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Abstract: Although wireless sensor networks (WSNs) have been widely used, the existence of data
loss and corruption caused by poor network conditions, sensor bandwidth, and node failure during
transmission greatly affects the credibility of monitoring data. To solve this problem, this paper
proposes a weighted robust principal component analysis method to recover the corrupted and
missing data in WSNs. By decomposing the original data into a low-rank normal data matrix and a
sparse abnormal matrix, the proposed method can identify the abnormal data and avoid the influence
of corruption on the reconstruction of normal data. In addition, the low-rankness is constrained
by weighted nuclear norm minimization instead of the nuclear norm minimization to preserve the
major data components and ensure credible reconstruction data. An alternating direction method of
multipliers algorithm is further developed to solve the resultant optimization problem. Experimental
results demonstrate that the proposed method outperforms many state-of-the-art methods in terms
of recovery accuracy in real WSNs.

Keywords: wireless sensor networks; missing and corrupted data recovery; weighted nuclear norm;
robust principal component analysis

1. Introduction

Wireless sensor networks (WSNs) contain a group of spatially distributed sensor nodes
that are capable of communicating wirelessly and collecting data from the surrounding
environments [1,2]. Recently, WSNs have been widely applied in different domains, such as
environmental monitoring [3], military management [4], and health care [5]. Typically, the
main task of WSNs is to collect sensing data from all sensor nodes to a certain sink and then
perform further analysis based on the monitoring data, and the collected data are usually
composed of readings sensed by multiple nodes in consecutive time slots. However, due
to the poor environments and energy constraints in WSNs, data loss and corruption are
inevitable in practical applications. Therefore, it is important to reconstruct the real data
from partially collected data with corruption.

Recently, various reconstruction methods have been proposed for data recovery
in WSNs. Based on data interpolation techniques, a K nearest neighbor (KNN)-based
method [6] was proposed to simply utilize the values of the nearest neighbors to estimate
the missing values. The Delaunay triangulation (DT) [7] utilizes the vertices as their global
errors to reconstruct virtual triangles for data interpolation. Based on compressed sensing
(CS) [8], the distributed compressed sensing (DCS) method [9,10] was proposed to exploit
the sparsity of the data under various transform domains.

Since many signals in various applications are always distributed into two-dimensional
data (i.e., matrix form) and exhibit second-order sparsity (i.e., the low-rankness), matrix
completion (MC) [11] has emerged as a novel technology and has been applied to many
fields, such as image inpainting [12], magnetic resonance imaging [13], and recommen-
dation systems [14]. The matrix completion aims at recovering the missing entries of a
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low-rank matrix from the incompletion observations, which can be formulated as a rank
minimization problem. In general, solving this problem is NP-hard, since the rank function
is non-convex. Fortunately, the nuclear norm, the sum of all singular values of the matrix,
is the convex approximation of the rank function and can be used as an alternative [11].

Since the readings collected from N nodes during M time slots in WSNs can also be
distributed into a matrix exhibiting low-rankness, the matrix completion-based methods
have been proposed to utilize the correlation of WSNs data. An efficient data collection ap-
proach (EDCA) [15] and spatiotemporal compressive data collection (STCDG) method [16]
were firstly proposed to recover the WSNs data by exploiting the spatiotemporal correla-
tion in the form of low-rankness. Recently, several methods jointly utilizing low-rank and
spatiotemporal sparsity feature [17,18] were proposed. Considering that the missing of
row of the data matrix due to a broken node will greatly degrade the recovery accuracy,
the matrix completion method [19] was proposed to utilize the interpolation technique for
WSNs data recovery. In addition, in order to address the needs of real-time reconstruction
of data in practical applications, the sliding window-based reconstruction approach [20,21]
was proposed to achieve real-time data recovery.

However, the reconstruction performance of these methods will greatly degenerate
when corruption exists in the sampled data. Direct constraint of the low-rankness cannot
avoid the impact of corruption on the reconstruction of normal data. A two-phase MC-
based data recovery scheme (MC-Two-Phase) [22] was proposed to recover the normal
data without the influence of corruption by detecting the corruption with the principal
component analysis (PCA) [23] before reconstruction. Although PCA can be utilized to
detect faults corrupted by small noise, it has the problem of poor robustness. To overcome
the limitations of PCA, the robust principal component analysis (RPCA) method [24–26]
have been proposed in recent years. The RPCA method improves the robustness since it
only emphasized that the noise is sparse regardless of the strength of the noise. However, it
is unreasonable to treat all singular values equally in the traditional RPCA algorithm, since
different singular values may contain signal information with different important levels.

To solve the above problem, we propose a weighted robust principal component
analysis (WRPCA) method for the reconstruction of WSN data with corruption. The main
contributions of this paper are the following:

Firstly, based on RPCA, the original data with outliers are decomposed into a sum
of a low-rank normal data matrix and a sparse abnormal matrix to avoid the influence of
outliers during reconstruction.

Secondly, the low-rankness of WSNs data is revealed by the variation of singular
values of two real datasets collected from the Inter Berkeley Research lab and GreenOrbs.

Thirdly, the weighted nuclear norm is introduced to constrain the low-rankness and
preserve the principal components of WSNs data.

The rest of this paper is organized as follows. Section 2 presents the basics of RPCA.
Section 3 describes the proposed method and the reconstruction method. Section 4 shows
the result of computer experiments and analysis, which is followed by the conclusion of
the paper in Section 5.

2. Basics of RPCA

Although PCA can be used to detect corruptions, it is sensitive to gross noise and
outliers. The performance and applicability of PCA are limited due to the lack of robustness
to gross corruptions in real-life scenarios. As an improvement of PCA, RPCA can handle
grossly corrupted data well. Suppose that data matrix X can be viewed as consisting of the
two components: a low-rank matrix L and a sparse matrix S:

X = L + S. (1)
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The low-rank matrix L and sparse matrix S can be obtained by solving the following problem:

min
L,S

rank(L) + λ‖S‖0

s.t. X = L + S,
(2)

where rank(·) denotes the rank of the matrix, ‖·‖0 is the l0 norm, and λ is the
balance parameter.

Equation (2) is non-convex and NP-hard, which is difficult to solve. Typically, the matrix
nuclear norm, the convex approximation of the rank function, can be used as an alternative.
Therefore, the above problem can be cast as the following convex optimization problem:

min
L,S
‖L‖∗ + λ‖S‖1

s.t. X = L + S,
(3)

where ‖L‖∗ = ∑
i

σi(L) denotes the nuclear norm of matrix L, σi(L) is the i−th singular

value of matrix L, and ‖·‖1 is the l1 norm. The main goal of (3) is to reconstruct low-rank
normal data L from the corrupted observation data X.

RPCA has been successfully applied in different domains, including image processing [27],
multimedia [28], document analysis [29], etc. The nuclear norm minimization utilized
in (3) shrinks all the singular values equally [30], ignoring that different singular values
may have different importance.

Actually, the real data sensed in the monitoring area always exhibit low-rankness, and
the unavoidable corrupted data are sparsely distributed in the sensed data matrix. Based
on RPCA, we propose a weighted robust principal component analysis method to recover
the missing data in WSNs with the data corruption.

3. The Proposed Method
3.1. Problem Formulation and Signal Feature

Consider a WSN consisting of one sink and N sensor nodes, and the sensor nodes
sense the environmental information and send the signal to the sink in each time slot.
During M time slots, N ×M readings are gathered in the sink and can be organized into a
matrix X ∈ RN×M.

However, due to hardware and network conditions, data loss and corruption may
occur in the network. Mathematically, only partial data d = Ω(X) can be successfully
collected in the sink, and the original data X contain the corrupted data. Here, Ω(·) is the
random sampling operator. That is, under the sampling ratio ρs, for a matrix X ∈ RN×M,
there are d = Ω(X) ∈ RD×1 entries that are sampled from the whole data randomly, where
D =

⌊
ρsNM + 1

2

⌋
. It is worth noting that the sampled partial data d also contains the

sampled corruption data. It is necessary to reconstruct the uncorrupted whole data from
the sampled partial data under the sampling ratio ρs.

The data sensed in a certain area during a consecutive time are always redundant and
highly correlated and can be distributed into a matrix (uncorrupted matrix L) exhibiting
low-rankness. Since the outliers in real WSN are uniformly and randomly distributed,
the sparsely distributed corrupted data can be denoted by the matrix S. Therefore, the
whole data X can be regarded as a combination of the uncorrupted data matrix L and the
corrupted matrix S.

In order to verify that the uncorrupted data L in WSNs is low-rank, two datasets
from the Inter Berkeley Research lab [31] and GreenOrbs [32] were used as testing data.
Since data loss and corruption exist in both two datasets, two small but completed subset
data without corruption are selected as the ground truth for our verification experiment.
Specifically, the selected Inter Berkeley Research lab subset data including temperature and
humidity data were measured by 49 sensor nodes during 138 time slots, and the selected
GreenOrbs subset data were measured by 130 sensor nodes during 129 time slots. As shown
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in Figure 1, the singular values of the two attribute data matrix illustrate the low-rankness
for both two datasets.

Figure 1. The first 10 singular values of two attribute data matrix for Berkeley and GreenOrbs data.

3.2. Proposed Method

Since the original data matrix X can be decomposed into a low-rank matrix L and a
sparse matrix S, the WSNs data recovery problem can be expressed by (3). However, the
NNM method adopts the same threshold for each singular value, which is not appropriate
because the larger singular values usually represent the major data components of the data
and contain more signal information. The larger singular values should be shrunk less to
preserve the major data components.

In order to improve the practically and flexibility of the nuclear norm, the weighted
nuclear norm is utilized in the recovery of WSNs data. The weighted nuclear norm of
matrix L is defined as:

‖L‖w,∗ = ∑
i

wiσi(L), (4)

where wi is the weight coefficient, and σi(L) is the i−th singular value of L. It is clear that the
weighted nuclear norm becomes the conventional nuclear norm when w1 = w2 = · · · = wn.

The weighted nuclear norm minimization (WNNM) based low-rank matrix completion
problem can be described as:

L = argmin
L
‖Y− L‖2

F + λ‖L‖w,∗ (5)

Gu et al. [30] proved that the problem can be solved by the following singular value
thresholding formula:

Lk+1 = shrink(Yk, wi) (6)

The larger singular values should be given smaller weights to achieve less shrinkage,
and the smaller ones should be given greater weights to achieve more shrinkage. The
weights should be inversely proportional to singular values. Therefore, in this paper, we
set the weight as:

wi =
c ·
√

M · σ2

σi(L) + ε
, (7)

where c > 0 is a constant, M is the number of columns in L, σ2 is the variance of noise, and
ε only needs to be a very small number to avoid dividing by zero.

By introducing the weighted approach, different singular values are shrunk differently
with weight wi, which further preserves the major components of data. Then, a WSNs data
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reconstruction method is proposed by applying WNNM in traditional RPCA to recover L
from partial measurement d. It can be described as:

min
L,S
‖L‖w,∗ + λ‖S‖1

s.t. X = L + S, d = Ω(X).
(8)

Only partial measurement d is known as a prior in (8). The original data X and
uncorrupted L can be reconstructed from the partial data d. By introducing a quadratic
penalty term, (8) can be converted to the following formulation:

min
L,S
‖d−Ω(X)‖2

2 + µ‖L‖w,∗ + λ‖S‖1

s.t. X = L + S,
(9)

where µ and λ are the regularization parameters. The proposed method incorporates both
the RPCA and WNNM in a single formulate to further preserve the major data components.
The recovered L̂ can be obtained as the uncorrupted completed data in WSNs.

3.3. Model Optimization

To solve (9), a reconstructed algorithm based on an alternating direction method of
multipliers (ADMM) [33,34] is introduced. The augmented Lagrangian function of (9) can
be written as:

L(X, L, S, A) = ‖d−Ω(X)‖2
2 + µ‖L‖w,∗ + λ‖S‖1

+〈A, L + S− X〉+ α
2‖L + S− X‖2

F,
(10)

where A is the Lagrangian multiplier, and α is the penalty parameter. More details of the
proposed algorithm are given as follows.

For the X-subproblem, we update Xk+1 as follows:

Xk+1 = argmin
X
L(X, Lk, Sk, Ak)

= argmin
X
‖d−Ω(X)‖2

2 +
α
2

∥∥∥Lk + Sk − X + Ak
α

∥∥∥2

F
.

(11)

Here, the preconditional conjugate gradient (PCG) algorithm is applied to solve this
problem in this paper.

For the L-subproblem, we update Lk+1 as follows:

Lk+1 = argmin
L
L(Xk+1, L, Sk, Ak)

= argmin
L

µ‖L‖w,∗ +
α
2

∥∥∥L + Sk − Xk+1 +
Ak
α

∥∥∥2

F
.

(12)

In general, the WNNM problem is non-convex. Gu et al. [30] proved that the problem
has a fixed point and can be solved by the singular value thresholding formula:

Lk+1 = USw(Σ)VT , (13)

where [U, Σ, V] = SVD
(

Xk+1 − Sk − Ak
α

)
is the Singular Value Decomposition (SVD) of

Xk+1 − Sk − Ak
α , and Sw(Σ) denotes taking singular value thresholding to the diagonal

matrix Σ. Since the threshold can be effected by wi and µ, here, we set wi = µ·
√

M·σ2

σi(L)+ε

to simplify the solution; then, Sw(Σ)ii = max(Σii − wi, 0). The initial σi(Lk+1) can be
estimated as:

σi(Lk+1) =
√

max
(
Σ2

ii −Mσ2, 0
)
. (14)
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For the S-subproblem, we update Sk+1 as follows:

Sk+1 = argmin
S
L(Xk+1, Lk+1, S, Ak)

= argmin
S

λ‖S‖1 +
α
2

∥∥∥Lk+1 + S− Xk+1 +
Ak
α

∥∥∥2

F
.

(15)

We can find the solution via the well-known soft thresholding formula:

Sk+1 = so f t
(

Xk+1 − Lk+1 −
Ak
α

,
λ

α

)
. (16)

For the A-subproblem, we update Ak+1 as follows:

Ak+1 = Ak + α(Lk+1 + Sk+1 − Xk+1). (17)

In practical implementation, we initialize X0, L0, S0, and A0 as the zeros matri-
ces. Then, (9) can be solved by repeating the above steps until ‖Lk+1 − Lk‖F/‖Lk‖F is
smaller than a predefined tolerance parameter or the number of iterations reaches the
predefined maximum.

The main computational cost of (9) depends on the update of Lk+1, which requires
computing the SVD of the N ×M matrix per iteration. The computational complexity per
iteration is O

(
min

{
NM2, N2M

})
.

4. Experiments and Analysis

Most existing WSNs data reconstruction methods (e.g., KNN [6], CS [9], EDCA [15],
and methods utilizing both low-rank and sparsity feature [17,18]) have achieved satisfy-
ing recovery performances, but they do not consider the case that the WSNs data have
outliers. Therefore, the performance of our proposed method is compared with the RPCA
method [24] and MC-Two-Phase method [22], which consider outliers during reconstruction.

4.1. Experimental Environments

The two datasets adopted to verify the low-rank property of normal WSNs data were
also utilized for the reconstruction experiments. The normal data without corruption can
be denoted by Lnor, and let Lnor_B and Lnor_G denote the normal matrix for Berkeley data
and GreenOrbs data, respectively. The normal data can be regarded as the ground truth
WSNs data. In real WSNs, due to data loss and corruption, the measurement d is partially
sampled and contains corruption. To obtain the partial measurement d from normal matrix
Lnor in the experiment, the following steps were performed. Firstly, the partial sampled
normal data dnor ∈ RD×1 can be obtained by dnor = Ω(Lnor) according to the sampling
ratio ρs. Then, ρc × D entries in dnor were randomly selected as the corruption data by
adding additional random Gaussian noise with zero mean and variance σ2 = 20, where ρc
is the corruption ratio.

The parameters λ, µ and α can be chosen according to the characteristics of the signal
collected by the sink. In this paper, ε, λ, µ, and α are set to 10−6, 0.05, 3.3, and 0.05, respectively.

The Normalized Mean Absolute Error (NMAE) is used to measure the recovery perfor-
mance of different methods on missing data and corrupted data:

NMAEloss =
∑i,j∈Πm

∣∣Lnor(i, j)− L̂(i, j)
∣∣

∑i,j∈Πm |Lnor(i, j)| , (18)

NMAEcor =
∑i,j∈Πc

∣∣Lnor(i, j)− L̂(i, j)
∣∣

∑i,j∈Πc |Lnor(i, j)| , (19)

where L̂ is the recovered data, Πm denotes the missing data set, and Πc is the corrupted
data set. The experimental result is an average of 50 repeated experiments.
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4.2. Recovery Performance Comparisons

To compare the proposed method with the existing methods, temperature and humid-
ity data from the Inter Berkeley Research lab and GreenOrbs were utilized for the recovery
performance comparisons. With the sampling ratio ρs = 0.1, 0.2, 0.3, and 0.4, the corruption
ratio ρc = 0.2, 0.3, 0.4, 0.5, and 0.6, Figures 2 and 3 show the recovery performance of
each method for Berkeley temperature and humidity data, while Figures 4 and 5 show
the recovery performance of each method for GreenOrbs temperature and humidity data,
respectively. As can be seen, the proposed method has a lower NMAE than the comparison
methods on both missing and corrupted data in two datasets, especially at low sampling
ratio and high corruption ratio.

Figure 2. The recovery performance of each method for temperature data sensed in the Inter Berkeley
Research lab. The (a) is the NMAE of missing data, (b) the NMAE of corrupted data.

Figure 3. The recovery performance of each method for humidity data sensed in the Inter Berkeley
Research lab. The (a) is the NMAE of missing data, (b) the NMAE of corrupted data.
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Figure 4. The recovery performance of each method for temperature data sensed in GreenOrbs.
The (a) is the NMAE of missing data, (b) the NMAE of corrupted data.

Figure 5. The recovery performance of each method for humidity data sensed in GreenOrbs.
The (a) is the NMAE of missing data, (b) the NMAE of corrupted data.

As shown in Figure 2b, the NMAEcor of the proposed method, RPCA, and MC-Two-
Phase is 0.030, 0.037, and 0.099 when ρs = 0.2 and ρc = 0.2, while the values are 0.048,
0.097, and 0.140 when ρc is up to 0.6. The results show that the proposed method not
only improves the recovery accuracy of WSNs data but also has strong robustness to the
gross noise.

Especially, from Figure 4, we can see that as the ρc increases from 0.2 to 0.6, the cor-
responding NMAEloss and NMAEcor of MC-Two-Phase and RPCA dramatically increase,
while that has very little change of the proposed method, and even the entire range of
change is only less than 0.01.

As shown in Figure 3, the NMAEloss and NMAEcor of the proposed method decrease
rapidly with the increase in ρs, but there is little change for the MC-Two-Phase. Specifically,
in Figure 3b, the NMAEcor of the proposed method, RPCA and MC-Two-Phase is 0.056,
0.069, and 0.076 when ρs = 0.1 and ρc = 0.4, while the values are 0.029, 0.040, and 0.069
when ρs is up to 0.4.
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5. Conclusions

In this paper, we propose a WRPCA method to increase the recovery accuracy of
WSNs data with loss and corruption. The original data matrix is treated as a sum of
a low-rank normal data matrix and a sparse abnormal matrix to avoid the influence of
corruption. In addition, the weighted nuclear norm minimization is utilized to further
constrain the low-rankness of the normal data and overcome the problem that the nuclear
norm minimization treats all singular values equally. The experimental results show that
the proposed method has better recovery performance in both loss and corruption data.
In further work, the higher-order low-rankness of multi-attribute data in WSNs can be
explored for multi-attribute data reconstruction.
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