.83 0.09 0.83 0.07

CART, Classification and Regression Tree; NB, Naive Bayes; KNN, K-Nearest Neighboors;

SVM, Support Vector Machine; AB, Adaptive Boosting; RF, Random Forests; GB,

Gradient Boosting; AUC, area under the receiver operating characteristic curve; F1, F1

measure; SD, Standard Deviation; Remark, All computational times were < 02 sec.

can be very large. The signing of the free and informed consent
form is mandatory (article 6(1)(a) of GDPR) (15). However,
this document seems insufficient in some situations, given the
possibility that the consent given by the patient may not be, in
fact, free and clear, a hypothesis that would violate the principle
of transparency (article 5(1)(a) of GDPR) (15), and would
contaminate its legal validity. In this context, methodologies
for assessing performance, ethical impacts, and privacy play an
essential role, such as the tool built by Di Iorio et al. (50) to
evaluate data controllers’ compliance from computerized survey.

Besides, as reiterated by Mann et al. (51), blockchain can also
be useful in this process due to its ability to add security to the
entire data processing treatment flow (article 4(2) of GDPR) (15)
referring to theMPI. Using blockchain technologies, we can track
the data flow since its generation by scintigraphy equipment,
passing through by a file located in mobile, network units, or
even in the cloud, after being processed by a computer-aided
diagnosis software, until its storage and corresponding data. All
the precautions above are associated with the Purpose Limitation
principle (article 4(3) and article 5(1)(b) of GDPR) (15), whereby
states that all the subjects involved with the MPI treatment have
to be restricted to the purpose initially established for carrying
out such an examination, that is, within the limits of what was
previously freely and informed by the patient.

However, the challenges can improve justice, autonomy,
and beneficence, bringing trust and patient engagement (51).
This position reinforces the importance of attention to the
4P proposed by Garrafa and Porto (52), as it highlights the
relevance of taking into account prudence with the unknown,
the prevention of possible damage, the precaution in the face of
the indiscriminate use of new technologies and the protection
of socially excluded, more fragile and vulnerable. Regarding
the use of AI in health, the challenges are in the attention to

social, political, economic, and ethical impacts, highlighting the
importance of caution due to the potential impacts on life and the
potential interferences in individual liberties (53).

Within this whole context, however, it is essential to point
out the fact that the GDPR does not expressly consider
sex information to be sensitive, although our ML models
demonstrate a sui generis situation in which the patient’s sex
deserves the same level of protection guaranteed by article 9
of GDPR (15). Regarding the text of this article, it is essential
to highlight Hermeneutics’ role in its analysis. First, we must
reflect on whether it was written to contain an exhaustive or
non-exhaustive list of special categories of personal data. Also,
we must reflect on whether such categories can be interpreted
extensively or only restrictively. In some cases, it seems that sex
and gender identity should be included as one of the special
categories of data protection for the present case. The list is non-
exhaustive and because of its extensive interpretation. We are
talking about protecting human rights and the risk that people
will be exposed to a scenario conducive to the spread of prejudice,
hate doctrines, persecution, cowardice, and violence. Our point
of view rests on the fact that the positivist legal dimension has
been overcome since the twentieth century, in such a way that
the eminently literal interpretation of the positive norms gave rise
to new ideas such as “Critical Rationalism” (54), the “Scientific
Revolution” (55), the “Theory of Fundamental Rights” (56), the
“Moral Hermeneutics” (57) and many others that make up a
new legal philosophy of Post-Positivist and Neoconstitutionalist,
through which the positive norm deserves an interpretation that
goes beyond its simple literality. It is also important to mention
that the Brazilian constitutional court, in recent judgments,
determined that issues related to prejudice based on gender
identity are comparable to those of racial origin, thus enjoying
the same protection.

We are not saying here that the patient should be encouraged
to omit his information or lie about it—sex is a variable that
could be kept in consideration for investigating several diseases
and collected routinely as part of the electronic health record—
but we bring an important issue related to his legal right to do
so if he deems it necessary and also linked to the awareness
of all those who in any way participate in the treatment of
data related to this type of exam. Considering this panorama,
it is also essential to emphasize the role of the physician-
patient relationship. When the patient perceives it as trustworthy
and helpful, we have an excellent foundation to get the right
information and that the treatment is followed (58). Still, within
this debate, there are the corresponding challenges linked to
all those who participate in the treatment of data related to
the exam. They must be responsible for any treatment that
goes beyond what was freely and clarified informed by the
patient and answer for the occurrence of any personal data
breach (article 4(12) of GDPR)(15). Therefore, considering this
panorama, it is worth highlighting the concerns of Sun et al.: the
fear that digital technologies may, in fact, result in human rights
violations is real and is based on people’s experiences about social
marginalization, surveillance and discrimination (59) which
brings up the necessity of discerning how to apply the existing
human-rights framework to new digital technologies (60) and
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the need for humans to be in the decision-making process (61).
In this context, artificial intelligence could expand the human
capacity to cast its gaze on transhuman aspects providing this
reality to overcome the limits imposed by gaze (62). However,
its use linked to technological determinism can cause complex
impacts for its applicability in human ways of living.

Our study has clear limitations. Despite the promising results
obtained, the number of images is small. In addition to that, it is a
retrospective study performed at a single medical center. On the
other hand, the discussion focused on the GDPR, leaving aside
other laws worldwide. However, this text raises a critical topic
under discussion and several questions not yet fully clarified.
Therefore, future works should consider expanding the number
of polar maps for training and testing the models in multicenter
studies. Also, the use of other legal sources can contribute to
discussions on this topic.

CONCLUSION

Our work demonstrated that ML algorithms could perform
well in assessing the sex of patients undergoing myocardial
scintigraphy exams. Thus, this brings some challenges regarding
the autonomy of patients who wish to keep this information
confidential and certainly adds greater complexity to the debate

about what data should be considered sensitive to the light of
the GDPR.
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