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Abstract: Endogenous gas transmitters, hydrogen sulfide (H2S), carbon monoxide (CO) and nitric
oxide (NO) are important signaling molecules known to exert multiple biological functions. In recent
years, the role of H2S, CO and NO in regulation of cardiovascular, neuronal and digestive systems
physiology and pathophysiology has been emphasized. Possible link between these gaseous mediators
and multiple diseases as well as potential therapeutic applications has attracted great attention from
biomedical scientists working in many fields of biomedicine. Thus, various pharmacological tools
with ability to release CO or H2S were developed and implemented in experimental animal in vivo
and in vitro models of many disorders and preliminary human studies. This review was designed to
review signaling functions, similarities, dissimilarities and a possible cross-talk between H2S and CO
produced endogenously or released from chemical donors, with special emphasis on gastrointestinal
digestive system pathologies prevention and treatment.

Keywords: hydrogen sulfide; carbon monoxide; heme oxygenase; cystathionine-γ-lyase;
cystathionine-β-synthase; 3-mercaptopyruvate sulfur transferase; digestive system

1. Introduction

Hydrogen sulfide (H2S) and carbon monoxide (CO), next to nitric oxide (NO) are the most recently
studied endogenous gaseous mediators. Chemically, exogenous CO is a colorless and odorless gas
lighter than air, while colorless H2S has characteristic smell of rotten eggs. Both gaseous molecules
were assumed for many years to be toxic for human body and when generated in the mammalian
tissues, they were considered only as a by-product of metabolic processes or, as in case of H2S,
as the end product of anaerobic respiration due to bacteria capable of utilizing inorganic sulfur
substrates [1,2]. However, based on scientific evidence, the second beneficial face of CO and H2S
has been reported recently. It has been shown that these gaseous mediators, similarly to NO, play
an important beneficial functions in the body among others including the regulation of homeostasis,
vasorelaxation, the regulation of various enzymes activity and the modulation of the particular genes
expression [1–4]. These small gaseous molecules have become the main target of many investigations
in the context of various diseases including gastrointestinal (GI) pathologies. However, due to toxicity
of inhaled CO or H2S, novel compounds were designed and developed with ability to release small
amounts of these gaseous molecules and are widely used as pharmacological tools under experimental
conditions [5]. Interestingly, it seems that together with NO, all three mediators form a kind of
endogenous triad interacting with each other [6]. However, these aspects have not been investigated
deeply so far. Thus, within this article we aimed to explain and highlight possible mechanisms of
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interaction and the cross-talk between CO and H2S biosynthesis pathways, with special emphasis on
the development, prevention and treatment of gastrointestinal (GI) and digestive system pathologies.

2. Overview on CO and H2S Physiology and Pharmacology in Digestive System

2.1. H2S Physiology and Pharmacology

H2S is known to modulate various biological functions on molecular, biochemical and even
functional level under physiological and pathological conditions. This molecule can be formed
in both, enzymatic and non-enzymatic processes. Three enzymes are involved in the enzymatic
production of H2S in the body: cystathionine-γ-lyase (CTH), cystathionine β-synthase (CBS) and
3-mercaptopyruvate sulfurtransferase (MPST) [7]. CTH and CBS are located in cytosol and their
activity requires pyridoxal-5’-phosphate (P5P; vitamin B6) as a cofactor. MPST is present within cytosol
and mitochondria and is P5P-independent but works in co-activity with cysteine aminotransferase
(CAT), which is necessary to convert cysteine to 3-mercaptopyruvate, a substrate for MPST [7].
As mentioned before, the colonic sulfate-reducing bacteria could be also the source of H2S in the GI
tract [8]. The molecular targets of endogenous H2S include many physiologically important proteins,
signaling targets including kinases, phosphatases, thiols, polysulfide’s, thiosulfate/sulfite, iron-sulfur
cluster proteins, the anti-oxidant compounds and transcriptional factors affecting multiple cellular
and molecular responses. Thus, this mediator is involved in the regulation of signaling pathways and
genes expression [9].

Numerous studies have shown that H2S has anti-oxidative, anti-inflammatory and cytoprotective
properties [5,10]. The anti-inflammatory effect of H2S is assumed to result in inhibition of endothelial
leukocyte adhesion, modulation of inflammatory markers expression, prostaglandins biosynthesis and
by interacting with transcription factors such as nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf-2) [10,11]. NF-κB regulates the
expression of genes encoding pro-inflammatory cytokines, some growth factors, cyclooxygenase-2
(COX-2) and apoptotic pathways components [12]. Its activation has been noted in various inflammatory
diseases, such as rheumatoid arthritis, multiple sclerosis, atherosclerosis, systemic lupus erythematosus,
type I diabetes, chronic obstructive pulmonary disease and asthma, and especially in digestive system
pathologies, including e.g., inflammatory bowel disease (IBD mainly consisting of Crohn’s disease
and ulcerative colitis) and drugs-induced gastrotoxicity [13–15]. NF-κB inhibition by H2S can occur in
two possible ways, by sulfhydration of the free thiol group on 38 cysteine in the subunit 65 or due to
phosphorylation suppression and degradation of IkBα [16,17]. As it has been mentioned above, H2S can
also interact with another transcription factor, Nrf-2, which regulates cellular defensive response to
inflammation and oxidation [11,18]. Physiologically, Nfr-2 is present in the cytoplasm as a molecular
complex with the cytoskeleton protein, Keap1. When cellular redox homeostasis is imbalanced, Nrf-2
is released from its repressor (Keap1), translocated to the nucleus and bound to promoter of antioxidant
responsive element (ARE). This translocation leads to increased transcription for anti-oxidative genes,
such as catalase (CAT) or superoxide dismutase (SOD) [19,20], glutathione-S-transferase (GST) and
glutathione peroxidase (GPx) [11,18]. H2S most likely activates Nrf-2 pathway by sulfuration the
Keap1 protein (at the cysteine-151, 226 and 613), leading to this nuclear factor release, its nuclear
translocation and enhancement of antioxidant genes expression [18]. H2S is also supposed to exert
its anti-inflammatory activity due to the modulation of annexin A1 (AnxA1) pathway. H2S triggers
AnxA1 mobilization and modulates vascular inflammatory processes by the enhancement in the
detachment rate of leukocytes from the vessel wall resulting in reduction of inflammation [21].
This gaseous molecule can interact with the endogenous NO in vasomotor responses of the arterial
vessels involved in the blood pressure control. Previous study concerning the systolic blood pressure
(sBP), vasoreactivity, NO-synthase (NOS) expression and activity, CTH expression and geometry of the
isolated thoracic aorta revealed that this vasomotor interaction between H2S released from Na2S with
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NO in thoracic aorta of normotensive and spontaneously hypertensive rats (SHRs) seems to be age-
and blood pressure-dependent [4].

It has been reported that H2S biosynthesis pathway activity could be crucial for gastric mucosal
barrier physiology and alterations in this gaseous molecule signaling were observed in pathology
of upper GI-tract and other parts of the digestive system [5]. Moreover, H2S-releasing NaHS has
been shown to accelerate ulcer healing and to attenuate non-steroidal anti-inflammatory drugs
(NSAIDs)-induced gastrotoxicity [22,23]. Interestingly, H2S-releasing derivative of naproxen (ATB-346)
which successfully completed phase 2 clinical trial, offers a promising safer alternative for conventional
native form of this NSAID not only in improvement of pain relief but also in GI-safety manifested by
the reduction of upper GI tract damage formation in subjects treated with equimolar effective doses of
ATB-346 versus naproxen [24]. Similarly GYY4137, slow H2S-releasing compound has been shown
to exert anti-inflammatory activity [25] and to decrease the area of ischemia/reperfusion-induced
gastric damage in rats [23]. GYY4137 also attenuated intestinal barrier injury in mouse model as
well as in human colon cancer cells model of lipopolysaccharide (LPS) or TNF-α/IFN-γ-induced
endotoxemia [26].

It is also worth mentioning that natural sources of sulfur compounds, such as garlic-derived
compounds including diallyl sulfide (DAS) disulfide, diallyl disulfide (DADS), diallyl trisulfide
(DATS) and allicin were described as H2S releasing molecules [27]. Numerous studies have shown
beneficial therapeutic and protective effects of these compounds in cancer development [24–26].
Cell cultures and animal models, as well as epidemiology data have revealed the chemopreventive
activity of these H2S donors, especially in gastric and colorectal cancers [28–30]. On the other hand,
somehow related to H2S and sulfide physiology, sulfiredoxin (Srx) is multifunction enzyme involved
in antioxidant metabolism by reduction of cysteine sulfinic acid to sulfenic acid in proteins exposed
to oxidative stress [31]. Some studies suggested that increased Srx expression could be linked with
carcinogenesis and tumor progression [29,31]. Indeed, in gastric tumors cells, expression of Srx was
significantly elevated as compared with normal tissue [29]. Interestingly, it has been reported that
treatment with DATS decreased expression of Srx in gastric tumor cell line BGC823 [29]. Similarly,
Srx is highly expressed in poorly differentiated, aggressive HCT116 human colorectal cancer cells,
while in normal colon epithelium (NCM460) or cells derived from well-differentiated colorectal
carcinomas (SW640 and HT29) this protein was not detected [32]. It has been also observed that
inhibition of Srx resulted in selective death of cancer cells by disturbance in redox homeostasis [33].
Taken together, we assume that inhibition of Srx could be considered as a novel approach and target
for anticancer treatment. On the other hand, some studies showed pro-cancer effects of H2S [34–36].
This phenomenon may be associated with induction of angiogenesis, regulation of mitochondrial
bioenergetics, acceleration of cell cycle progression, and anti-apoptotic actions [34]. It has been reported
that in adenocarcinoma-derived cell lines (HCT-116, HT-29, LoVo) CBS expression was upregulated as
compared to control-non-malignant colonic epithelial cells [35]. Moreover, anti-apoptotic effect of H2S
and its involvement in the enhancement of cell proliferation linked with alterations in CTH expression
was demonstrated on human gastric adenocarcinoma (AGS) [36]. Taken together, H2S has been shown
to exert both pro- and anti-cancer effects and we assume that this could be dependent on the dose of
this gaseous mediator and possibly on the differences in sensitivity of various cell types to the impact
of this molecule.

Garlic-derived H2S-releasing compounds were also shown to exhibit hepatoprotective effect in
experimental animal models [37,38]. Pretreatment with DAS decreased NF-κB and TNF-α in serum and
reversed the decreased level of superoxide dismutase (SOD) and catalase activity in liver as observed
in a well described model of liver injury induced by carbon tetrachloride (CCl4) [38]. Therefore,
garlic-derived H2S donors might affect cell signaling networks in a similar way as synthetic H2S donors.
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2.2. CO Physiology and Pharmacology

CO is produced in mammalian tissues by heme degradation involving enzymatic activity of heme
oxygenases (HMOXs) [2]. This protein has two main isoforms, HMOX-1 and HMOX-2 translated
by the expression of two separate genes. HMOX-1 is inducible and this isoform is active under
imbalanced homeostasis conditions, while HMOX-2 is constitutively expressed with relatively low
yield. Interestingly, rats also encode third isoform, HMOX-3, probably from a pseudogene that
does not produce a functional form of this protein [39]. It has been indicated that in majority of
biological systems, CO has been shown to exert anti-inflammatory, anti-proliferative, anti-apoptotic
and cytoprotective effects, similarly to H2S [39,40]. CO may regulate the activity and functionality of
various proteins by binding to heme domains. This includes e.g., hemoglobin, myoglobin, cytochrome
c, cytochrome P450, nitric oxide synthase (NOS), catalase, prostaglandin H synthase, nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (Nox) and transcription factors NPAS2, Bach-1 and
Bach-2 [41].

Recently, endogenous CO or that released from the synthetic CO donor,
tricarbonyldichlororuthenium (II) dimer (CORM-2) has been implicated in the mechanism of
gastric mucosal integrity, gastroprotection and the healing of chronic gastric ulcers [42,43].
These gastroprotective and therapeutic effects of CO are mediated by the activation of soluble
guanylyl cyclase (sGC), which is regulating cyclic guanosine monophosphate (cGMP) generation.
Elevated intracellular concentration of this second messenger leads to enhancement in the gastric
microcirculation as documented by the direct measurement of gastric blood flow (GBF) [40,42,43].
Moreover, the potential mediators of this CO-induced beneficial action such as Ca2+-activated K+

channels [44] and the arachidonic acid derivative (20-HETE) production, have been proposed to
mediate vasoactive, gastroprotective and ulcer healing properties of CO [45].

In addition, the anti-apoptotic and anti-hypoxic effects of this gaseous molecule have been
demonstrated [37]. In animal in vivo and cell culture in vitro models, CO has been shown to
inhibit LPS-induced overexpression of pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6,
macrophage inflammatory protein (MIP)-1β and granulocyte-macrophage colony-stimulating factor
(GM-CSF) [44]. It has been assumed that the anti-inflammatory activity of CO is related to the
possible modulation by this gaseous molecule of the multiple members of the mitogen-activated
protein kinase (MAPK) family [44]. Fukuda et al. has reported that water-soluble CORM-3 attenuated
inflammatory response in animal model of trinitrobenzenesulfonic acid (TNBS)-induced colitis by
targeting CD4+ T cells releasing pro-inflammatory cytokines (e.g., TNF-α, IL-8, INF-γ, IL-17A) [46].
Interestingly, CO may affect ERK MAPK pathway in T cells inhibiting their proliferation followed
by the reduced pro-inflammatory cytokines release, as it has been documented in experimental
mice model of colitis [47]. Moreover, recent evidence has indicated that pretreatment with CORM-3
alleviated the postoperative ileus (POI) in mice [48]. Similarly to above mentioned observations,
CORM-3 significantly reduced intestinal inflammation and oxidative stress in postoperative ileus due
to activation of p38 MAPK and downregulation of ERK1/2 [48]. Taken together, it can be assumed
that CO has immunomodulatory properties and affects the activity of various cell types including T
cells, B cells, epithelial cells, neutrophils, mast cells, dendritic cells and macrophages stimulated in the
course of gastrointestinal digestive disorders [49]. Takagi et al. investigated the effects of CO-releasing
CORM-A1 on Th17 differentiation using T-cell transfer-induced colitis in mice [50]. They revealed
that CORM-A1 ameliorated intestinal inflammation through reduction of retinoid related orphan
receptor (ROR)γ-receptor expression, inhibition of Th17 differentiation and by the decrease of IL-17A
level [50]. HMOX-1/CO pathway can also regulate intestinal inflammation in acute and chronic
experimental models by cross-talk of this pathway proteins with enteric microbiota in mucosal immune
compartment [49]. Undoubtedly, CO could be considered as potential therapeutic agent in various GI
disorders due to the wide range of molecular inflammatory and anti-inflammatory targets affected by
this small gaseous molecule.



Biomolecules 2020, 10, 445 5 of 15

3. Similarities and Dissimilarities in H2S and CO Activity and their Interaction within
Digestive System

3.1. Parallelisms and Discrepancies in CO and H2S Effects and Targets

CO and H2S, likewise NO have similar activity and regulate parallel molecular pathways, also due
to mutual interaction and the cross-talk between these molecules [51,52]. H2S and CO were shown to
prevent gastric mucosa against NSAIDs- or alendronate-induced damage and to accelerate ulcer healing
due to an improvement of gastric microcirculation [15,53–55]. Both molecules attenuated hypoxia
and inflammation decreasing gastric mucosal expression of HIF-1α and NF-κB [15]. Recent evidence
indicates that H2S- and CO-gastroprotection was abolished or at least reduced by the inhibition of
sGC or NOS activity [54,56]. Interestingly, in contrast with H2S, CO was shown to maintain its
gastroprotective effects independently on afferent sensory nerves activity [56]. On the other hand,
H2S-releasing NaHS accelerated gastric ulcer healing but in contrast with CO-releasing CORM-2,
this effect of H2S donor was accompanied by the upregulation of gastric mucosal protein expression
for Nrf-2, vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFr) at
the ulcer margin [42,53].

Interestingly, it has been reported that CO donors could exert antibacterial activity against
Helicobacter pylori (H. pylori) [57]. Nowadays, the gastric colonization with H. pylori constitutes the major
risk of gastric and duodenal ulcer diseases, mucosa-associated lymphoid tissue (MALT) lymphoma
and even gastric adenocarcinoma [58]. Antimicrobial action of stimulated murine macrophages was
enhanced by CORM-2 against H. pylori [57]. Moreover, CORM-2 impaired H. pylori respiration and
inhibited H. pylori related urease activity [57], however, the role of H2S in H. pylori infection has
not been fully recognized. On the one hand, H. pylori produces H2S [8], but on the other hand,
as mentioned above, natural sulfur compounds like garlic have antibacterial activity [59]. Moreover,
microbiological studies revealed anti-H. pylori potential of DADS derived from garlic powder or garlic
oil [59]. Antibacterial activity of garlic-derived compounds were shown to be effective in patients
infected with H. pylori [60]. Furthermore, allicin as an adjuvant to conventional anti-H.pylori therapy
increased efficiency of H. pylori eradication [61]. However, further studies are required to fully explain
these bactericidal aspects of H2S donating agents.

Both H2S and CO donors were shown to increase HCO3
- secretion in rat duodenum protecting the

duodenal mucosa against the damage induced by acidic content [62]. Additionally, H2S was observed
to modulate gastric secretion possibly via activation of TRPV1 channel and the consequent release
of substance P and in a NF-κB -dependent manner [63]. H2S released from NaHS stimulated the
secretion of HCO3

- in part mediated by the activity of capsaicin-sensitive afferent neurons as well as
endogenous NO and PGs [64]. Similarly, CORM-2 dose-dependently elevated HCO3

- secretion acting
as the stimulant of endogenous PGs biosynthesis [62].

In another study, de Araujo et al. proposed that adenosine monophosphate-activated protein
kinase (AMPK) plays an important role as a regulator of cellular energy and metabolism, and could
be the common target for all above mentioned gaseous mediators [65]. Indeed, AMPK inducers can
actually exert a beneficial effects within the GI tract, e.g., metformin has been shown to suppress
esophageal squamous cell carcinoma (ESCC) [66]. Interestingly, the γ-subunit of AMPK contains four
CBS domains located close to the N-terminus of this subunit, operating in pairs known as Bateman’s
domain [67]. The administration of H2S, CO and NO donors increased p-AMPK expression and
protected gastric mucosa of mice against ethanol-induced lesions [65]. On the other hand, it has been
also indicated that AMPK stimulates HMOX-1 gene expression within human vascular cells and rat
arteries via modulation of Nrf2/ARE pathway [6].

Interestingly, H2S donor, DADS has been demonstrated to stabilize hypoxia-inducible factor α
(HIF-1α) and to prevent colonic mucosa in experimental model of colitis [68]. H2S also is produced by
intestinal bacteria forming a biofilm lining the mucus surface [69]. Dysbiosis of the gut microbiota
and “leaky” mucus layer is associated with the pathogenesis of IBD, irritable bowel syndrome
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(IBS), colorectal cancer and extra-intestinal disorders like obesity or metabolic syndrome [70,71].
It has been reported that H2S derived from DADS can have additional protective effect on gut
affecting intestinal microbiota and biofilm formation because treatment with this compound not only
alleviated intestinal damage but has also effectively reconstituted microbiota biofilm structure in rat
model of colitis [69,72]. As mentioned before, CO due to its anti-inflammatory activity ameliorated
intestinal injury in experimental models of colitis by the modulation of pro-inflammatory cytokine
expression [49]. Experiments carried out in mice showed that enteric microbiota have the ability
to regulate the activity of intestinal macrophages essential in killing pathogenic bacteria such as
Salmonella enterica. This bactericidal effect was associated with an induction of HMOX-1/CO pathway
by microbiota [49,73]. Moreover, the gut microbiota can produce CO due to the presence of enzymes
with similar functions as HMOX-1. In addition, CO can directly interact with heme-containing groups
in some intestinal bacteria [73]. Importantly, in patients with ulcerative colitis, increased intestinal
expression of HMOX-1 has been demonstrated [74]. Thus, the interplay between gasotransmitters and
gut microbiome may play an important role in maintenance of intestinal homeostasis (Figure 1).

Figure 1. Possible involvement of hydrogen sulfide (H2S) and carbon monoxide (CO) in physiology of
intestinal microbiota.

3.2. Cross-talk between CO and H2S Biosynthesis Pathways

3.2.1. Effects of CO on H2S Biosynthesis Pathway

CO has the chemical ability to bind to metal-centered prosthetic groups of many proteins including
enzymes [75]. Therefore, heme containing proteins could be considered as the main target of molecular
events associated with CO activity. CBS, similarly to CTH and MPST takes part in endogenous H2S
production but belongs to the above mentioned type of enzymes. Indeed, it has been reported that
CO can bind to the prosthetic heme domain of CBS, stabilizing CO-Fe(II)-histidine complex and in
turn, resulting in this enzyme inhibition [75,76]. CO regulates H2S production, but on the other hand,
CBS acts in parallel as a CO sensor [75], however, the indirect effect of CO on CTH and MPST activity
could not be excluded.

With the implementation of metabolomic methods, the decreased activity of CBS, which affected
remethylation and transsulfuration has been observed (Figure 2). In detail, the CBS inhibition by CO has
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been shown to elevate methionine and S-adenosylmethionine (SAMe) levels resulting in modulation of
proteins methylation leading to increased generation of anti-oxidants [77,78]. Therefore, CO-mediated
CBS inhibition is supposed to switch the transsulfuration pathway into the remethylation pathway,
leading to the wide range of proteins and histones methylation. Indeed, based on in vitro model,
it has been demonstrated that CO released from CORM-2 enhanced histone H3 protein methylation in
human monoblastic leukemia U937 cells [79].

Figure 2. Possible impact of carbon monoxide (CO) on cystathionine-β-synthase (CBS)
activity resulting in transsulfuration/remethylation switch. Abbreviations: Met: methionine;
SAMe: S-adenosyl-methionine; SAH: S-adenosyl-homocysteine; Hcy: homocysteine; CSE:
cystathionine-γ-lyase

Histone modification and DNA methylation work together in mechanism of chromatin
condensation process which is a morphological hallmark of apoptosis, and its regulatory availability for
transcription factors. For instance, alterations in DNA methylation have been reported in development
of both precancerous Barrett’s esophagus (BE) and esophageal adenocarcinoma (EAC), despite its
noticeable role in gastric carcinogenesis [80]. Histological alterations that occur in BE include the
transformation of normal squamous epithelium into intestinal metaplasia with a further progression
into dysplasia and finally into adenocarcinoma. Thus, there were also epigenetic alterations observed,
especially within DNA methylation. Genomic analysis revealed the presence of global hypomethylation
during the course of metaplasia development [81]. However, the possible involvement of CO and H2S
in the development of chronic esophageal disorders has not been fully elucidated. Taken together,
this aspect should be further investigated with the emphasis on possible impact of these gaseous
mediators in the mechanism of DNA methylation process of these upper GI pathologies.

Interestingly, the interaction of CO with CBS/H2S pathway could be involved in regulation of bile
secretion since CO attenuated H2S levels, stimulated biliary HCO3

- and therefore protected the liver,
accelerating its detoxification [82]. In fact, H2S may play an essential role in these processes because
heterozygous knockout (CBS+/-) reversed these effects of CO [82]. However, the inhibition of CTH
activity by propargylglycine (PAG) induced choleresis in the rat liver suggesting that the increased CO
and decreased H2S content are responsible for an elevation of bile secretion [83]. Since bile secretion
strictly depends on the blood flow in mesenteric circulation, the blood vessel vasomotor activity can be
directly mediated by these endogenous gaseous molecules. Indeed, the anti-contractile effect of H2S
in both, the rat vascular wall and perivascular tissue has recently been demonstrated using normal
and SH rats [3,4]. It has been found that pretreatment with PAG elevated the noradrenaline-induced
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contraction in normal but not in spontaneously hypertensive (SH) rats [3]. However, perivascular
adipose tissue presence increased vasoactive effect of exogenously derived H2S in SH rats [3].

On the other hand, an opposite final effect of CBS inhibition by CO, such as increased H2S
concentration has been proposed [77]. This could be explained by accumulation of homocysteine
that compensatively raised CTH activity in endoplasmic reticulum stress model in HEK293 cells,
an effect also confirmed in CBS deficient mice [84]. This hypothesis could be corroborative with our
previous finding that pretreatment with CO-donor, CORM-2 not only prevented gastric lesions induced
by aspirin but also downregulated gastric mucosal protein expression of CBS and subsequent H2S
production [54]. However, in chronic experimental gastric ulcer study, the daily treatment with CO
donor throughout 9 days period, accelerated ulcer healing and upregulated mRNA expression for CTH
and CBS increasing H2S production at the gastric mucosa of ulcer margin [53]. These observations
strongly suggest that the effect of CO on CBS and possible activation of compensative mechanisms
regulating H2S biosynthesis could be time-dependent.

3.2.2. Effects of H2S on CO Biosynthesis Pathway

As mentioned above, the endogenous synthesis of CO depends upon the activity of HMOX-1
and HMOX-2. As reported previously, H2S can affect the expression of HMOX-1 and endogenous CO
content indirectly, by modulation of Keap1-Nrf2 pathway [58] (Figure 3). For instance, the pretreatment
with H2S-releasing derivative of naproxen, ATB-346 increased the expression of Nrf-2 and HMOX-1
proteins in gastric mucosa compromised by acute stress [32].

Figure 3. Nuclear factor erythroid2-related factor 2 (Nrf-2) mediated modulation of carbon monoxide
(CO) production by hydrogen sulfide (H2S). Abbreviations: Keap1: Kelch-like ECH-associated protein
1; ARE: antioxidant response element

As reported by our group previously, daily treatment with H2S-releasing NaHS accelerated gastric
ulcer healing and decreased mRNA expression of HMOX-1 at ulcer margin supporting the notion that
this beneficial effect of H2S donor is mediated by anti-inflammatory activity of this gaseous molecule [53].
However, pharmacological inhibition of HMOXs by administration of zinc protoporphyrin IX (ZnPP)
reversed gastroprotective, ulcer healing and vasodilatory effects of H2S donor [53,54]. Interestingly,
beneficial outcomes of CORM-2 administration in gastric mucosa and gastric microcirculation were
still observed despite the H2S biosynthesis pathway has been pharmacologically inhibited [43].
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Taken together, these results suggest that, at least within gastric mucosa, H2S activity including
modulation of gastric microcirculation is dependent on endogenous CO biosynthesis while beneficial
effects of CO are independent on the activity of endogenous H2S biosynthesis pathway.

4. Conclusions, Possible Implementation into Therapy of GI Disorders and Future Perspectives

CO and H2S donors were shown to exert preventive and therapeutic effects in various digestive
system disorders and pathologies, such as drugs-induced gastrotoxicity, ulcer healing or prevention
and treatment of colitis (Figure 4). It has been reported that these gaseous molecules have similar
molecular targets and could influence each other (Table 1). Nevertheless, the emerging cross-talk and
interactions between these two molecules remain to be studied. Especially, possible effects of both
gaseous molecules and novel class of drugs releasing H2S and CO in the therapy of the short-term
and long-term esophageal pathologies such as GERD, BE or EAC should be further determined.
Additionally, influence of CO and H2S on the H. pylori infection consequences requires further
investigations. Lastly, but not limited to, precise mechanisms and effects of CO and H2S on the
methylation process and regulation of mitochondrial activity, especially in the context of upper GI
pathologies could significantly expand the current knowledge related to the possible molecular targets
of these gaseous transmitters and pharmacological agents releasing these gaseous molecules.

Figure 4. Schematic overview of beneficial actions of hydrogen sulfide (H2S) or carbon monoxide (CO)
releasing pharmacological tools in physiology and pathophysiology of digestive system pathologies.

Even though the experimental evidence on protective efficacy of CO-donating agents are promising,
clinical implementation of these compounds into therapy in humans might be questionable since
many CO-releasing pharmacological tools contain heavy metals in their structure [85]. However,
novel CO-releasing prodrugs were developed recently and further studies will hopefully reveal their
clinical potential [86]. It is worth to highlight, that H2S-releasing derivative of naproxen, ATB-346
with its reduced gastrotoxicity passed successfully the Phase 2 of clinical trial [24]. Taken together,
there are still many missing aspects to be answered and extensively investigated in the context of CO
and H2S-related physiology and pharmacology of GI digestive system.
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Table 1. Summary of exemplary beneficial effects of H2S and CO.

H2S

Reference

CO

Reference

Beneficial effects of H2S and CO

Anti-inflammatory

decreased serum level of TNF-α and IL-1β and expression
of mRNA in gastric mucosa [5,15] inhibited production of TNF-α, IL-1β in LPS-stimulated

macrophages in vivo and in vitro [44]

reduced mRNA and protein expression of HIF-1α in
gastric mucosa [5,15] increased IL-10 expression in macrophages via activation

p38MAPK [87]

supressed NF-κB pathway in gastric mucosa [21] decreased ERK1/2 kinase activity in T cells [88]

induced activation of AnxA1 pathway [21]
re reduced mRNA and protein expression of HIF-1α in

gastric mucosa and supressed NF-κB pathway in gastric
mucosa

[15]

involved in regulation of Th1, Th2, and Th17 lymphocyte
differentiation, decrease of IL-17A content [50]

Anti-oxidative
caused Nrf-2 /HMOX-1pathway upregulation [11,18] inhibited the lipid peroxidation [2]

decreased level of MDA and increased production of
glutathione (GSH) [7,56] decreased level of MDA and modulated SOD activity [56,89]

Vasodilatation
increased gastric microcirculation via sGC on endogenous

NO and CO biosynthesis-dependent manner [53,54,56]
Increased gastric microcirculation via sGC with contribution

of NO biosynthesis pathway and independently on
endogenous H2S activity

[40,42,43,54,56]

dependent on activation of KATP channels [90] dependent on activation of KATP channels [91]

HCO3
- secretion in duodenum increased [64] increased [62,64]

Impact on gut microbiota caused the reconstitution of microbiota biofilm dysbiosis [69,72]
found to be involved in CO/HMOX-1 pathway in cross-talk

between the microbiota and the mucosal immune
compartment

[49]

Cross-talk between H2S and CO
Direction Mechanism of action Possible biological effect References

CO→ ↓ H2S CO can bind to CBS and inhibits its activity switch of transsulfuration pathway into the remethylation pathway→methylation
of proteins→ epigenetic changes [76,77]

H2S→ ↑CO H2S activates Nrf-2 which and modulates of HMOX-1
expression and CO production modulation of oxidative homeostasis and Nrf-2-dependent molecular pathways [18]
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