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Abstract: Zinc deficiency (ZnD) has adverse health consequences such as stunted growth. Since
young children have an increased risk of developing ZnD, it is important to determine its prevalence
and associated factors in this population. However, only a few studies have reported on ZnD
prevalence in young children from Western high-income countries. This study evaluated ZnD
prevalence and associated factors, including dietary Zn intake, in healthy 1–3-year-old children from
Western European, high-income countries. ZnD was defined as serum Zn concentration <9.9 µmol/L.
A total of 278 children were included with a median age of 1.7 years (Q1–Q3: 1.2–2.3). The median
Zn concentration was 11.0 µmol/L (Q1–Q3: 9.0–12.2), and ZnD prevalence was 31.3%. No significant
differences were observed in the socio-economic characteristics between children with and without
ZnD. Dietary Zn intake was not associated with ZnD. ZnD is common in healthy 1–3-year-old
children from Western European countries. However, the use of currently available cut-off values
defining ZnD in young children has its limitations since these are largely based on reference values
in older children. Moreover, these values were not evaluated in relation to health consequences,
warranting further research.

Keywords: zinc; zinc deficiency; dietary zinc intake; children; Western Europe

1. Introduction

Zinc is an important trace element for human health, as it is involved in numerous and
diverse biological processes throughout the body, including cell growth and differentiation,
gene expression, and protein synthesis [1–3]. Subsequently, zinc deficiency (ZnD) has a
wide range of possible adverse health consequences, including stunted growth, skin lesions
and delayed wound healing, and impaired innate and adaptive immune functions [4–8].

ZnD is highly prevalent worldwide, resulting in substantial disease burden, especially
in young children since they have an increased risk of developing ZnD due to increased
requirements during periods of rapid growth [9,10]. In low- and middle-income countries,
varying prevalence rates of ZnD have been reported in infants, young children, and
preschool-age children, ranging from 5.1% in Sri Lanka to 82.6% in Cameroon [11]. Only a
few studies report on the prevalence rates of ZnD in healthy young children from Western
high-income countries, ranging from 0–60% [12–17]. However, most of these studies were
conducted some time ago, while dietary habits in Western countries may have changed
over the years. Moreover, in most of these studies, study populations were relatively small,
and associated factors were not extensively assessed.
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Because of the possible adverse health consequences of ZnD in young children, it
is important to determine ZnD prevalence and associated factors in this population to
implement and guide preventive strategies. Therefore, this study aimed to assess the
prevalence of ZnD in a population of healthy 1–3-year-old children living in Western
Europe and evaluate the possible associated factors, including dietary Zn intake.

2. Materials and Methods
2.1. Study Design

Data were used from a previously conducted randomized, double-blind controlled
trial (NTR3609) investigating the effect of a micronutrient-fortified growing-up milk given
for 20 weeks on the iron and vitamin D status of healthy 1–3-year-old children in com-
parison to non-fortified cow’s milk [18]. This study was conducted from October 2012 to
September 2014 in three Western European countries, namely Germany (nine private pedi-
atric clinics), the Netherlands (one secondary and two tertiary hospitals), and the United
Kingdom (UK) (one secondary and one tertiary hospital). The study protocol was approved
by the medical ethical review boards of all participating sites and has been previously
described in detail [18]. In addition to iron and vitamin D status, other micronutrients,
including zinc (Zn), were also analyzed. Blood samples collected during the baseline study
visit were used for the current study.

2.2. Study Population and Procedure

Children between 1 and 3 years of age with a stable health status (i.e., no known
chronic or recent acute diseases, no known infection during the last week, or infection
needing medical assistance or treatment during the last two weeks) and expected to remain
stable were eligible for participation. The recruitment of participants differed between
countries. In the Netherlands and the UK, parent(s) or legal representative(s) of eligible
children were informed about the study during a preoperative visit before an elective
non-emergency surgical procedure (e.g., urologic surgeries, inguinal or umbilical hernia
operations, or ear–nose–throat procedures). If written informed consent was obtained from
the parent(s)/legal representative(s), the baseline study visit coincided with the elective
non-emergency surgical procedure. The baseline blood sample was then combined with
intravenous injection necessary for administering general anesthesia. In Germany, par-
ticipants were recruited during a regular visit to a pediatric clinic. During the baseline
study visit, the child’s body weight and height/length were measured. Body weight
was measured while wearing only underwear, using a calibrated weighing scale. Height
was measured while standing and without wearing shoes, using a calibrated stadiometer.
Length was measured in children for whom it was not possible to take a height measure-
ment while standing, using a length board. Weight-for-age-z-scores and height/length-
for-age-z-scores were calculated using World Health Organization (WHO) Child Growth
Standards. Stunting was defined as the height/length-for-age >2 standard deviations (SD)
below the median of WHO Child Growth Standards [19]. Moreover, parent(s)/legal repre-
sentative(s) were asked questions during the baseline visit about their child’s demographic-
and socio-economic characteristics, daycare center attendance, medical history, and dietary
intake [18]. Dietary intake was estimated using a food-frequency questionnaire adapted
from other dietary questionnaires [20,21], as previously described [18]. This questionnaire
reflects dietary intake during the month before the baseline visit. For this study, we mainly
focused on the food groups known to affect zinc status (e.g., meat, vegetables, fish, vegeta-
bles, grains and grain-based products, and eggs). Zn intake (mg/day) (per reported food
group) was determined by using the Dutch Food Composition Database [22].

2.3. Laboratory Analysis and Definitions

Venous blood samples were collected from participants throughout various times of
the day by trained personnel using trace-element free heparinized tubes, following local
laboratory protocol and procedures recommended by the International Zinc Nutrition Con-
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sultative Group (IZiNCG) [19]. After clotting and centrifugation, serum was distributed
and aliquoted in polypropylene tubes and stored between −20 ◦C and −80 ◦C at the study
site. From the study sites, samples were shipped (within two months) on dry ice to the Nu-
tricia Research Analytical Science Laboratory in Utrecht, the Netherlands, where samples
were stored at −80 ◦C. From the Nutricia Research Analytical Science Laboratory, samples
were shipped on dry ice to the Reinier Haga Medical Diagnostic Center in Delft, the Nether-
lands, where samples were stored at −80 ◦C until analysis. Serum Zn concentrations were
determined using flame atomic absorption spectrophotometry (AA-7000, Shimadzu) and
hsCRP concentrations using a clinical chemistry analyzer (Abbott Architect c16000) with
a turbidimetry method. ZnD was defined as a serum Zn concentration <9.9 µmol/L [19].
Since Zn concentration may be reduced in the case of infection or inflammation [23–25],
participants with a high-sensitivity C-reactive protein (hsCRP) concentration >5 mg/L [26]
were excluded from analyses. Additionally, children with missing Zn and/or hsCRP
measurements at baseline were also excluded from analyses.

2.4. Statistical Analysis

SPSS version 24.0 (SPSS Inc., Chicago, IL, USA) was used for all analyses. Distribution
of data was assessed using histograms and Shapiro–Wilk tests. Data are presented as the
mean with SD for normally distributed variables or median with first and third quartiles
(Q1–Q3) for non-normally distributed variables. Categorical variables are presented as
numbers with percentages. Comparisons between groups were made using the indepen-
dent T-test for normally distributed variables and the Mann- Whitney U non-parametric
test for non-normally distributed variables. For categorical variables, comparisons between
groups were made using the Chi-squared or Fisher’s exact test. Statistical significance
was defined as p < 0.05. In order to further explore factors associated with ZnD, a binary
logistic regression analysis was performed using the variables previously identified with
a p-value < 0.1 as covariates, including age and sex independent of p-values, and ZnD as
dependent variable.

3. Results
3.1. Study Population

In total, 278 of the 325 (85.5%) healthy 1–3-year-old children of the original nutritional
intervention study were included for our Zn analyses: 237 (85.3%) in Germany, 37 (13.3%)
in the Netherlands, and 4 (1.4%) in the UK. Children excluded from analyses had missing
Zn and/or hsCRP measurements or an hsCRP concentration >5 mg/L at baseline. There
were no statistically significant differences regarding socio-economic characteristics and
dietary intake found between included and excluded children (data not shown). The
median age of the study participants was 1.7 years (1.2–2.3). Of the study population, 153
children (55.0%) were male, and 267 (96.0%) were Caucasian. Stunting was present in three
children (1.1%). More characteristics of the study population are shown in Table 1.

Table 1. Characteristics and dietary intake of the study population (1–3 years of age) and relation to Zn status.

All
N = 278

ZnD
N = 87

No ZnD
N = 191 p

Characteristics

Age (years) 1.7 (1.2–2.3) 1.6 (1.1–2.3) 1.7 (1.2–2.3) 0.301

Sex (male) 153 (55.0%) 48 (55.2%) 105 (55.0%) 0.975

Ethnicity (Caucasian) 267 (96.0%) 85 (97.7%) 182 (95.3%) 0.511

From Germany 237 (85.3%) 86 (98.9%) 151 (79.1%) <0.001 *

Parental educational level (N = 231, M = 47) (N = 74, M = 13) (N = 157, M = 34)
At least one parent with university education 53 (19.1%) 16 (18.4%) 38 (19.4%) 0.743
Neither with university education 178 (64.0%) 58 (66.7%) 120 (62.8%)

Parental professional status (N = 219, M = 59) (N = 69, M = 18) (N = 150, M = 41)
At least one parent working 210 (75.5%) 67 (77.0%) 143 (74.9%) 0.723
Neither working 9 (3.2%) 2 (2.3%) 7 (3.7%)
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Table 1. Cont.

All
N = 278

ZnD
N = 87

No ZnD
N = 191 p

Characteristics

Daycare attendance 117 (42.1%) 36 (41.4%) 81 (42.4%) 0.817
(N = 276, M = 2) (N = 189, M = 2)

Weight-for-age-z-score 0.22 (±0.94) 0.20 (±0.99) 0.24 (±0.92) 0.727
(N = 276, M = 2) (N = 189, M = 2)

Height/length-for-age-z-score −0.03 (±0.99) 0.04 (±1.04) −0.07 (±0.97) 0.417
(N = 271, M = 7) (N = 184, M = 7)

Stunting 3 (1.1%) 1 (1.1%) 2 (1.0%) NA
(N = 271, M = 7) (N = 184, M = 7)

Dietary intake

Ever breastfed § 177 (63.7%) 64 (73.6%) 113 (59.2%) 0.081
(N = 267, M = 11) (N = 180, M = 11)

Duration of breastfeeding §

0–<6 months 102 (57.6%) 34 (53.1%) 68 (60.2%) 0.362
≥6 months 75 (42.4%) 30 (46.9%) 45 (39.8%)

Ever formula fed § 251 (90.3%) 79 (90.8%) 172 (90.1%) 0.125
(N = 267, M = 11) (N = 180, M = 11)

Age of introduction of solid foods (months) (N = 273, M = 5) (N = 86, M = 1) (N = 187, M = 4)
0–6 months 224 (80.6%) 74 (85.1%) 150 (78.5%) 0.243
>6 months 49 (17.6%) 12 (13.8%) 37 (19.4%)

Main type of milk intake †◦ (N = 268, M = 10) (N = 181, M = 10)
Use of primarily cow’s milk 119 (42.8%) 40 (46.0%) 79 (41.4%) 0.719
Use of primarily formula 147 (52.9%) 47 (54.0%) 100 (52.4%) 0.850

Use of dietary supplements 86 (30.9%) 27 (31.0%) 59 (30.9%) 0.798
(unknown zinc content)

Total amount of milk per day ◦ (mL/day) 420 (400–600) 420 (300–600) 420 (400–600) 0.376
Zn intake from milk in general (mg/day) 2.78 (1.95–3.57) 2.76 (2.05–3.34) 2.79 (1.84–3.68) 0.481

(N = 268, M = 10) (N = 181, M = 10)

Meat (g/day) 19.3 (11.7–29.7) 19.3 (11.9–29.7) 18.8 (11.0–29.7) 0.611
Zn intake from meat (mg/day) 0.63 (0.38–0.96) 0.63 (0.38–0.96) 0.61 (0.36–0.96) 0.611

(N = 268, M = 10) (N = 181, M = 10)

Fish (g/day) 2.3 (0.9–4.5) 2.4 (1.2–4.7) 2.0 (0.8–4.4) 0.458
Zn intake from fish (mg/day) 0.02 (0.01–0.03) 0.02 (0.01–0.04) 0.02 (0.01–0.03) 0.458

(N = 268, M = 10) (N = 181, M = 10)

Vegetables (g/day) 61.0 (35.3–112.4) 63.0 (35.9–132.7) 59.3 (34.6–108.1) 0.369
Zn intake from vegetables (mg/day) 0.57 (0.33–1.05) 0.59 (0.34–1.25) 0.56 (0.32–1.01) 0.369

(N = 268, M = 10) (N = 181, M = 10)

Dried fruits, seeds and nuts (g/day) 0.6 (0.0–5.8) 0.0 (0.0–3.6) 0.8 (0.0–6.2) 0.068
Zn intake from dried fruits, seeds and nuts

(mg/day) 0.01 (0.00–0.12) 0.00 (0.00–0.07) 0.02 (0.00–0.12) 0.068

(N = 268, M = 10) (N = 181, M = 10)

Bread (g/day) 33.7 (32.4–64.9) 33.7 (32.4–64.9) 46.2 (23.8–64.9) 0.415
Zn intake from bread (mg/day) 0.43 (0.41–0.83) 0.43 (0.41–0.83) 0.59 (0.30–0.83) 0.415

(N = 268, M = 10) (N = 181, M = 10)

Sandwich spread (g/day) 1.1 (0.0–4.5) 0.9 (0.0–3.5) 1.1 (0.1–4.8) 0.436
Zn intake from sandwich spread (mg/day) 0.01 (0.00–0.03) 0.01 (0.00–0.03) 0.01 (0.00–0.04) 0.436

(N = 267, M = 11) (N = 180, M = 11)

Breakfast cereals (g/day) 3.0 (0.0–24.1) 5.9 (0.0–32.5) 1.9 (0.0–23.0) 0.230
Zn intake from breakfast cereals (mg/day) 0.06 (0.00–0.47) 0.12 (0.00–0.64) 0.04 (0.00–0.45) 0.230

(N = 268, M = 10) (N = 181, M = 10)

Eggs (g/day) 6.7 (1.6–6.7) 6.7 (1.6–6.7) 3.9 (1.6–6.7) 0.591
Zn intake from eggs (mg/day) 0.10 (0.02–0.10) 0.10 (0.02–0.10) 0.06 (0.02–0.10) 0.591

(N = 268, M = 10) (N = 181, M = 10)

Zn intake from solid foods (mg/day) 2.52 (1.86–3.73) 2.76 (2.20–3.73) 2.33 (1.77–3.75) 0.066
(N = 268, M = 10) (N = 181, M = 10)

Total dietary Zn intake (mg/day) 5.71 (4.43–6.85) 5.59 (4.57–6.74) 5.83 (4.33–6.93) 0.978
(from milk and solid foods) (N = 268, M = 10) (N = 181, M = 10)

Data are expressed as medians (Q1–Q3) or numbers (percentages). In the case of normal distribution, means (standard deviations) are
reported. § Exclusively or partially. † During the previous month; ◦ N = 2 other main types of milk/dairy (i.e., human milk (N = 1), yogurt
(N = 1)). p denotes p-value regarding comparisons between “ZnD” and “no ZnD”. * Statistically significant with p < 0.05. Abbreviations:
Zn, zinc; ZnD, zinc deficiency; N, number; M, missing; NA, not applicable.
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3.2. Serum Zn Concentrations, ZnD Prevalence and Dietary Zn Intake

In the total study population, the median Zn concentration was 11.0 µmol/L (9.0–12.2).
The median Zn concentrations in children with and without ZnD were 9.0 µmol/L (8.0–9.0)
and 12.0 µmol/L (10.7–13.0), respectively. ZnD was present in 87 (31.3%) children. The
median total dietary Zn intake (from milk and solid foods) was 5.71 mg/day (4.43–6.85),
with a median Zn intake from milk of 2.78 mg/day (1.95–3.57) and from solid foods of
2.52 mg/day (1.86–3.73). More dietary intake details of the study population are shown in
Table 1.

3.3. Factors Associated with ZnD

No significant differences in sex distribution, ethnicity, parental educational or pro-
fessional status, or daycare attendance were found between children with and without
ZnD. Children with ZnD were significantly more often ‘from Germany’ (98.9%) compared
to children without ZnD (79.1%, p < 0.001). Furthermore, no significant differences in the
consumption of solid foods (gr/day) or Zn intake (mg/day) per reported food group in
children with and without ZnD were found. Finally, no significant differences in Zn intake
from milk (i.e., formula, cow’s milk, or otherwise) (p = 0.481), solid foods (p = 0.066), or
total dietary Zn intake (from milk and solid foods) (p = 0.978) between children with and
without ZnD were observed (Table 1).

A binary logistic regression analysis was performed to further explore factors associ-
ated with ZnD, with ‘ZnD’ as dependent variable and ‘age’, ‘sex’, ‘ever breastfed’, ‘from
Germany’, and ‘dietary Zn intake’ as covariates, which showed that being ‘from Germany’
was significantly associated with ZnD (OR = 16.6; 95% CI 92.2–124.2; p = 0.006). No other
significant associations with ZnD were found (data not shown). Although ‘Zn intake from
dried fruits, seeds and nuts’ had a p-value < 0.1, we chose not to include this variable in
our multivariate model since this variable was already included in ‘dietary Zn intake’. A
separate binary logistic analysis with ‘Zn intake from dried fruits, seeds and nuts’ instead
of ‘dietary Zn intake’, showed no significant association with ZnD (data not shown).

A subgroup analysis was performed in 1–2-year-old and 2–3-year-old children: ZnD
was present in 54 (30.2%) and 33 (33.3%) of 1–2-year and 2–3-year-old children, respectively,
and this difference in ZnD prevalence was not significant (p = 0.586).

4. Discussion

This study showed that ZnD, with a prevalence rate of 31.3%, is common in healthy
1–3-year-old children living in three Western European countries. In addition to being from
Germany, no other evaluated factors, including total dietary Zn intake, were associated
with ZnD.

4.1. ZnD Prevalence

With an overall prevalence of 31%, we showed that ZnD is not uncommon in healthy
1–3-year-old children living in three Western European high-income countries. In low-
and middle-income countries, prevalence rates of ZnD between 5% and 83% have been
reported in young children [11]. Populations in low- and middle-income countries are at
an increased risk of inadequate Zn intake and subsequently ZnD, which can be partially
attributed to limited access to foods that are rich in zinc, such as animal products, in
combination with a mainly plant-based diet, which contains phytates that inhibit intestinal
Zn absorption [27]. Studies conducted in young children in Western high-income countries
also report varying prevalence rates of ZnD, ranging between 0% and 60% in 1-year-old
children [12,14,15,17]. ZnD was found in 21% of healthy children below three years of age
in France [13] and in 38% of healthy toddlers between 12 and 20 months of age in New
Zealand [16]. However, the comparison of prevalence rates of ZnD between studies remains
challenging due to relatively small sample sizes and differences in study populations.
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4.2. Factors Associated with ZnD

In our study population, we found no association between ZnD and the evaluated
sociodemographic factors, besides being from Germany. Children with ZnD were signifi-
cantly more often ‘from Germany’ (98.9%) compared to children without ZnD (79.1%). We
cannot rule out that this association is possibly due to differences in setting and recruitment
procedures (e.g., fasting state) between children recruited from Germany and children
recruited from the Netherlands and the UK. However, we believe that since the majority
of participants were from Germany (85%), it is likely by chance that children with ZnD
are more likely to come from Germany than from the Netherlands or the UK. Moreover,
no association between ZnD and dietary Zn intake was found. Three meta-analyses also
concluded that serum Zn concentrations are unrelated to Zn intake [28–30]. Furthermore,
Hennigar et al. [31] reported no differences in serum Zn concentrations between those with
lower or higher Zn intake than the recommended dietary allowance for Zn. With a median
total dietary Zn intake of 5.6 mg/day, our study population meets the recommended Zn
intakes in each participating country [32–34]. The lack of association between dietary Zn
intake and Zn concentration might be explained by factors that influence intestinal Zn
absorption [35–37]. As mentioned before, phytates inhibit Zn absorption [27], whereas an
increased amount of dietary protein, for example, increases Zn absorption [38,39]. The type
of dietary protein also affects Zn absorption, for example, animal-derived proteins increase
Zn absorption compared to plant-derived proteins [40,41]. In short, the composition of the
diet might impact intestinal Zn absorption, despite sufficient Zn intake, and this might
(partially) explain why we found no association between ZnD and dietary Zn intake.

4.3. Strengths and Limitations

The strengths of this study are the relatively large study population of healthy
1–3-year-old, mainly Caucasian, children from three Western European countries, and
the effect of inflammation and/or infection on Zn concentrations that was taken into ac-
count by excluding children with CRP > 5 mg/L. It is known that Zn concentrations can be
affected by factors such as inflammation, fasting state, and/or diurnal rhythm [42]. A limi-
tation of this study is that we did not have information concerning the fasting state during
blood draw, the time of blood draw, and meal consumption prior to the blood draw, which
might have influenced the reported Zn concentrations [31]. The cut-off value of 9.9 µmol/L
(65 µg/dL) used to define ZnD, as suggested by the IZiNCG, accounts for blood samples
collected in the morning with a non-fasting state. For blood samples collected in the
afternoon, the IZiNCG suggests a cut-off value of 8.7 µmol/L (57 µg/dL) [19]. Since we
do not know the exact time the blood samples were collected, we chose the highest cut-off
value for a non-fasting state (i.e., 9.9 µmol/L) to define ZnD, which may have resulted in
an overestimation of the prevalence of ZnD in our study population. However, when using
the cut-off value of 57 µg/dL (8.7 µmol/L) for afternoon samples, we found the prevalence
of ZnD to be 11.5%, which is still relatively high.

4.4. Defining ZnD

Finally, we want to address some concerns regarding the current definition of ZnD. At
present, Zn concentration in either plasma or serum is the most extensively investigated and
widely used biomarker to assess zinc status. Currently, the cut-off values for determining
ZnD are largely based on reference values derived from large cohorts of presumably
healthy people, such as the second National Health and Nutrition Examination Survey
(NHANES II) during the period 1976–1980 [43]. Based on the results from the NHANES II
survey, cut-off values for ZnD are suggested by the IZiNCG, i.e., <65 µg/dL (9.9 µmol/L)
in the morning, and <57 µg/dL (8.7 µmol/L) in the afternoon for children below ten
years of age [19], and are widely used in most studies evaluating zinc status in humans.
However, children under the age of three were not represented in this survey. It is, therefore,
possible that these cut-off values do not apply for 1–3-year-old children. Two studies
evaluated serum Zn concentrations in healthy 1–3-year-old children living in Australia
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and Belgium [44,45]. First, reference intervals (2.5th and 97.5th percentiles) for serum Zn
concentrations reported by Karr et al. were 9–19 µmol/L and 8–19 µmol/L in 1–2-year-old
and 2–3-year-old healthy Australian children [44]. Second, van Biervliet et al. found mean
serum Zn concentrations of 12.7 µmol/L (SD 2.8 µmol/L) in 1–2-year-old children and
12.7 µmol/L (SD 3.1 µmol/L) in 2–3-year-old healthy Belgian children [45,46]. These values
do not differ that much from those resulting from the NHANES II survey in 3–4-year-old
children (i.e., 12.2 µmol/L (SD 2.0 µmol/L)) [46]. However, both studies did not clearly
take into account the presence of infection or the time of blood sampling which both can
influence Zn concentration [44,45].

However, Zn concentration might not accurately reflect zinc status. Zn is present in
all tissues, of which skeletal muscle and bone have the highest zinc content (approximately
83% of total body zinc), whereas plasma accounts for less than 0.2% of total body zinc. It is
currently unknown whether Zn concentrations below a certain predefined cut-off value
(e.g., based on cohort-derived reference values) fail to meet bodily requirements and cause
negative health consequences. In adults, a lower cut-off value of 50 µg/dL (i.e., 7.6 µmol/L)
has been proposed for clinical ZnD associated with symptoms, including diarrhea and
alopecia [47]. To our knowledge, no such studies have been conducted in (young) children
(to date). In our study, stunting (i.e., a functional health outcome of ZnD) was only
prevalent in three children (1.1%), and due to this small number, no statistical analysis
was performed regarding a possible association with ZnD. Furthermore, other biomarkers
for assessing Zn status have been evaluated. For example, urinary zinc excretion, hair
zinc concentration [48], or zinc-binding proteins, such as metallothionein [42], might be
promising biomarkers for assessing human zinc status. However, due to a limited number
of studies and subgroups within these studies, results are difficult to apply in clinical
practice. More research is needed to obtain more insight into the use of these biomarkers,
preferably in relation to clinical symptoms, and to identify more direct biomarkers for
assessing Zn status.

5. Conclusions

ZnD is highly prevalent in healthy 1–3-year-old children in Western Europe. No
significant differences were observed in the socio-economic characteristics between children
with and without ZnD. Dietary Zn intake was not associated with ZnD. The latter might
partially be explained by various dietary factors influencing intestinal Zn absorption.
Further studies are needed regarding the influence of diet composition on Zn absorption
in young children. Moreover, future research is required to assess reference values for Zn
concentrations in relation to clinical symptoms and health outcomes in young children and
gain more insight into the use of certain other proposed and promising biomarkers, such
as metallothionein.
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