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DNA methylation at the 5-position of cytosine (5mC) is an epigenetic modification that regulates gene expression and cel-

lular plasticity in development and disease. The ten-eleven translocation (TET) gene family oxidizes 5mC to 5-hydroxy-

methylcytosine (5hmC), providing an active mechanism for DNA demethylation, and it may also provide its own

regulatory function. Here we applied oxidative bisulfite sequencing to generate whole-genome DNA methylation and

hydroxymethylation maps at single-base resolution in human normal liver and lung as well as paired tumor tissues. We

found that 5hmC is significantly enriched in CpG island (CGI) shores while depleted in CGIs themselves, especially in active

genes, which exhibit a bimodal distribution of 5hmC around CGI that corresponds to H3K4me1 modifications.

Hydroxymethylation on promoters, gene bodies, and transcription termination regions (TTRs) showed strong positive cor-

relation with gene expression within and across tissues, suggesting that 5hmC is a marker of active genes and could play a

role in gene expression mediated by DNA demethylation. Comparative analysis of methylomes and hydroxymethylomes

revealed that 5hmC is significantly enriched in both tissue-specific DMRs (t-DMRs) and cancer-specific DMRs (c-DMRs), and

5hmC is negatively correlated with methylation changes, especially in non-CGI-associated DMRs. These findings revealed

novel reciprocity between epigenetic markers at CGI shores corresponding to differential gene expression in normal tissues

and matching tumors. Overall, our study provided a comprehensive analysis of the interplay between the methylome,

hydroxymethylome, and histone modifications during tumorigenesis.

[Supplemental material is available for this article.]

DNA methylation is an important epigenetic modification that
plays a role in diverse biological processes, includingmaintenance
of genomic stability, gene silencing, embryonic development, and
tumorigenesis (Jones 2012; Smith and Meissner 2013; Timp and
Feinberg 2013). Recently, a family of ten-eleven translocation
methylcytosine dioxygenase (TET) proteins was shown to oxidize
5mC (5-methylcytosine) to 5hmC (5-hydroxymethylcytosine)
(Laird et al. 2013; Wu and Zhang 2014). TET-mediated 5hmC is
abundant in a variety of mammalian tissues, such as brain and
stem cells (Pastor et al. 2013), and plays a role in epigenetic repro-
gramming, cell differentiation, and tumorigenesis.

In contrast to a relatively constant 5mC level across tissues,
5hmC is highly tissue-specific (Nestor et al. 2012). 5hmC has
been shown to be enriched in promoters, gene bodies, and distal
cis-regulatory elements, such as enhancers, and thus potentially
involved in regulation of tissue-specific gene expression (Pastor
et al. 2013; Wu and Zhang 2014). However, how 5hmC regulates
and shapes tissue-specific epigenomes through DNA demethyla-
tion remains largely unknown.

Significant global loss of hydroxymethylation has been ob-
served in cancer, and disruption of TET-mediatedDNAdemethyla-
tion was proposed to contribute to tumorigenesis (Kudo et al.
2012; Pfeifer et al. 2013). Loss-of-function mutations in TET2 are
found in myelodysplastic syndrome (Delhommeau et al. 2009;
Langemeijer et al. 2009), and mutations in the isocitrate dehydro-
genase IDH1/IDH2, co-factors of TET enzymes, are found in glio-
ma, acute myeloid leukemia, and melanoma (Dang et al. 2010;
Shibata et al. 2011). Down-regulation of TETs and IDHs is also
found in several cancer types (Lian et al. 2012; Yang et al. 2013).
By depletion of TET enzymes in a pluripotent embryonic carcino-
ma cell (ECC)model, it was proposed that disruption of TET-medi-
ated 5hmC, which associated with a transcriptionally active
chromatin environment, represented a crucial step toward aber-
rant gene silencing through DNA methylation in cancer cells
(Putiri et al. 2014). Limited by the lack of high-resolution hydrox-
ymethylomes in normal and matched-tumor tissues, dynamic
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changes in 5hmCand underlyingmechanisms during carcinogen-
esis have not yet been elucidated.

Distinguishing 5hmC from 5mC is virtually impossible by
traditional bisulfite conversion-based methods. Several strategies
have been developed to label and enrich 5hmC, followed by se-
quencing with limited resolution (Laird et al. 2013; Putiri et al.
2014). Recently, two methods were implemented allowing for
quantification of 5hmC at a single-base resolution. TET-assisted
bisulfite sequencing (TAB-seq) (Yu et al. 2012) makes use of enzy-
matic reactions: β-glucosyltransferase to glucosylate 5hmC and
TET1 for subsequent oxidation to produce 5-carboxylcytosine
(5caC). In the final step of bisulfite treatment, both 5caC and un-
modified cytosine are converted to uracil, allowing the identifi-
cation of 5hmC, which is read as cytosine during sequencing.
Oxidative bisulfite sequencing (oxBS-seq) (Booth et al. 2012) rath-
er makes use of the highly selective chemical oxidant potassium
perruthenate (KRuO4) to convert 5hmC to 5-formylcytosine
(5fC), followed by bisulfite conversion and sequencing. This li-
brary is then compared to a traditional bisulfite sequencing library
(BS-seq) constructed on the same sample to identify differences in
5mC that account for 5hmC positions. oxBS-seq has a relatively
simple and fast experimental workflow and can obtain both the
methylome and hydroxymethylome simultaneously.

Here, we utilized the oxBS-seqmethod to study, at single-base
resolution, the methylomes and hydroxymethylomes of a normal
and matching tumor set from human lung and liver tissues, pro-
viding a valuable resource for studying 5hmC landscapes in dif-
ferent tissues and understanding the roles of 5hmC during
tumorigenesis. We performed a novel integrated analysis with
RNA-seq, ChIP-seq data, genome-wide DNA methylation and
hydroxymethylation maps in normal and tumor tissues. Analysis
of differentially methylated regions (DMRs) in normal and tumor
tissues revealed a negative correlation between changes of 5mC
and 5hmC/H3K4me1. Together our findings demonstrated intri-
cate gene expression regulation through the interplay of methyl-
ome, hydroxymethylome, and histone modifications during
tissue differentiation and tumorigenesis.

Results

Generation of single-base resolution hydroxymethylation

and methylation maps in matched human normal and tumor

samples from lung and liver

We applied oxBS-seq and BS-seq to genomic DNA extracted from
four human liver normal-tumor pairs and three human lung nor-
mal-tumor pairs (14 samples total). All libraries were sequenced to
an average depth of 15.4 × per CpG cytosine (Supplemental Table
S1). In order to evaluate bisulfite (BS) and oxidative bisulfite (oxBS)
conversion rates, nonmethylated E. coli and CpG hydroxymethy-
lated lambda phage DNA were spiked in as controls during library
preparation. Based on spike-in controls, both high bisulfite (unme-
thylated cytosine to uracil, 99.66%) and high oxidative bisulfite
conversion (5-hydroxymethycytosine to uracil, 96.57%) were ob-
served (Supplemental Table S1).

According to the oxBS-seq method principle (Booth et al.
2013), the hydroxymethylation level of cytosines was calculated
for each sample based on the differential methylation between
oxBS-seq and the corresponding BS-seq libraries. Since human tis-
sues, except for brain, exhibit a relatively low abundance of 5hmC
(Nestor et al. 2012), high sequencing coverage was suggested in or-
der to achieve an accurate 5hmCmeasurement at single CpG sites

(Booth et al. 2013). Here, in order to confidently identify 5hmC-
enriched regions and sites, we took advantage of the information
from biological replicates and adjacent CpG sites, using an algo-
rithm based on local likelihood smoothing (BSmooth) to identify
consensus 5hmC regions and sites for each normal and tumor
group. This method was successfully applied to DMR identifica-
tion between groupswith low sequencing coverage in our previous
studies (Hansen et al. 2011, 2014).

In total, 89,437–297,724 5hmC regions containing
1,013,839–3,178,223 CpG sites were identified in normal tissues,
while only 2255–37,159 5hmC regions containing 15,567–
365,443 CpG sites were found in matching tumor tissues
(Supplemental Tables S2–S6). The global hydroxymethylation lev-
els of normal tissues are 2.27%–5.68% in liver and 1.94%–3.04% in
lung, while significantly lower in the matched tumors (liver:
0.70%–2.07%; lung: 0.65%–1.07%). These results are similar to
those achieved by mass spectrometry or antibody-based assays
(Jin et al. 2011a; Lian et al. 2012; Yang et al. 2013). Considering
the incomplete conversion of 5hmC to 5fC in oxBS-seq that could
result in false negatives in 5hmC detection, the reported global
5hmC level here is a conservative underestimation. In contrast
to the small variation in the global 5mC level among patients in
normal tissues, the global 5hmC level showed considerable varia-
tion in both normal and tumor tissues (Supplemental Fig. S1).

To further verify our BSmoothmethod, we did deep sequenc-
ing (55 × coverage) for one liver normal sample and compared the
estimated 5mC and 5hmCprofiles based on 55 × data to that based
on the original 15 × data. High correlations (5mC: 0.96; and
5hmC: 0.82) were observed between the two sets to data when
smoothing both high and low coverage data (Supplemental Fig.
S2). Additionally, we estimated 5mC and 5hmC levels based on
high coverage data and using only CpGs at least 20 × coverage
over 2-kb intervals across the whole genome and compared them
to smoothed results based on low coverage data. We also found
close agreement between them for both 5mC (0.90) and 5hmC
(0.79). These results validated our BSmooth approach that esti-
mates 5mC and 5hmC levels with high accuracy using relatively
low coverage data. Furthermore, 15 identified liver cancer DMRs
(c-DMRs) and 5hmC regions were picked out, and all 15 c-DMRs
and 13 out of 15 5hmC regions were replicated using another co-
hort including six liver normal-cancer pairs (Supplemental Figs.
S3, S4), again confirming the high accuracy of our approach for
identifying both DMRs and 5hmCs.

Hydroxymethylation landscapes of human normal

and malignant liver and lung

To explore the hydroxymethylation landscape, we first examined
the genomic distribution of 5hmC in each tissue according to an-
notated genomic features. Compared to the whole-genome 5hmC
average level, 5hmCwas depleted in regions around transcription-
al start sites (TSSs) and in intergenic regions. In contrast, 5hmC
was highly enriched at enhancers, especially active enhancers, in
all tissues (Fig. 1A), which is consistent with previous studies in
stem cells and brain tissue (Yu et al. 2012; Wen et al. 2014).
Notably, 5hmC was highly enriched at CGI shores while depleted
at CGIs, which are largely overlapped with TSSs (Fig. 1A). Our and
others’ previous studies showed that both c-DMRs and tissue
DMRs (t-DMRs) are mostly located at CGI shores rather than at
CGIs and that differential DNAmethylation atCGI shores strongly
correlates with differential gene expression when comparing dif-
ferent tissues as well as normal and tumor tissues (Irizarry et al.
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2009; Hansen et al. 2011; Pathiraja et al. 2014). Together, those
findings suggest that 5hmC could play a particular part in regulat-
ing DNA methylation at CGI shores.

Next, we examined the relationship between 5hmC and
chromatin organization, using chromatin immunoprecipitation
sequencing (ChIP-seq) data from the Roadmap Epigenomics
Project (Roadmap Epigenomics Consortium et al. 2015). In gene-
ral, 5hmC positively correlated with active chromatin features, in-
cluding active histone modification (H3K4me1/2, H3K27ac, and
H3K36me3) and DNase hypersensitive sites, with the exception
of promoter-associated marks (H3K4me3 and H2A.Z) (Fig. 1B–F;
Supplemental Fig. S5). On the other hand, 5hmC showed negative
correlation with repressive chromatin marks, such as H3K27me3
and H3K9me3 (Fig. 1B–F; Supplemental Fig. S5). Our analysis of
5hmC and chromatin organization further supports other studies
indicating that 5hmC is an active epigenetic mark that corre-
sponds to open chromatin (Wen et al. 2014).

Large hypomethylated blocks and small DMRs associated
with loss of CGI methylation boundary stability is a common fea-
ture of the cancer epigenome (Timp and Feinberg 2013). To ex-
plore the role of 5hmC in DNA methylation change, we first
examined the distribution of 5hmC among different cancer
DMR categories. It is noteworthy that previous studies using the
traditional bisulfite sequencing method cannot distinguish 5mC
and 5hmC. Therefore, the previously identified DMRs are a mix-
ture of both methylation and hydroxymethylation differences.
Using data from oxBS-seq, we were able to identify DMRs by
only taking methylation changes into account between normal
and matched tumor samples. Identified DMRs were grouped into
small-scale DMRs and large-scale blocks according to their length
(see Methods). We found that in both liver and lung c-DMRs,
5hmC is enriched in hypermethylated blocks and small DMRs,
but not in hypomethylated blocks (Supplemental Fig. S6A,B).
We also compared the distribution of 5hmC among different t-
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Figure 1. The hydroxymethylation landscapes of human normal and tumor tissues. (A,B) 5hmC fold enrichment in different genomic features (A) and
histone modifications (B). 5hmC enrichment fold in each genomic feature was calculated as the ratio of 5hmC density of that feature to the genome-wide
average 5hmC density. H3K9ac ChIP-seq data for lung normal is not available. (C–F) 5hmC density distribution across narrow and broad histone modifi-
cations and their flanking regions in liver normal (C,D) and liver tumor samples (E,F). Zero percent and 100% on the x-axis indicate the start and end of all
called histone peaks/domains. For each liver/lung normal/cancer group, 5hmC density was averaged among biological replicates.
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DMR groups between normal liver and lung tissues and observed a
similar pattern (Supplemental Fig. S6C). This result suggests that
5hmC and the responsible DNA demethylation pathway might
be involved inmethylation regulation on small-scale DMRs, while
large-scale genomic hypomethylationmay have different underly-
ing mechanisms not involving active DNA demethylation.

5hmC distribution around genic regions

By examining 5mC and 5hmC distribution across gene regions in
normal and malignant liver, we found that both 5mC and 5hmC
formed a deep dip around TSSs (Supplemental Fig. S7A,B), which is
consistent with the previous result of 5hmCdepletion in CGIs and
regions around TSSs (Fig. 1A; Wu and Zhang 2014). However, we
further found that, in contrast to 5mC, 5hmC exhibited several
significant peaks around gene regulatory regions. First, 5hmC
formed a bimodal distribution around TSSs of genes. Second,
5hmC levels increased along the gene body toward the 3′ terminus
of the gene and formed another peak at TTR right after tran-
scriptional termination sites (TTSs) (Supplemental Fig. S7A,B).
Although tumors experience global 5hmC loss compared to their
normal counterparts, 5hmC enrichment around TSSs and TTSs
still endured in liver tumors, perhaps suggesting a gene regulatory
function (Supplemental Fig. S7B).

In line with these results, the distribution of histone modifi-
cations around genes strongly associated with the distribution of
5hmC. For example, H3K4me1 associated with 5hmC and was sig-
nificantly enriched at the flanking regions of TSSs (Supplemental
Fig. S7C), while H3K4me3 was enriched at TSSs where 5hmC
was depleted (Supplemental Fig. S7D). H3K36me3, which is posi-
tively correlated with 5hmC, also showed an increasing modi-
fication level along the gene body toward the 3′ end of genes
(Supplemental Fig. S7E). Given histonemodifications were usually
coupledwith the status of gene expression andwerenot as stable as
5mC (Cedar and Bergman 2009), the strong associations between
5hmCand active histonemodifications suggest that 5hmCmaybe
a mark for active genes and can be more dynamically regulated by
cells compared to 5mC.

Since CGIs and 5hmC overlap with gene regulatory regions
such as the upstream region of TSSs, we further asked whether
5hmC enrichment at gene promoters is dependent on the exis-
tence of CGIs and their shores. To address this question, we com-
pared 5hmC enrichment at active genes (FPKM> 1) with and
without promoter CGIs. Compared to genes with promoter
CGIs, those genes without promoter CGIs showed almost no
5hmC enrichment around TSSs (Supplemental Fig. S7F). This
suggests that CGIs and their shores, rather than the location of
transcriptional start sites, shape the 5hmC distribution pattern
around TSSs.

Promoter, TTR, and gene-body hydroxymethylation positively

correlated with gene expression

To determine the relationship between 5hmC and gene expres-
sion, we generated transcriptome profiles for samples used in
this study by RNA-seq. Based on the 5hmC distribution around
the genic region, we examined the gene regulatory role of hydrox-
ymethylation at the promoter, TTR, and gene body. We classified
all genes within tissues into four groups according to their expres-
sion levels and found that the presence of 5hmC on the promoter,
gene body, and downstream TTS all show a significant positive
correlation with gene expression. The Spearman correlation co-
efficients (r) between 5hmC and gene expression were 0.21, 0.30,

and 0.47 for the promoter (2 kb upstream of the TSS), TTR (2 kb
downstream from the TTS) and gene body, respectively.
Furthermore, compared to inactive genes which have a relatively
uniform 5hmC distribution throughout genic regions, active
genes rather presented two 5hmC peaks in both the promoter
and TTR, which becamemore obvious with increased gene expres-
sion (Fig. 2A,B). Positive correlation between transcriptional activ-
ity and gene-body 5hmC was reported by several previous studies
using different assays (Jin et al. 2011b; Song et al. 2011; Mellen
et al. 2012; Wen et al. 2014). However, among them, two studies
with limited resolution of 5hmC profiling generated by enrich-
ment-based methods failed to detect a positive correlation be-
tween promoter 5hmC and gene expression (Jin et al. 2011b;
Mellen et al. 2012). Besides the gene body, our results based on sin-
gle-base 5hmC maps showed a clear positive correlation between
promoter/TTR 5hmCand gene expression,which is also supported
by another study with high-resolution 5hmC maps (Wen et al.
2014). This result suggested that conclusions fromprevious studies
using enrichment-based traditional methods may need to be reas-
sessed via high-resolution maps.

We then plotted Spearman correlation coefficients around
genic regions between 5mC/5hmC and gene expression (Fig. 2C,
D) and found a very different pattern between normal and tumor
tissues, and between 5mC and 5hmC. For 5mC, except for regions
around TSSs at which 5mC showed a strong negative correlation
with gene expression in both normal and tumor tissues, tumors
showed positive and much higher correlation coefficients than
that in matched normal around the genic region. In contrast, for
5hmC, due to extensive loss of 5hmC, tumors showed positive
but much lower correlation coefficients across genic regions com-
pared to normal.

We next studied the relationship between the level of 5hmC
and the difference of gene expression between the normal liver
and lung by first identifying differentially expressed (DE) genes.
We found 3771 up-regulated genes and 3952 down-regulated
genes in liver compared to lung, and then calculated the difference
in hydroxymethylation level between lung and liver (5hmCliver−
5hmClung) at the promoter, TTR, and gene body of those DE genes.
Due to a much higher global hydroxymethylation level in liver
than in lung, the average 5hmC level of promoter, TRR, and
gene body in liver is higher than that of lung, regardless of whether
the genes are up-regulated or down-regulated. However, we found
that 5hmC differences at promoter, TRR, and gene body between
liver and lung in up-regulated genes are significantly higher than
that of down-regulated genes (Wilcoxon test, P < 2.2 × 10−16)
(Fig. 2E). Furthermore, if we divided those DE genes into several
groups according to the 5hmC difference between tissues, we
found that the 5hmC difference between liver and lung tissues at
promoter, TRR, and gene body showed positive correlation with
the fraction of liver up-regulated genes (Fig. 2F–H). Genes in the
liver with higher 5hmC level at any of the three gene regulatory re-
gion categoriesweremore likely to be up-regulated in liver. In sum-
mary, these results reveal a unique 5hmC distribution pattern at
genic regions and particular enrichment in active genes and sug-
gest an important role for 5hmC in gene regulation both within
tissues and across tissue types.

5hmC defines CGI shores and associates with H3K4me1 mark

Our previous studies provided evidence that most t-DMRs and c-
DMRs surprisingly overlap with CGI shores but not CGIs, which
usually disrupt methylation boundaries of CGI boundaries, and
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that DNA methylation changes in CGI shores strongly correlate
with changes in gene expression (Irizarry et al. 2009). The results
in this study also confirmed the previous finding (Supplemental

Fig. S8). Here, we examined the 5hmC distribution on CGIs and
their shores according to their location and to the expression sta-
tus of their associated genes. Interestingly, we found that 5hmC

Figure 2. 5hmC distribution around genic regions and 5hmC positively correlated with gene expression. (A,B) 5hmC distribution across active and in-
active genes and their 10-kb flanking regions in liver normal (A) and liver tumor (B). All genes were classified into active and inactive genes. Active genes
were further divided into three groups with equal numbers of genes by quintile based on gene expression (FPKM value): lowly, medium, and highly ex-
pressed genes. (C,D) Spearman correlation coefficient around genic region between 5mC (C), 5hmC (D), and gene expression. (E) 5hmC difference be-
tween normal liver and lung at three genomic features in liver: up-regulated, down-regulated, and non-DE genes. (F–H) Comparison of 5hmC difference
between normal liver and lung on promoter (F), gene body (G), and TTR (H) and gene expression changes between tissues.
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is only enriched in CGI shores of active genes, but not in CGI
shores of inactive genes or nonpromoter CGI shores. 5hmC
formed a unique bimodal distribution pattern around CGI shores
of active genes in both normal andmalignant liver (Fig. 3A,B). We
obtained similar results in human stemcells and brain tissue by an-
alyzing published whole-genome TAB-seq 5hmC data sets
(Supplemental Fig. S9A,B), supporting a universal 5hmC bimodal
distribution pattern around CGI shores of expressed genes regard-
less of tissue type and disease status.

To gain insight into the potential functional role of 5hmC
in CGI shores, we analyzed the association of 5hmC distribu-
tionwith a variety of active histonemodificationmarks using pub-
licly available ChIP-seq data (Roadmap Epigenomics Consortium
et al. 2015). While H3K4me3, H3K9ac, and H3K27ac showed
peaks at CGIs of active genes (Supplemental Fig. S9C–H),
H3K4me1 showed bimodal peaks around CGI shores similar to
that of the 5hmC (Fig. 3C,D), suggesting potential crosstalk be-
tweenH3K4me1 and 5hmCatCGI shores. To thoroughly examine
the association between 5hmC and H3K4me1, we divided all
CGI shores into two groups—with or without H3K4me1modifica-
tion—and found that only CGI shores with H3K4me1 modifica-

tion showed clear 5hmC bimodal peaks (Fig. 3E,F). CGIs with
H3K4me1 on shores also showed H3K4me3 modification that
tightly associated with active genes, again indicating positive
correlation between 5hmC/H3K4me1 and gene expression
(Supplemental Fig. S10). Taken together, these results suggest
that 5hmC and the association with the H3K4me1 mark contrib-
ute to the function of CGI shores in regulating gene expression.

5hmC correlates positively with H3K4m1 and negatively

with 5mC in both t-DMRs and c-DMRs

Consistent with the observation that liver showed a lower global
5mCmethylation level than lung (62.08%vs. 65.32%, t-test, P-val-
ue = 0.01354), we identifiedmore hypomethylated than hyperme-
thylated t-DMRs in normal liver (Supplemental Tables S7–S8) for
5mC. We divided all t-DMRs into three groups: CGI-associated,
CGI shore-associated, and other DMRs. Consistent with our previ-
ous study (Irizarry et al. 2009), very few t-DMRs were CGI-associat-
ed (2.9%), while most t-DMRs were CGI shore-associated (21.0%)
or distant fromCGIs (76.1%), the latter mostly within gene bodies
(66.5%).

Figure 3. 5hmC showed a bimodal distribution around CGIs and associated with H3K4me1. (A,B) 5hmC distribution around different CGI categories in
liver normal (A) and liver tumor (B). (C,D) H3K4me1 enrichment around different CGI categories in liver normal (C) and liver tumor (D). (E,F) H3K4me1
associated with 5hmC enrichment in CGI shores in liver normal (E) and liver tumor (F ).
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Our previous study showed that c-DMRs highly overlapped
with t-DMRs (Irizarry et al. 2009). Following this point, we divided
t-DMRs into hypermethylated and hypomethylated groups and
overlapped the c-DMRs within each tissue. We further found
that liver hypermethylated c-DMRs significantly overlapped with
normal liver hypermethylated t-DMRs (liver vs. lung), compared
to normal liver hypomethylated t-DMRs (13.4% vs. 2.1%, χ2 test,
P < 2.2 × 10−16) (Supplemental Table S9). Similarly, lung hyper-
methylated c-DMRs significantly overlapped with normal lung
hypermethylated t-DMRs (lung vs. liver), compared to normal
lung hypomethylated t-DMRs (14.8% vs. 1.8%, χ2 test, P < 2.2 ×
10−16) (Supplemental Table S9). In line with the above result, we
also found that liver cancer down-regulated genes were signifi-
cantly enriched in those genes comparatively up-regulated in nor-
mal liver compared to normal lung (42% vs. 6.1%, χ2 test, P < 2.2 ×
10−16). A similar result was also observed in lung cancer (54.2% vs.
8.8%, χ2 test, P < 2.2 × 10−16). Taken together, these results suggest-
ed that the aberrant DNA hypermethylation might disrupt the
normal tissue-specific methylation landscape during tumorigene-
sis and result in transcriptional silencing of genes that are usually
actively expressed in normal tissues.

To determine the association between t-DMR and 5hmC, we
overlapped t-DMRs with identified liver- and lung-specific 5hmC
regions (Fig. 4A).We found that, in general, liver-hypermethylated
t-DMRs were hypo-hydroxymethylated, while liver-hypomethy-
lated t-DMRs were hyper-hydroxymethylated between normal liv-
er and lung (5hmCliver− 5hmClung, −0.014 vs. 0.048, Wilcoxon
test, P-value < 2.2 × 10−16), indicating a negative correlation be-
tween the 5mC difference and 5hmC difference on t-DMRs (Fig.
4B). Furthermore, we found that DNA methylation changes at t-
DMRs also negatively correlated with the H3K4me1 difference
(Fig. 4C). Consistently, t-DMRs where liver was comparatively
hypermethylated overlapped with lung-specific H3K4me1 peaks,
while t-DMRs where liver was comparatively hypomethylated
overlapped with liver-specific H3K4me1 peaks (Supplemental
Tables S7–S8). These results suggested strong associations among
dynamic changes of 5mC, 5hmC, andH3K4me1, andmore impor-
tantly, these H3K4me1-associated 5mC and 5hmC changes corre-
sponded to changes in gene expression between tissue types as
shown above.

Next, we explored c-DMRs in two types of cancer
(Supplemental Tables S9–S11). We examined the association be-
tween changes in 5hmC and 5mC at c-DMRs. Similar to t-DMRs,
5hmC changes in c-DMRs also showed a strong negative correla-
tion with 5mC changes (Fig. 5A,B; Supplemental Fig. S11A,B). In
other words, a loss of 5hmC corresponded to a gain of 5mC and
vice versa. For both t-DMRs and c-DMRs, we found that the nega-
tive correlation between 5hmC and 5mC changes is stronger in
CGI shore-associated DMRs and other-DMR categories than CGI-
associated DMRs (Fig. 4D; Supplemental Fig. S11C,D), which is
consistent with depletion of 5hmC in CGIs. Again, similar to t-
DMRs, the negative correlation between 5mC and H3K4me1 was
also observed in c-DMRs (Supplemental Fig. S11E,F). Taken togeth-
er, our results suggested that the gene expression pattern in differ-
ent tissues could be regulated and achieved through intricate
interplays among DNA methylation, hydroxymethylation, and
histone modification such as H3K4me1.

The negative correlation between 5mC and 5hmC observed
here is not consistent with the finding, in a previous study using
colon tissue, that high 5hmCpromoters in normal tissue are prone
to loss of DNAmethylation in tumors thus resistant to DNAhyper-
methylation in cancer (Uribe-Lewis et al. 2015). However, that

study used an Infinium27K array to obtain methylation profiles,
which cannot distinguish 5mC and 5hmC. We performed a simi-
lar analysis using our data and found that promoters with high
5hmC levels in normal tissue indeed tend to lose DNA methyla-
tion in cancer, compared to that of low 5hmC promoters when
considering 5mC and 5hmC together as DNA methylation dif-
ferences (Fig. 4E; Supplemental Fig. S11G). However, when remov-
ing the effect of 5hmCand only using 5mC,we found the opposite
pattern, that promoters with a high 5hmC level in normal tissue in
fact tend to be hypermethylated in cancer, whereas low5hmCpro-
moters tend to be hypomethylated (Fig. 4F; Supplemental Fig.
S11H). This result suggests that high 5hmC levels maintain pro-
moter hypomethylation in normal tissue and that global loss of
5hmCcould result in hypermethylation at promoters and dysregu-
lation of gene expression in cancer. This result is consistent with
the observation that there are more small hypermethylated c-
DMRs than hypomethylated c-DMRs and again confirmed the
anticorrelation between 5hmC and 5mC. This result also demon-
strated the importance of distinguishing 5mC and 5hmC in DNA
methylation analysis, especially for those tissues with relatively
high 5hmC levels, and the conclusions from previous studies us-
ing traditional methods may need to be reassessed. That said, it
is quite possible that the colon differs from other tissues, particu-
larly given its low level of 5hmC in normal tissue, although one
would need to use a method distinguishing 5hmC from 5mC in
the 5mC assays, as done here.

Discussion

In this study, we have performed base-level resolution analysis of
5mC and 5hmC in normal and matching malignant tissues from
human liver and lung. Our results revealed that 5hmC is an impor-
tant epigeneticmarkof active genes that is strongly associatedwith
active histone modifications and could play a role in gene expres-
sion mediated by DNA demethylation. This integrated analysis
showed that differential gene expression between cancer and nor-
mal tissues is strongly associated with a unique interplay between
5mC, 5hmC, and H3K4me1 that was strongest at CGI shores.

Our results showed 5hmC is significantly enriched in the CGI
shore relative to the CGI itself and revealed an interesting 5hmC
bimodal distribution pattern around the CGI. Supporting this
finding, recent studies using hmeDIP-seq showed that 5hmC is
enriched within the shores of promoter CpG islands in human
normal colon tissues and an embryonic carcinoma cell line
(Putiri et al. 2014; Uribe-Lewis et al. 2015). By overlaying these
data with RNA-seq of the same tissues, we found that 5hmC is
only enriched in CGI shores which are associated with active
genes, and not with CGI shores which are associated with inactive
genes or with non-promoter-associated CGI shores. In addition,
this unique 5hmC distribution around CGIs also coupled with
H3K4me1. Although our previous studies have reported that
DNA methylation in CGI shores significantly regulates gene ex-
pression across tissues (Irizarry et al. 2009; Hansen et al. 2011),
the underlying molecular mechanism remained unclear. Our pre-
sent results demonstrate that CGIs and their shores function as im-
portant regulatory regions that are enriched with a variety of
histone modifications, and these histone modifications around
CGIs and their shores could subject them to regulation by TET-me-
diated DNA methylation.

Besides 5hmCbimodal peaks around TSSs, the 5hmC level in-
creased along gene bodies and formed another peak right after
transcriptional termination sites. Strikingly, the 5hmC level is
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Figure 4. 5mC change of t-DMRs and c-DMRs anticorrelated with 5hmC and H3K4me1 changes. (A) Venn diagram of identified liver and lung 5hmC
regions. (B) Negative correlation between 5mC difference and 5hmC difference on t-DMRs. (C) Negative correlation between 5mC difference and
H4K4me1 enrichment difference on t-DMRs. (D) 5hmC difference on different t-DMR categories. 5hmC difference on non-CGI t-DMRs showed a larger
difference than that of CGI t-DMRs. (E) Cytosine modification difference (5mC + 5hmC) between normal and tumor at promoters with high and low 5hmC
level in liver. (F) Only DNA methylation difference (5mC) between normal and tumor at promoters with high and low 5hmC level in liver. Promoters were
ranked according to the 5hmC level, and the highest and lowest 10th percentiles of the promoter were used for our analysis.
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even higher at TTSs than at promoter regions and is also positively
correlated with gene expression, suggesting a potential novel reg-
ulatory mechanism that 5hmC around TTSs could affect gene ex-
pression by interacting with transcription termination factors and
regulating RNA polymerase II (Pol II) processivity. Supporting this
idea, an in vitro study showed DNA templates incorporated with
5fC and 5caC, oxidation variants of 5hmC, can dramatically re-
duce the transcription rate of Pol II and stall Pol II (Kellinger
et al. 2012). Whether 5hmC enrichment at TTS contributes to ox-
idation variants that give rise to transcription termination in vivo
requires further detailed investigation.

Our results further showed that many t-DMRs and c-DMRs
were located in gene bodies and also significantly affected gene
expression between tissues. Furthermore, those DMRs usually
overlap with tissue-specific 5hmC and H3K4me1 peaks, which

usually associate with distal regulatory elements and are used for
defining enhancers. In addition, previous studies showed that in-
tragenic enhancers within the gene body can regulate gene expres-
sion by acting as alternative promoters (Kowalczyk et al. 2012).
Recent work also showed that extensive loss of 5hmC at enhancers
mediated by Tet2 deletion was coupled with enhancer hyperme-
thylation and affected gene expression during early stages of
mouse stem cell differentiation (Hon et al. 2014). Taken together,
these results suggest that a dynamic change in 5mC/5hmC at
intragenic enhancer regions could be an important epigenetic
mechanism in regulation of gene expression during tissue differen-
tiation and tumorigenesis.

In cancer compared to normal tissue, 5hmCwas quantitative-
ly diminished (∼70%) and partially retained at regulatory regions.
Moreover, the difference in 5hmC between euchromatic and

Figure 5. Two examples of liver c-DMRs that showed 5mC changes were regulated through 5hmC and associated with gene expression changes. 5mC,
5hmC, and gene expression level of both liver normal (blue tracks) and cancer (red tracks) were displayed. Red boxes indicate the location of c-DMRs. (A) A
hypomethylated liver c-DMR located in CpG island shores near the promoter of theUBE2T gene. (B) A hypermethylated c-DMR located in CpG island shores
near the promoter of the RAB32 gene.
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heterochromatic regions in normal tissue is essentially lost in can-
cer. Similarly, the specific relationship between 5hmC and chro-
matin marks in normal tissue is largely erased in tumors. These
results suggested that a 5hmC landscape change in cancer could
associate with chromatin structure change and regulation of
gene expression during tumorigenesis.

These results also clearly showed a strong anticorrelation be-
tween 5hmC and 5mC changes in both t-DMRs and c-DMRs, with
this effect stronger in CGI shores. Global loss of 5hmC is consid-
ered to be a hallmark of cancer cells, and impairment in the TET-
mediated DNA demethylation machinery is described in several
tumor types (Delhommeau et al. 2009; Langemeijer et al. 2009;
Dang et al. 2010; Shibata et al. 2011). Considering that TET en-
zymes preferentially bind CpG enriched regions, such as CGIs,
dysfunction of TET-mediated DNA demethylation in cancer could
explain why more hypermethylated c-DMRs are located in CGIs,
which is also supported by previous results that loss of 5hmC in
a TET-depleted human ECC line coincides with genes susceptible
to aberrant hypermethylation.

The antagonistic role of 5mC and 5hmC in normal tissue,
and the bimodal distribution of 5hmC at TSSs and at H3K4me1
sites associated with enhancers, suggests that DNA methylation
is mediated by the balance and topological organization of 5mC
and 5hmC, creating a mechanism for both stable gene expression
but also substantial and abrupt changes during normal develop-
ment. Finally, the DNA methylation maintenance machinery is
robust and self-sustained. In agreement with this, DNMT1 muta-
tions are rarely observed in cancer. Therefore, we postulate that
disruption of 5hmC could lead to instability of methylationmarks
that are then selected for and maintained by the DNMT1machin-
ery to increase the proliferative advantage of cancer cells over
normal.

Based on our results, we suggest that themajority of DNA loss
in tumors could be due to passive demethylation, especially in
large hypomethylated blocks where 5hmC is depleted. However,
we also found both hyper- and hypomethylated c-DMRs at CGI
shores where 5hmC is significantly enriched and associates with
bimodal H3K4me1. Therefore, it is possible that active demethyla-
tion plays an important role in those particular regulatory ele-
ments. Future studies would be necessary in order to determine
whether DNA demethylation is passive or active in tumorigenesis.
For example, dynamic 5hmC profiling during different stages of
tumorigenesis or during induced tumorigenesis in the absence of
TET enzymes.

Methods

Preparation of hydroxymethylated lambda phage genome

One microgram of unmethylated lambda DNA (Promega) was
treated with SssI methyltransferase (Zymo) overnight and cleaned
up using Genomic DNA Clean & Concentrator (Zymo). To make
sure all CpG sites of the lambda genome were fully methylated,
SssI treatment and clean-up were repeated. Then, 500 ng CpG
methylated lambda DNA was bisulfite-converted using the EZ
DNA Methylation-Lightning kit following the manufacturer’s
manual (Zymo). Ten nanograms bisulfite-converted lambda DNA
from the above stepwas used to performwhole-genome amplifica-
tion with the GenoMatrix Whole Genome Amplification kit
(Active Motif) using 5-hydroxymethylcytosine dNTP mix (Zymo)
instead of the dNTP mix in the kit. To achieve as high a hydroxy-
methylation level as possible, the PCR reaction of whole-genome
amplification was repeated for another three times using 5-

hydroxymethylcytosine dNTP and the PCR product from the pre-
vious time as template every time.

oxBS-seq and BS-seq library preparation

Genomic DNA was extracted using the DNeasy Blood and Tissue
kit (Qiagen). Four micrograms of genomic DNA plus spike-in 20
ng hydroxymethylated lambda phage and nonmethylated E. coli
DNA control (Zymo) in 150 µLwater was sheared into∼10-kb frag-
ments using g-Tube (Covaris) following the manufacturer’s in-
structions. The sheared DNA was cleaned up using a GeneJET
PCR Purification kit (Thermo Fisher Scientific) with a modified
protocol (Protocol 03, TrueMethyl Preparation of High Molecular
Weight gDNA, http://www.cambridge-epigenetix.com/en_US/
resources/application-notes). Then, oxidative bisulfite- and only
bisulfite-converted DNA templates were generated using the
TrueMethyl 24 kit (Cambridge Epigenetix) for each sample accord-
ing to themanufacturer’s instructions. Last, oxBS- and BS-convert-
edDNAwere used to construct oxBS-seq and corresponding BS-seq
libraries using the EpiGenome Methyl-seq kit (Epicentre) follow-
ing the manufacturer’s instructions.

oxBS-seq and BS-seq data processing

Paired-endHiSeq 2000 sequencing reads fromoxBS-seq and BS-seq
were aligned by the BSmooth bisulfite alignment pipeline (version
0.7.1) (Hansen et al. 2012) as previously described in detail
(Hansen et al. 2011). Briefly, reads were aligned by Bowtie 2 (ver-
sion 2.0.1) (Langmead and Salzberg 2012) against the human ge-
nome (hg19) that is used for Roadmap Epigenomics Project, as
well as the lambda phage and E. coli genomes. After alignment,
methylation measurements for each CpG were extracted from
aligned reads. We filtered out measurements with mapping quali-
ty < 20 or nucleotide base quality on cytosine position < 10, and
we also removed measurements from the 5′-most 7 nt of both
mates. The methylation levels of lambda phage and E. coli ge-
nomes were used to access oxidation and bisulfite conversion
rates, respectively.

t-DMR and c-DMR identification

To identify t-DMRs and c-DMRs that were only contributed by
5mC and do not involve 5hmC changes, oxBS-seq data were
used for DMR identification by the bsseq package, which can bor-
row statistical power from neighboring CpG sites and biological
replicates and was successfully applied to DMR identification
even with low sequencing coverage in our previous studies
(Hansen et al. 2011, 2014).We reasoned that oxBS data,measuring
only 5mC, should behave similarly to standard WGBS data mea-
suring the sum of 5mC and 5hmC, and we therefore applied
BSmooth with standard parameters. Specifically, for small DMRs
we used a smooth window containing either 70 CpGs or a width
of 1 kb, whichever is larger, and for large DMRs (blocks) we used
a smoothing window containing either 500 CpGs or a width of
20 kb, whichever is larger. Following smoothing, putative DMRs
were identified using a t-statistic cutoff (see below). For this com-
putation, we only considered CpGs with coverage of at least 5 in
at least two samples in each group, and we only considered puta-
tive DMRs with a methylation difference of at least 20% (small
DMRs) or 10% (large DMRs) and a length >5 kb. These arbitrarily
chosen cutoffs are more stringent that what we have employed
in earlier work (Hansen et al. 2011, 2012, 2014). Final DMRs de-
pends on both the t-statistic cutoff and the procedure for assigning
significance. Previously, we employed a very stringent permuta-
tion procedure, which controls the family-wise error rate; this is
a much more stringent error rate than the widely used false
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discovery rate (FDR) (Hansen et al. 2014). In this work, we ap-
proached the problemdifferently.We systematically tested a range
of t-statistic cutoffs (1.65, 2, 2.5, 3, 3.5, 4, 4.6) and for each cutoff
we found putative DMRs as consecutive sets of CpGs with a t-sta-
tistics exceeding the cutoff. We compute P-values associated
with each DMR using the following procedure. First we compute
a CpG level P-value based on a standard t-test for the smoothed
methylation data using an asymptotic reference distribution.
Next, these CpG level P-values were combined into a region level
P-value by using amodified Stouffer-Liptakmethod as implement-
ed in the Comb-p software (Pedersen et al. 2012). Next, these re-
gional level P-values were corrected for multiple testing and we
kept regions with an FDR < 5%. This gives us a set of DMRs for
each t-statistic cutoff. We then choose the cutoff that yielded the
most differentially methylated regions, effectively optimizing em-
pirical power (Supplemental Fig. S12). To assess the error rate, we
permuted the sample labels and repeated the procedure
(Supplemental Fig. S12), yielding almost no DMRs with an FDR
< 5%, showing our low error rate.

5hmC region and site identification

According to the principle of oxidation bisulfite sequencing,
hydroxymethylation can be ascertained by themethylation differ-
ence of oxBS-seq and corresponding BS-seq data for each sample.
Since hydroxymethylation level is usually very low in human tis-
sues, except for brain tissues, and it needs high sequencing depth
to get accuratemeasurement, we used a similar smooth-based algo-
rithm like the above DMR identification in this study to identify
hydroxymethylation regions (5hmC regions). Effectively, this is
identifying differences between BS-seq and oxBS-seq libraries.
We smoothed both data types using default parameters from
BSmooth (as above, a window size encompassing at least 1 kb or
70 CpGs). Assessment of significance was done as described above
(Supplemental Fig. S12C,D). After obtaining 5hmC regions, only
CpGs passing the t-statistic threshold within 5hmC regions were
considered as hydroxymethycytosines (5hmC sites) and used for
analysis in this study. In this study, 5hmC density is estimated
by the proportion of 5hmC sites out of all CpGs within a certain
genomic feature/region. 5hmC level for CpG sites or regions is es-
timated by the subtraction between BS-seq and oxBS-seq libraries
based on smoothed values.

c-DMRs and 5hmC regions replications

Another liver cohort including six normal-cancer pairs was kindly
provided by Professor Robert Albert Anders. GenomicDNAwas pu-
rified using the DNeasy Blood and Tissue kit (Qiagen). One and
one-half micrograms of DNA for each sample was used to generate
oxidative bisulfite- and only bisulfite-converted DNA templates
with the TrueMethyl 24 kit (Cambridge Epigenetix) following
the manufacturer’s instructions. Primers for bisulfite sequencing
PCR were designed using MethPrimer (http://www.urogene.org/
methprimer/), and sequences of all primers are listed in Supple-
mental Table S12. Locus-specific PCRs were performed by nested
PCR using both oxBS- and BS-converted DNA as templates.
Then, all amplicons from the same sample were pooled, and bar-
coded libraries were prepared with the TruSeq DNA PCR-Free
Library Preparation kit (Illumina) following themanufacturer’s in-
struction. Amplicon sequencing was performed on aMiSeq instru-
ment (Illumina).

RNA-seq library preparation and data processing

Total RNAwas extracted using the RNeasyMini kit (Qiagen). RNA-
seq libraries were constructed using the TruSeq Stranded mRNA

LT Sample Prep kit (Illumina) according to the manufacturer’s
manual.

Paired-end HiSeq 2000 sequencing reads were aligned against
the human genome (hg19) by OSA (version 2.0.1) (Hu et al. 2012)
with default parameters. After alignment, only uniquely aligned
reads were kept for further analysis. Gene annotation information
was downloaded fromGENCODE (http://www.gencodegenes.org/
releases/19.html, release 19). Read counts for each gene of all sam-
ples were estimated using HTSeq (http://www-huber.embl.de/
users/anders/HTSeq/doc/overview.html) and then were used to
identify differentially expressed genes using the DESeq2 package
(Love et al. 2014). Genes with FDR < 0.01 and fold-change > 2 be-
tween groups were considered as DE genes.

ChIP-seq data processing

Uniformly processed ChIP-seq data used in this study includ-
ing normal and tumor tissues of human liver and lung were
downloaded from the Roadmap Epigenomics Project (https://
personal.broadinstitute.org/anshul/projects/roadmap/alignments/
consolidated/).

For narrow histone modification peaks including H3K4me1,
H3K4me3, H3K9ac, and H3K27ac, MACS2 was used for peak
calling with default parameters (Zhang et al. 2008). For broad his-
tone modifications peaks including H3K27me3, H3K36me3, and
H3K9me3, large domains were identified using RSEG, which is
based on the hidden Markov model (HMM) and specifically de-
signed for identifying broad histone peaks (Song and Smith 2011).

Based on ChIP-seq, enhancers were defined as H3K4me1
peaks that are at least 2 kb away from any transcriptional start
site of annotated genes. Enhancers overlapped with H3K27ac
peaks were defined as active enhancers, while others were poised
enhancers.

To plot each histone modification on CpG islands and their
flanking regions, we divided flanking sequences into bins with
fixed length (in bp) andCGIs themselves into binswith a fixed per-
centage of each length. ChIP enrichment was measured and nor-
malized using a previous published method (Hawkins et al.
2010). In brief, the number of reads per kilobase of bin per million
mapped reads (RPKM) was calculated for each ChIP and its input
control (denoted as RPKMChIP and RPKMinput). ChIP enrichment
is measured as ΔRPKM= RPKMChIP – RPKMinput, and ChIP enrich-
ment regions should have ΔRPKM> 0. Then, all ΔRPKM were nor-
malized to a scale between 0 and 1, and the average normalized
ChIP enrichment signals across all bins were plotted for each his-
tone mark.

Data access

The raw and processed oxBS-seq, BS-seq, and RNA-seq data sets
generated in this study have been submitted to the NCBI Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE70091.
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