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Abstract: The COVID-19 virus is spreading across the world very rapidly. The World Health
Organization (WHO) declared it a global pandemic on 11 March 2020. Early detection of this virus is
necessary because of the unavailability of any specific drug. The researchers have developed different
techniques for COVID-19 detection, but only a few of them have achieved satisfactory results. There
are three ways for COVID-19 detection to date, those are real-time reverse transcription-polymerize
chain reaction (RT-PCR), Computed Tomography (CT), and X-ray plays. In this work, we have
proposed a less expensive computational model for automatic COVID-19 detection from Chest
X-ray and CT-scan images. Our paper has a two-fold contribution. Initially, we have extracted
deep features from the image dataset and then introduced a completely novel meta-heuristic feature
selection approach, named Clustering-based Golden Ratio Optimizer (CGRO). The model has been
implemented on three publicly available datasets, namely the COVID CT-dataset, SARS-Cov-2
dataset, and Chest X-Ray dataset, and attained state-of-the-art accuracies of 99.31%, 98.65%, and
99.44%, respectively.

Keywords: COVID-19 detection; CGRO algorithm; deep features; meta-heuristic; feature selection;
CT-scan; chest X-ray

1. Introduction

The Coronavirus was first noticed in Wuhan city, China. Other than Antarctica,
almost every continent has been more or less affected. Scientists predict that the virus
originated from zoonotic natured animals. However, the origin of this virus is not yet been
discovered [1]. The first infected person was from Wuhan market in Hubei province and it
eventually spread across the globe [2]. This virus has evolved itself in the recent decades,
in 2002 it was known as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and
in 2012 it was known as the Middle East Respiratory Syndrome Coronavirus. However, in
2019, the World Health Organization (WHO) that declared an unknown etiology had been
detected in the city of Wuhan, which is a novel coronavirus, named 2019 coronavirus (2019-
nCoV), and that can cause severe pneumonia [3]. In 2020, the International Committee
on Taxonomy of Virus (ICTV) announced the 2019 coronavirus as SARS-Cov-2, and the
disease as Coronavirus disease 2019 [4,5].

Globally, 49,106,931 people are affected, among them 1,239,157 people unfortunately
lost their battle as of 11 November 2020 [6]. The most affected country, to date, is the
USA, having a total of 9.3 million confirmed cases. By mid-March, Italy had the highest
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amount of deaths [7]. India is in second place according to the number of confirmed cases.
However, China has managed to avoid the list of the top 10 most affected countries of
COVID-19. Figure 1 shows the detailed statistics of COVID-19 in some countries.

Figure 1. Statistics of confirmed, recovered and death cases of COVID-19 in some countries until 11th November [7].

Usually, the most settled way for COVID-19 detection is real-time reverse transcription-
polymerize chain reaction (RT-PCR). However, RT-PCR has a low diagnosis accuracy, 60–
70%. Many times it is evident that even after getting negative results symptoms can be
detected by radiological images of patients [8]. Computed Tomography (CT) and X-ray
play an important role in detecting life-threatening diseases [9]. Usually, RT-PCR takes
many hours, even a day. That is the reason CT scan and X-ray have been used as a sensitive
and fast method for diagnosis COVID-19 [10]. However, the findings in lungs because of
COVID-19 is visible after two days [11], and the most significant result is observed after
10 days [12]. Moreover, the COVID-19 virus affects the lungs of a suspected person and,
eventually, the lung becomes puffed up. An experiment says that shadowy patches can be
shown in the CT scan and X-ray image of the chest of an infected person; this phenomenon
is known as Ground Glass Opacity [13]. Figure 2 shows some samples of the COVID
and non-COVID CT scan and X-ray images. Additionally, this virus spreads much faster
than it’s prediction and detection rate due to its communicable nature. The symptoms
of COVID-19 is quite similar to one chronic disease, pneumonia. The lungs also become
inflamed in this case, and it is also life-threatening but not as fatal as COVID-19.

In recent times, many computer aided detection (CAD) systems [14] have been pro-
posed that help to detect different chronic diseases accurately, such as lung cancer [15],
breast cancer [16], skin cancer [17], and brain cancer [18].
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Figure 2. Illustration of sample: (A) COVID Computed Tomography (CT) scan images, (B) non-COVID CT scan images,
(C) COVID X-ray images, and (D) non-COVID X-ray images.

However, we have implemented an ensemble of deep learning and machine learning
(ML) techniques for the detection of COVID-19 cases. It is known that deep learning models
can learn relevant features by themselves. On the other hand, to use purely ML techniques,
various features are extracted from the input data, by manual effort, which, many times,
cannot provide the state-of-the-art (SOTA) results, and some chances always remain for
extracting redundant features and missing out some of the relevant features. Therefore, the
features of a deep learning model learns more prolific and compact than that of manually
extracted traditional features. In contrast, the last or the classification layer of any deep
learning model is not much optimized like any ML classifier. Therefore, the classifying
efficiency of that particular deep layer is less than that of ML-based classifiers. Keeping
these facts in mind, in the current work, we have developed an ensemble framework, which
includes deep features from pre-trained Convolutional Neural Networks (CNNs) and a
wrapper based optimization technique for feature selection (FS) and classification. Figure 3
illustrates the complete workflow of our proposed approach for COVID-19 detection. The
contributions of the present work are briefly described below:

• We have extracted deep features from different layers of pre-trained ResNet18, which
is trained for 30 epochs on our datasets and those are concatenated in order to obtain
the final feature set.

• A new FS method, called Cluster-based Golden Ratio based Optimizer (CGRO), is in-
troduced, which includes clustering-based population generation to avoid premature
convergence of the algorithm.

• The model is evaluated using three SOTA classifiers, namely Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), and Extreme learning machine (ELM), on three
standard COVID-19 datasets, namely the Covid-CT dataset [19], SARS-Cov-2 CT-
Scan dataset [20], and Chest X-Ray dataset [21]. The first two datasets are CT-Scan
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image-based datasets and the last one is based on the chest X-Ray dataset. On all
three datasets, the proposed approach achieves SOTA results, with a good margin of
difference from recently developed models.

• We have also compared the performance of the CGRO algorithm with some popularly
used FS based optimization algorithms on all three datasets, which are reported in the
results and discussion section.

Figure 3. Workflow of the proposed Cluster-based Golden Ratio based Optimizer (CGRO) based feature selection approach
for COVID-19 detection.

2. Related Work

In recent times, many ML, as well as deep learning-based approaches, are introduced
for COVID-19 detection from both the X-ray and CT scan images. X-ray and CT scan
images are both the best way to analyze COVID-19 data. X-rays have been preferred over
the chest CT scans due to less ionizing radiations and portability [22]. However, there are
also few limitations of chest X-rays over CT scans, such as X-ray detecting information
of the lung according to the shape, size, the structure of lungs, whereas CT scan images
give an informative architecture of air sacs. However, in our present work, we have
implemented our model taking inputs from both the datasets (i.e., CT scans and X-rays) for
a comprehensive study.

The initial constraint in this field of research is the lack of data. For this reason,
Wang et al. [7] proposed a data augmentation technique, Auxiliary Classifier Generative
Adversarial Network (ACGAN), which helps to manage a sufficient number of radio-
graphic images within a limited period. It also helps to improve the performance of
Convolutional Neural Network (CNN). Wang et al. [23] implemented a deep CNN to
identify COVID-19 positive from the X-ray images. They have trained the model with
13,975 chest X-ray images and produced a classification accuracy of 98.9%. However,
Hemdan et al. [24] introduced the COVIDX-Net model that can detect COVID-19 infected
from X-ray images. COVIDX-Net is trained with 50 normal and 25 COVID images, and it
scored a classification accuracy of 91%. Md. ZabirulIslam [25] proposed a new technique
for diagnosing COVID-19 automatically from the X-ray images using a combined deep
CNN-LSTM network. The model is trained with 4575 X-ray images, including 1525 images
of COVID-19, which produced an accuracy of 99.4%. B. Abraham et al. [26] have inves-
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tigated the effectiveness of multi-CNN by using the combination of several pre-trained
CNNs for COVID-19 detection. They extracted deep features from multi-CNN and carried
the processing ahead using the correlation-based FS (CFS) technique. They trained the
model on 453 COVID-19 images and 497 non-COVID images, and obtained an accuracy
of 91.16%. Again, K.H. Shibly et al. [27] proposed a technique, named faster R-CNN, to
detect COVID-19 from X-ray images. They have implemented their model on two publicly
available datasets, one is a customized dataset and another one is COVIDx, and obtained
an accuracy of 97.36% and 97.65%. Wang and Wong [28] proposed a unique deep learning
technique, named COVID-Net, which obtained 92.4% classification accuracy. Furthermore,
Ioannis et al. [29] implemented a deep learning model while using 224 confirmed COVID
images and achieved an accuracy of 98.75%.

In our work, we have implemented our model on three publicly available datasets,
namely SARS-Cov-2, Muhammed Talo 2 class, and COVID-CT datasets. There are only a
few works reported on these datasets, which are described here. Loey et al. [30] extracted
deep features from the COVID-CT dataset and then they have implemented augmentation
using CGAN. They obtained a classification accuracy of 82.91%. However, Jhao et al. [19]
used pre-trained CNN for classification and achieved an accuracy of 89.1% on the same
dataset. Furthermore, Saeedi et al. [31] extracted deep features using DeepNet121 of the
COVID-CT dataset and used Nu-SVM for the classification purpose. They scored an overall
accuracy of 90.61%. Whereas, Shaban el al. [32] proposed a new approach, hybrid feature
selection Methodology (HFSM) and achieved an impressive classification accuracy of 96%
on the COVID-CT dataset while using enhanced K-Nearest Neighbor (EKNN) classifier.

Jaiswal et al. [33] have used DenseNet 201 on the SARS-Cov-2 dataset and obtained
an accuracy of 96.25%. However, Soares et al. [20] implemented xDNN for classification
and achieved an accuracy of 97.38% on the same dataset. Panwar et al. [34] implemented
Gradient-weighted Class Activation Mapping (Grad-CAM) on the same dataset and scored
an accuracy of 95.61%. Again, Ozturk et al. [21] implemented the DarkCovidNet model
that produced an accuracy of 97.08% on the Chest X-ray dataset that was proposed by
Muhammad Talo. Further, Abdulrahaman et al. [35] introduced a deep Belief network to
attain an accuracy of 90% on the same dataset.

Moreover, in our literature, we have used a completely novel FS technique to neglect
redundant features from the extracted deep feature set. Meta-heuristic [36] approaches
are quite popular for managing this task. In recent times, many optimization techniques
have been introduced, and it has been an area of interest among the research fraternity.
However, many optimization algorithms are already available for different tasks, but there
is always an intermediate need to develop optimization algorithms for a specific task.
Researchers have found that a single optimization algorithm might fail to deal with every
problem [37]. That is why researchers have developed different optimization algorithms
in different domains to deal with redundant features and it can enhance both exploration
and exploitation capability. Some famous and most recent hybrid FS algorithms proposed
during recent times are, as follows: Binary Bat Algorithm with Late Acceptance Hill-
Climbing (BBA-LAHC) [38], hybridization of Mayfly algorithm (MA), and HS, named as
the MA-HS algorithm [39], cooperative Genetic Algorithm (CGA) [40], hybridization of
GA with PSO and Ant Colony Optimization (ACO) algorithm [41], hybrid golden ratio
optimization and equilibrium (GREO) [42], and clustering-based equilibrium and ant
colony optimization (EOAS) [42].

3. Motivation

In recent times, many COVID-19 infected patients are asymptomatic, which might
increase the transmission without any symptoms [43]. RT-PCR is the most common method
of COVID-19 detection. It can be done by taking sputum or blood samples of infected
patients [44]. However, it takes a few hours or even a day to get the result [45]. On the other
hand, using biological image processing, our model can automaticallydetect COVID-19.
Most of the COVID-19 works are particularly using deep learning models. However, such
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models sometimes generate many redundant and non-informative features. Hence, we
aim to find out an optimal feature subset from the deep features that were extracted from
the COVID-19 affected CT scan and X-ray images. Hybrid FS models are quite famous
among the researchers, as it focuses on both exploration and exploitation. There are a lot
of hybrid FS models available in the literature, such as Electrical Harmony based hybrid
meta-heuristic (EHHM) [46], Hybrid of Harmony Search Algorithm and Ring Theory-
Based Evolutionary Algorithm [47], Mayfly in Harmony [39], and Binary Social Mimic
Optimization Algorithm with X-Shaped Transfer Function [48]. Successful applications of
FS algorithms in various domains have motivated us to propose a new FS algorithm for
COVID-19 detection.

4. Materials and Methods

In this section, the proposed workflow for COVID-19 detection has been discussed
in a sequential manner. The methodology is divided into three subsections: Section 4.1
Dataset Description, Section 4.2 Deep Residual Feature Extraction, and Section 4.3 Feature
Selection.

4.1. Dataset Description

In this study, we have evaluated our model on three benchmark datasets, which are
briefly described below.

4.1.1. COVID-CT Dataset

The Covid-CT dataset was proposed by Jhao et al. [19]. As the name suggests, this
dataset consists of chest CT-Scan images with 349 confirm COVID-19 cases and 397 healthy
cases. In this research framework, all of the images are resized to 224 × 224 × 3, and they
are normalized to increase the robustness of usage in the domain of various deep learning
frameworks. During the training process of deep neural networks, as the dataset is very
small, the images are augmented by rotation of 50◦, slant-angle of 0.5◦, and by enabling
horizontal and vertical flipping. Here, 597 images are taken for training the model and the
remaining 74 images are taken as the testing data.

4.1.2. SARS-Cov-2 Dataset

Sores et al. proposed the SARS-Cov-2 CT Scan dataset [20]. This dataset contains 2492
chest CT scan images, 1262 of which are COVID-19 positive, and the remaining 1230 images
are of healthy subjects. Similar to the previous dataset, here also the images are resized
to 224 × 224 × 3, and, during training, data augmentation is applied with 25◦ of rotation
and horizontal flip. Here, 1994 images are taken for training the model and the remaining
249 images are taken as testing data.

4.1.3. X-ray Dataset Proposed by Muhammed Talo

The final dataset is a chest X-ray dataset [21], which a fusion of two datasets. One of
which is an X-ray dataset from Kaggle and the other one is a dataset consists of 125 X-ray
images, collected from various open sources by JP Cohen [49]. Here, 800 images are taken
for training the model and the remaining 100 images are taken as testing data.

4.2. Deep Residual Feature Extraction

In this present framework, we have extracted deep residual features instead of tradi-
tional hand-crafted features. There are many traditional feature extraction techniques, like
Gabor [50], Haralick [51], Tamura [52], etc., which provide hand-crafted features. Some-
times researchers need exhaustive experimentation to decide which features can be of the
most relevance for the said classification task. Even after such experimentation, there often
remains some redundant features as well as missing significant features in the manually
prepared feature set.
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On the other hand, CNNs learn through the backpropagation technique, mostly such
models only learn relevant features. However, some of the features may be less informative
and they do not contribute more toward classification. Therefore, we have applied a meta-
heuristic based FS algorithm to further optimize the features extracted from a deep CNN
model. Here, we have extracted features from different layers of ResNet18. We have also
extracted features from other popularly used CNNs, and the comparative results help us
to finalize the CNN model for feature extraction.

For feature extraction purposes, we have implemented traditional transfer learning
techniques with a pre-trained ResNet18 model. Deep CNNs, like ResNet18, have many
layers in them. The initial layers of any CNN mainly learn common features, which
are responsible for defining the geometrical abstractions of the image. These higher
dimensional features are considerably sensitive towards noises, disorders, and repressions.
Whereas, the deeper layers learn the shape of the images specific to the classification
task at hand. These are comparatively more robust and viable in the cases of clutters
and occlusions. Besides, local features contain more relevant information regarding the
patterns, such as edges, contours, textures, etc., of the input images. To utilize the combined
information of both local and global features, we extract features maps from different layers
of ResNet18 and concatenated them to form the final feature set. To accomplish the task,
we firstly fine-tune the weights and biases of pre-trained ResNet18 architecture by training
the network for 30 epochs and save the model with minimum validation loss. Thereafter,
all of the images in the dataset, including train and test images, are passed into the network,
and feature maps of different layers, such as layer1, layer2, layer3, and layer4, are extracted
via an adaptive average pool layer with kernel size equals to 1 × 1. This average pool layer
normalizes the feature dimension (height and width) to 1 only. These higher dimensional
feature maps are further flattened and concatenated and the final feature set is achieved.
Table 1 displays the feature maps and detailed feature extraction from different layers.

Table 1. Features extracted from different layers of ResNet18 network.

Layer Feature Map Adaptive Average Pool Feature Dimension Number of Features

Layer1 64 × 56 × 56 YES 64 × 1 × 1 64

Layer2 128 × 28 × 28 YES 128 × 1 × 1 128

Layer3 256 × 14 × 14 YES 256 × 1 × 1 256

Layer4 512 × 7 × 7 YES 512 × 1 × 1 512

Dimension of the final feature vector 960

This combined feature set, which consists of 960 features (see Figure 4 for more detail),
is further optimized using our proposed CGRO based FS algorithm for generating the final
feature set used for the classification task.

4.3. Feature Selection Model

In this section, a completely new approach to feature selection has been discussed to
reduce the redundancy of the deep residual features. For this purpose, we have proposed a
completely new approach for the FS task, named CGRO.

4.3.1. Golden Ratio Optimization Algorithm

Every element in nature has its specific shape and size. They follow a similar pattern
and every physical entity has its fixed proportion, called the golden ratio (GRO) [53].
Fibonacci first proposed the idea of the golden ratio. He introduced some series of numbers,
which are exactly the sum of their previous two numbers and the ratio of two consecutive
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numbers is exactly 1.618. This ratio is known as the golden ratio. The equation that
describes this property is given below.

P(n) = F .
( εn − (1− ε−n))√

5
where F = 1.618 (1)

Figure 4. Pictorial representation of our proposed approach of deep feature extraction from fine tuned ResNet18 network.

This optimization technique deals with the vectors and the direction of the vector
to obtain the best solution. Initially, the mean of the population is calculated and, after
that, the fitness is calculated. Based on the calculated fitness, the best and worst fitness
are assigned. In the next stage, one random population is generated and the impact
on the population for the movement of the best and worst solution vector is calculated.
Subsequently, the optimization process will go a step forward towards optimization. The
process will go on iteratively. The pseudo-code, as described in Algorithm 1, shows how
the GRO algorithm works.

Pbest > Pmedium > Pworst (2)

Zt = Zmedium − Zworst (3)

The above equation gives the information about the modulus value of the movement
and the corresponding direction, in search of the global minimum. Fibonacci’s formula is
used to perform the global and local search operation. Updating the solution is the next
step. The equation that represents the random movement is given below.

Znew = (1− Pt )Zbest + rand.Zt .Pt (4)

Now, the new solution is updated and, if the boundary condition is satisfied, then the
new solution will be replaced with the previous one.
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Algorithm 1 Pseudo code for GRO algorithm
Input: Whole feature set, no-of-population, max-iter
Output: Final solution

1: Population initialization k = 1, 2, 3, ..., n
2: Fitness calculation
3: while Convergence criterion is not satisfied do
4: Obtain Zav, the mean value of all possible solutions
5: Set the worst fitness as Zworst
6: if FITNESS(Zavg) < FITNESS(Zworst) then
7: swap(Zavg,Zworst)
8: end if
9: for J = 1, . . ., particle number do

10: Random population generation Zk
11: Compare ZI , Zj, Zavg and assign best fitness value in the Zbest and worst value in

the Zworst
12: Evaluate on eq 1.
13: Check the constraints
14: Zt = Zmedian − Zworst
15: end for
16: for j = 1, . . ., number of particles do
17: for k = 1, . . ., number of variables do
18: Update the solution Znew = (1− Pt)Zbest + rand.Zt.Pt
19: Check the constraints
20: end for
21: end for
22: end while
23: Output: Final Solution

4.3.2. Clustering-Based Population Selection

The GRO algorithm usually has a high convergence rate. Accordingly, there is a
chance that the GRO algorithm may get stuck at the local optima, which results in non-
desired solution, i.e., the algorithm fails to reach the global optima. In this context, it
is to be noted that, if the initial population is generated randomly, then the candidate
solutions may have less diversity and their exploration abilities can be severely affected.
Therefore, at the starting of randomized initialization, significantly distributed candidate
solutions are considered to address this premature convergence of GRO. In doing so,
we apply a clustering-based population selection concept on the deep features obtained
previously [54].

For the clustering-based population, initially, n randomly generated candidate solu-
tions are selected as the initial population. However, a random number is generated as
hyper-parameter to address the number of cluster centers is required, which is less than
the number of candidate solutions in the population. In addition, c clusters are initiated by
considering another randomly generated c cluster centres, each being assigned to a single
cluster. It is to be noted that c should always be less than p and greater than 1. Now, a
similarity function is defined, which is given by Equation (6).

S = α× dH + (1− α)× aD (5)

Using Equation (6), the similarity is calculated between each candidate solution to the
cluster centers. In the equation, dH and aD are the hamming distance and the difference in
classification accuracy between the solution vector of the population and the cluster center,
respectively. These terms are added via weights α and 1− α. The term, dH , represents
the ease of bringing a particle to a certain cluster center, whereas the second term gives
the information regarding the closure proximity between the classification abilities of the
two particles. Now, a particle is assigned to that cluster for which the cluster center gives
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maximum similarity with the candidate solution. After this process, each cluster gets some
candidate solutions based on the calculated similarity values.

Suppose that the Cth cluster is assigned with M particles. Now, in cluster C, when
considering m particles, a goodness measure is calculated for each feature vector. The
mathematical expression of the goodness value of kth feature vector is given by Equation (7).

GC
k =

M

∑
m=1

rC
mk × AC

m (6)

where, GC
k is the goodness of kth feature vector of Cth cluster. The expression of goodness

function is based on two main terms, the position of the particle in Cth cluster (rC
mk) and the

classification accuracy (AC
m) of each particle in the cluster. The cumulative sum over all

the particles in the cluster of the multiplication of the aforementioned two terms gives the
goodness measure of mth feature vector. In the next stage of final solution vector generation
from a cluster, a feature vector is selected if the goodness value of the feature vector is
greater than the mean goodness measure of all feature vectors. Thus, at the end of this
clustering process, we have c standard candidate solutions out of n randomly generated
population. Figure 5 presents the flowchart of our proposed CGRO based FS algorithm.

4.4. Overview of the Classifiers Used

For the calculation of fitness function, we have chosen three different SOTA classifiers,
such as SVM, KNN, and ELM. Brief descriptions of these classifiers are given below.

4.4.1. SVM

SVM [55] is a popularly used supervised learning algorithm, which is also used
for classification and regression problems. SVM is a linear classifier, but, while using
kernel-trick, it can also achieve efficient performance for non-linear classifications. SVM
projects the training sample data points to a higher dimensional space and draws several
hyperplanes that separate different classes into the hyperplane. SVM makes sure that the
hyperplanes are kept at the furthest distance from the elements of each class. Now, while
testing, the SVM algorithm decides at which side of a hyperplane a single test data point
should be put, and that is the determined class of that point. Several kernel functions
are used to project the training points into the higher dimensional spaces. Some of the
popularly used kernel functions are rb f , Gaussian, polynomial, and so on. Among these
kernel functions, rb f performs superior to others while the feature space is large.

4.4.2. KNN

KNN [56] is another heavily used ML algorithm, which is used in pattern recognition
tasks. The algorithm of KNN is of non-parametric type and applied in both classification
and regression tasks. Here, the input consists of K closest samples of training out of the
entire feature space. For classification, this lazy learning algorithm assigns the output as a
class membership. Classification is done by a plurality vote of nearest neighbors and the
data point is classified to the class that is chosen by a majority of the neighbors. This is
how, by a voting system, the KNN classifier works.

4.4.3. ELM

ELM [57] is a feed-forward neural network, with some layers of hidden nodes, which
are usually assigned randomly. The output weights and biases of different hidden nodes
are upgraded in a single step, which is the learning of a linear model. For the ELM classifier,
no back-propagation algorithm occurs, which results in faster learning than usual neural
networks and achieves good performance. ELM is mostly used with a single hidden node,
but it also has flexible architecture. ELM can also be used with RBF networks, sigmoid-
based complex neural networks, wavelet transform, and fuzzy inference networks. For
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ELM based networks, the hidden node can also be a single neuron or a basis function or
subnetwork.

Figure 5. Flowchart of our proposed CGRO based FS algorithm.

5. Results and Discussion

A novel FS based approach for COVID-19 detection is reported in this paper. The
proposed framework of optimizing deep features are evaluated on three recently pro-
posed COVID-19 detection datasets, namely the COVID-CT Dataset, as proposed by
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Zhao et al. [19], SARS-Cov-2 CT scan dataset, which was proposed by Soares et al. [20],
and the chest X-Ray dataset, as proposed by Muhammed Talo [21]. For the evaluation of
our model, we have relied upon some standard measures used for statistical evaluations,
such as Accuracy, Recall, Precision, and F1 Score. These evaluation metrics are dependent
on some primary measures, which are True Positive (TP), True Negative (TN), False Posi-
tive (FP), and False Negative (FN). These evaluation metrics, in terms of the elementary
measures, are given by the following equations:

• Accuracy:
TP + TN

TP + TN + FP + FN
(7)

• Precision:
TP

FP + TP
(8)

• Recall:
TP

TP + FN
(9)

• F1 Score:
TP

TP + 1
2 (FP + FN)

(10)

In this current study, we have trained our pre-trained CNN model for 30 epochs,
which basically fine-tune the pre-trained weights and then fix the fine-tuned weights and
extracted features from different layers of it.

5.1. Deep Feature Extractors

In the previous section it is mentioned that we have chosen deep features instead of the
traditional feature engineering approach for our current framework of FS and classification.
For this purpose, we have performed exhaustive experimentation to select an appropriate
CNN model for feature extraction. We have considered several pre-trained deep learning
models, like GoogleNet [58], ResNet18 [59], VGG19, VGG16 [60], and ResNet152 [61],
for deep feature extraction. We have also extracted feature maps from different layers of
ResNet18 and concatenated them after adaptive average pooling and flattening, which
gives a feature vector of 960 features. Tables 2–5 display the results obtained from this
comparative study of different deep learning models for the chosen datasets .

Table 2. The results obtained on Covid CT-Dataset using different models. Different parameters and obtained results with
4 layers features of ResNet18 are highlighted boldly in the table.

Deep Neural Network No. of Features
Obtained

No. of Features
Selected by CGRO Accuracy Precision Recall F1 Score

GoogLeNet 1024 455 97.73% 92% 98% 95%

VGG16 25,088 12,345 91.27% 88% 90% 90%

VGG19 25,088 14,756 89.73% 91% 87% 88%

ResNet152 2048 1059 95.46% 91% 96% 97%

ResNet18 512 152 96.32% 97% 97% 94%

From 4 layers of ResNet18 960 328 99.31% 99% 100% 98%
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Table 3. Results obtained on SARS-Cov-2 CT-scan dataset using different models. Different parameters and obtained results
with 4 layers features of ResNet18 are highlighted boldly in the table.

Deep Neural Network No. of Features
Obtained

No. of Features
Selected by CGRO Accuracy Precision Recall F1 Score

GoogLeNet 1024 312 96.15% 95% 98% 92%

VGG16 25,088 9472 87.99% 82% 89% 80%

VGG19 25,088 13,255 90.41% 87% 92% 87%

ResNet152 2048 944 96.77% 92% 92% 95%

ResNet18 512 301 95.41% 94% 95% 95%

From 4 layers of ResNet18 960 252 98.65% 98% 99% 97%

Table 4. Results obtained on X-Ray 2-class dataset using different models. Different parameters and obtained results with 4
layers features of ResNet18 are highlighted boldly in the table.

Deep Neural Network No. of Features
Obtained

No. of Features
Selected by CGRO Accuracy Precision Recall F1 Score

GoogLeNet 1024 789 94.57% 91% 95% 95%

VGG16 25,088 16,789 90.11% 92% 90% 91%

VGG19 25,088 12,111 86.11% 88% 82% 84%

ResNet152 2048 1561 95.57% 93% 97% 92%

ResNet18 512 102 95.92% 94% 95% 94%

From 4 layers of ResNet18 960 199 99.44% 99% 100% 98%

Table 5. The results obtained on X-ray 3-class dataset using different models. Different parameters and obtained results
with 4 layers features of ResNet18 are highlighted boldly in the table.

Deep Neural Network No. of Features
Obtained

No. of Features
Selected by CGRO Accuracy Precision Recall F1 Score

GoogLeNet 1024 549 89.16% 90% 93% 88%

VGG16 25,088 11,259 83.54% 84% 81% 82%

VGG19 25,088 14,179 81.68% 80% 79% 84%

ResNet152 2048 1018 90.99% 93% 91% 88%

ResNet18 512 197 91.22% 92% 94% 93%

From 4 layers of ResNet18 960 217 94.12% 91% 95% 92%

It is observed from the results reported in the tables that the proposed approach of
deep feature extraction achieves the best results in all three COVID-19 detection datasets,
including 2-class and 3-class X-ray datasets. Additionally, ResNet152 with 2048 deep
features gives good classification accuracies after the proposed FS approach. The 2-class
and 3-class results on X-ray datasets, achieved by the deep features extracted by the
ResNet18, are also very promising when compared to others. Although 1024 deep features
of GoogLeNet also report impressive results for the COVID CT-Dataset, both VGG19
and VGG16 fail to produce promising results for all four datasets. In the case of VGG
networks, a large number of features with a small number of training data, usually over-fit
the ML classifiers. Accordingly, we can see a good margin in the classification accuracies
as compared to other deep features. However, there is considerable evidence that the
proposed approach of extracting combined global and local features from different layers
of ResNet18 results in impressive outcomes over commonly used transfer learning-based
deep feature extraction techniques.
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For comparison purposes, we also provide the convergence plots of validation losses
and validation accuracies for 30 epochs of training, for each of the aforementioned deep
CNNs. From Figures 6 and 7, it can be seen that the validation loss plots of ResNet18 and
GoogLeNet are somewhat stable and converge well, whereas the plots of VGG networks
and ResNet152 are not that stable. It can also be observed that, for the SARS-Cov-2 CT-
Scan dataset, the obtained loss plots are better than that of COVID CT-Dataset. These
experimental phenomena can be described by considering the depths of the networks and
the sizes of the datasets. The size of the COVID CT-Dataset is much less than that of the
SARS-Cov-2 dataset, so deeper networks learn less and start overfitting in lesser epochs.
For VGG networks, smaller datasets often cause gradient vanishing problem. For residual
networks, like ResNet18, the skip-connections between intermediate layers address the
problem of gradient vanishing. However, ResNet18 has a lesser number of layers than
that of ResNet152, therefore it fits smaller datasets better. Accordingly, it is intuitive that
ResNet18 learns better than any other CNN models considered here. This is observed from
the validation accuracy plots of previously mentioned CNN models.

From the validation accuracy versus epoch plots that are shown in Figure 8, it is
evident that ResNet18 achieves maximum accuracy among other deep neural networks.
During training for 30 epochs, maximum accuracies are obtained by using ResNet18 for
COVID CT-Dataset, SARS-Cov-2 CT-Scan datasets, and X-Ray 2 class dataset, but it takes
more numbers of epochs to converge. For the 3-class dataset of X-ray, the accuracy obtained
by ResNet152 is 82% which is more than that of ResNet18. The accuracies obtained by the
ResNet18 and without optimization, in the COVID CT-Dataset and SARS-Cov-2 CT-Scan
Dataset and 2-class and 3-class X-ray datasets, are 91%, 88%, 80%, and 92%, respectively.

Thus, we can conclude that ResNet18 learns more relevant and discriminatory deep
features as compared to other CNNs with appropriate feature dimensions. Here, we have
further optimized this feature vector using the proposed CGRO algorithm.

Figure 6. Loss plot of different pre-trained Convolutional Neural Networks (CNNs) on COVID CT-Dataset.
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Figure 7. Loss plot of different pre-trained CNNs on SARS-Cov-2 dataset.

Figure 8. Validation accuracy plots of different pre-trained CNNs for all previously mentioned COVID-19 datasets. In the
figure from (A–D) denotes the validation accuracy plots of COVID CT-Dataset, SARS-COV-2 CT-Scan Dataset, 2 calss and 3
class X-Ray dataset.
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5.2. Classifier Selection for CGRO Algorithm

For the calculation of the fitness function of the GRO algorithm, we applied and
implemented three popularly used ML classifiers, namely SVM, KNN, and ELM, for all
three COVID-19 detection datasets. It is observed that the accuracies obtained with the
SVM classifier are superior to the other two, as a whole. Whereas, if we consider all four
primary measures of the evaluation, we see that the results obtained by the three classifiers
are close to each other. The results obtained with these three classifiers on all the three
COVID-19 datasets are shown by the bar charts that are given in Figure 9.

Figure 9. Results obtain by our proposed CGRO based FS algorithm using three different classifiers on: (A) COVID
CT-Dataset, (B) SARS-Cov-2 CT-Scan dataset, (C) Chest X-ray 3-class of Muhammed Talo, and (D) Chest X-ray 2-class
dataset of Muhammed Talo.
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From the bar diagrams, it is seen that the binary classification accuracies that are
obtained using the SVM classifier are the maximum accuracies amongst these all three. The
SOTA accuracies achieved are 99.31%, 98.65%, 94.12%, and 99.44%. For SARS-Cov-2 CT-
Scan Dataset, all three classifiers report similar classification accuracies with SVM yielding
the highest among them. But it is seen that the performance of KNN is also impressive as it
achieves the maximum recall of 99% and accuracy of 98.02% for this particular dataset. On
the other hand, the maximum F1 score is obtained using the ELM classifier on SARS-Cov-2
CT-Scan Dataset. Whereas, for the COVID CT-Dataset, the SVM classifier consistently
outperforms all other classifiers in terms of accuracy, recall, and F1 score. It is to be noted
that the performance of the ELM classifier is also good for the COVID CT-Dataset. It
achieves a maximum precision of 100% and reports 98.79% binary classification accuracy,
which is much closer to that of SVM. Unlike the SARS-Cov-2 CT-Scan Dataset, in the
COVID CT-Dataset, the KNN classifier fails to achieve good performance when compared
to the other two classifiers. Similarly, for the 2-class and 3-class, the results obtained
over the dataset of X-Ray with SVM and ELM classifiers are much similar, especially the
classification accuracies. For the 3-class problem, the accuracies are 94.12%, 93.72%, and
94.01% obtained by SVM, KNN, and ELM classifiers, respectively, and it is seen that all
of the accuracies are much closer to each other. Whereas, for the 2-class dataset, although
the results of SVM and ELM classifiers are almost the same, the KNN classifier has failed
to achieve good results. As a whole, it can be said that, even though the results obtained
from different classifiers are almost comparable, SVM reports the best classification results.
Therefore, in this study of Covid-19 detection, all other experimentations are done while
using the SVM classifier with kernel function and regularization parameter fixed to ’rbf’
and 5000, respectively.

5.3. Hyperparameter Tuning

Hyperparameters always play an important role in boosting the results of the final
model. Our entire ensemble work can be divided into some parts, which are the feature
extraction using deep learning algorithms, feature optimization, and classification using
traditional ML classifiers. Each section of this present ensemble learning has a specific
set of hyperparameters that need to be optimized. To obtain a fixed set of optimal hy-
perparameters, we have performed exhaustive experimentation, which is discussed in
this section.

In any deep learning framework, training, validation, and testing with appropriate
hyperparameters have always been an important part of research studies. In this work, we
have chosen the Adam optimizer for optimizing the cross-entropy loss, with a constant
learning rate of 10−4, while keeping the momentum, step size, and other parameters fixed
to their standard values.

The wrapper-based FS algorithm also has some hyperparameters that significantly
affect the performance of the model. Among all of these, the initial population size and
number of clusters (in our case), play the most vital role in boosting the classification
accuracy. Figures 10 and 11 illlustrate the variation of the accuracies with varying initial
population sizes and a varying number of clusters, respectively.
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Figure 10. Graph showing the variation of classification accuracies with respect to the initial population size. In the Figure
(A–D) denote the variations of COVID CT-Dataset, SARS-COV-2 CT-SCAN Dataset, 2 class and 3 class X-Ray dataset

It can be observed from the population vs accuracy plots that the accuracies first reach
the maximum value with the initial population of 15. The maximum is also hit again at
different initial population sizes for different datasets, since a lesser initial population size
implies lesser time consumption; therefore, we have fixed the population size of CGRO to
15. Howeve, the GRO algorithm does not follow such a fixed pattern, like CGRO. For the
different datasets, the maximum accuracy is achieved with different initial population sizes.

The number of clusters is another important hyperparameter that has a significant
contribution to achieve SOTA results in all three datasets. After doing several experimenta-
tions (the results reported in Figure 11), we have concluded that, for this present framework
of optimizing deep features, the number of clusters for the proposed CGRO algorithm is set
to 6. It is evident that, in our proposed framework of FS, the best classification performance
is obtained with several clusters equal to 6.
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Figure 11. Graph showing the variation of classification accuracies with respect to the number of clusters for three
COVID-19 datasets.

5.4. Comparison With Other Popularly Used Algorithms

In order to estimate the performance of the CGRO algorithm, we have accumulated
the results that were obtained by other popularly used wrapper type FS algorithms, such
as Genetic Algorithm (GA) [62], Atom Search Optimizer (ASO) [63], Harmony Search
Algorithm (HSA) [64], Particle Swarm Optimization (PSO) [65], and GRO itself without
clustering-based population selection. The results are reported as a comparative study
among these algorithms and the proposed CGRO algorithm in Tables 6–9 for the COVID
CT-Dataset, SARS-Cov-2 CT-Scan dataset, X-ray 2 class dataset, and X-ray 3 class dataset,
respectively.

Table 6. Comparative study of different optimization algorithms with proposed CGRO-based FS algorithm on the COVID
CT-Dataset. The performance of proposed algorithm has been highlighted in bold text format.

Optimization Algorithm No. of Features Selected Accuracy Precision Recall F1 Score

GA 412 95.53% 96% 93% 97%

HSA 332 94.17% 95% 96% 94%

ASO 557 96.44% 95% 97% 92%

PSO 225 95.13% 94% 95% 97%

GRO 397 97.77% 98% 99% 98%

Proposed CGRO 328 99.31% 99% 100% 98%
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Table 7. Comparative study of different optimization algorithms with proposed CGRO based FS algorithm on SARS-Cov-2
CT-Scan dataset.The performance of proposed algorithm has been highlighted in bold text format.

Optimization Algorithm No. of Features Selected Accuracy Precision Recall F1 Score

GA 502 91.65% 94% 87% 95%

HSA 211 92.17% 91% 93% 94%

ASO 444 94.41% 93% 95% 95%

PSO 345 96.98% 96% 95% 95%

GRO 311 95.13% 91% 93% 95%

Proposed CGRO 252 98.65% 98% 99% 97%

Table 8. Comparative study of different optimization algorithms with proposed CGRO based FS algorithm on Chest X-Ray
2 class dataset. The performance of proposed algorithm has been highlighted in bold text format.

Optimization Algorithm No. of Features Selected Accuracy Precision Recall F1 Score

GA 426 90.13% 88% 90% 91%

HSA 357 93.29% 91% 94% 93%

ASO 229 97.44% 95% 98% 96%

PSO 513 95.39% 92% 97% 97%

GRO 643 96.92% 95% 93% 96%

Proposed CGRO 199 99.44% 99% 100% 98%

Table 9. Comparative study of different optimization algorithms with proposed CGRO based FS algorithm on Chest X-Ray
3 class dataset. The performance of proposed algorithm has been highlighted in bold text format.

Optimization Algorithm No. of Features Selected Accuracy Precision Recall F1 Score

GA 491 85.13% 87% 84% 83%

HSA 231 81.11% 79% 82% 82%

ASO 497 90.77% 92% 91% 91%

PSO 319 89.77% 92% 91% 90%

GRO 412 92.19% 93% 90% 94%

Proposed CGRO 217 94.12% 91% 95% 92%

From the tables, it can be observed that the proposed CGRO algorithm achieves the
best results among the previously mentioned FS algorithms. Even CGRO selects a very
less number of feature vectors for an optimized solution vector. This fact of achieving
impressive results with smaller feature space denotes the efficiency of the CGRO algorithm.
Besides, the difference in accuracies and other evaluation parameters between GRO and
CGRO algorithm is particularly noticeable; this implies that the clustering-based population
improves the performance of the GRO algorithm with a significant margin of difference.

5.5. Comparison with SOTA Techniques

In this section, we report a comparative study of our proposed CGRO algorithm for
deep features optimization, with other recently evolved models for COVID-19 detection on
all three datasets.

Tables 10–12 report the study of comparison of CGRO based FS approach with some
SOTA techniques for the COVID CT-Dataset, SARS-Cov-2 CT-Scan dataset, and Chest
X-Ray dataset of Muhammed Talo, respectively. It is evident from Tables 10–12 that
the proposed CGRO algorithm with deep residual features achieves SOTA results on all
COVID CT-scan datasets, which are taken into account for the evaluation of our model,
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with a good margin of differences from other ML-based techniques, which have been
developed for the detection COVID cases so far. It is observed that, on the COVID CT-
Dataset, Saeedi et al. [31] extracted deep features of DenseNet121 and classified them using
Nu-SVM classifier. The Nu-SVM is different from C-SVM in terms of the regularisation
parameter. For C-SVM, regularization parameter C varies from zero to infinity, whereas,
for Nu-SVM, the parameter ν varies between zero to one. The Nu-SVM gives a better
estimation of the regularization than that of C-SVM. This ensemble of ML classifiers with
deep features achieved 90.61% classification accuracy. Shaban et al. [32] implemented a
purely traditional ML approach, which includes GLCM features, and these are optimized by
hybrid FS model (HFSM) and classified using Enhanced KNN (EKNN) classifier. The author
reported a very good classification accuracy of 96%. However, the classification results
reported by the proposed CGRO algorithm are considerably superior to others. We reach a
similar conclusion from Table 7 too but, for the SARS-Cov-2 CT-Scan dataset, the overall
classification accuracies obtained by all other developed approaches are very promising.
Soares et al. [20] proposed the dataset with the introduction of xDNN for classification
purpose. Their proposed xDNN model achieves 97.38% accuracy. It is also observed that
Jaiswal et al. [33] used traditional transfer learning with DenseNet201 and reported a
96.25% classification result. Although several approaches obtained impressive results on
the SARS-Cov-2 CT-Scan dataset, our deep residual features with the CGRO algorithm
model report best among them and achieve a SOTA accuracy of 98.65% for the binary
class classification problem. The authors of the Covid-19 X-Ray dataset, Ozturk et al. [21],
developed a completely new deep neural network, called DarkCovidNet, and achieved
87.02% (for 3 class) classification accuracy, which is much less than that of the accuracy
achieved by our CGRO algorithm.

Table 10. Performance comparison of our proposed approach with some existing works for COVID CT-Dataset. Maximum
value is bolded.

Work Reference Feature Method of Classification Accuracy

Loey et al. [30] Deep features Data augmentation with classical
augmentation technique and CGAN 82.91%

Jhao et al. [19] Pre-trained CNN learns by itself TL by DenseNet161 + CSSL 89.1%

Saeedi et al. [31] Deep features of DenseNet121 Nu-SVM 90.61% ± 5%

Sakagianni et al. [66] NA AutoML Cloud Version 88.31%

Shaban et al. [32] GLCM HFSM and EKNN classifier 96%

Proposed method Deep features of ResNet18 FS and classification using CGRO algorithm 99.31%

Table 11. Performance comparison of our proposed approach with some existing works for SARS-Cov-2 CT-Scan dataset.
Maximum value is bolded.

Work Reference Feature Method of Classification Accuracy

Jaiswal et al. [33] Deep neural network learns relevant features
by itself DenseNet201 96.25%

Soares et al. [20] Automated classification with deep xDNN xDNN 97.38%

Soares et al. [20] Ensemble learning and classification Adaboost 95.16%

Panwar et al. [34] Deep neural architecture Grad-CAM 95.61%

Proposed method Deep features of ResNet18 FS and classification using CGRO algorithm 98.65%



Diagnostics 2021, 11, 315 22 of 27

Table 12. Performance comparison of our proposed approach with some existing works for Chest X-Ray dataset of
Muhammed Talo. Maximum value is bolded.

Work Reference Feature Method of Classification Accuracy

Ozturk et al. [21] No traditional features were extracted,
end-to-end deep neural network is proposed DarkCovidNet 2-Class : 98.08%

3-Class: 87.02%

Abdulrahaman et al. [35] Deep features of hidden and visible layers Deep belief network 3-Class: 90%

Proposed method Deep features of ResNet18 FS and classification using
CGRO algorithm

2-Class: 99.44%
3-Class: 94.12%

5.6. Statistical Significance Test: McNemar’s Test

The McNemar’s test is a non-parametric test for paired nominal data. We have
performed the McNemar’s test to asses the statistical significance of the results obtained by
the proposed algorithm. This test is performed by calculating McNemar’s parameter X,
which can be calculated by the following equation.

Z =
(|a01 − a10| − 1)2

(a01 + a10)
(11)

In a statistical test, the process that shows that there is no difference between certain
characteristics of population is known as a null hypothesis. In McNemar’s test, if the
value of Zi > χ2

(1,α=0.05) = 3.84, the degree of freedom is 1, and the statistical probability is
0.95, then the null hypothesis is rejected and the model has better performance than other
models. The results of the McNemar’s test on three datasets are reported in Table 13. It is
evident from the table that, for most of the cases, the null hypothesis is rejected, thereby
concluding that our proposed algorithm can perform better than most of the existing
algorithms.
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Table 13. Statistical comparison using McNemar’s test of our proposed CGRO algorithm with some existing SER methods.

COVID-CT Dataset SARS-Cov-2 Dataset X-ray Dataset of Muhammed Talo

Competitor Algorithms
(B) Control Algorithm (A) Competitor Algorithms

(B) Control Algorithm (A) Competitor Algorithms
(B) Control Algorithm (A)

a01 a10 Zi Status of Null Hypothesis a01 a10 Zi Status of Null Hypothesis a01 a10 Zi Status of Null Hypothesis

Loey et al. 1 9 4.9 Reject Jaiswal et al. 21 71 26.1 Reject Ozturk et al. 10 55 29.78 Reject

Jhao et al. 2 12 5.78 Reject Soares et al. 10 66 39.8 Reject Abdulrahaman et al. 8 20 0.39 Accept

Saeedi et al. 1 10 5.81 Reject Soares et al. 11 50 23.67 Reject NA NA NA NA NA

sakagianni et al. 4 20 9.37 Reject Panwar et al. 30 89 28.26 Reject NA NA NA NA NA

Shaban et al. 3 7 0.9 Accept NA NA NA NA NA NA NA NA NA NA
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6. Conclusions

In this paper, we have proposed a meta-heuristic FS method, named CGRO, based
on Golden Ratio Optimizer with the clustering based population embedded in it. This FS
method has been evaluated on three popular and publicly available X-ray and CT-scan
images that are related to COVID-19, namely SARS-Cov-2, COVID-CT, and Chest X-Ray
dataset. Our proposed method has achieved impressive classification accuracies of 98.65%,
99.31%, 99.44%, and 94.12%, respectively, on the said datasets. We compare the results
obtained by the proposed CGRO algorithm with some popularly known optimization
algorithms such as GA, HSA, ASO, PSO, and GRO. The results prove the superiority of the
CGRO algorithm over those methods. Moreover, the research domain of COVID-19 has
become a key interest in recent times, and various ML and deep learning-based models
have been proposed by the researchers to recognize the COVID-19 patients automatically
just by biomedical image processing (Chest X-ray and COVID-19). In our task, we have
achieved SOTA results on three open-access datasets and obtained better results than
some deep learning-based models. Even after achieving SOTA results, there are certain
limitations of this framework, such as feature extraction itself is a lengthy procedure since
features are extracted from deep learning models. In addition to this, feature selection is
also a lengthy process as it requires several iterations to achieve the optimal set of feature
vectors. Apart from that, this two-stage FS algorithm requires a feature set of promisingly
large size. This is another limitation of this approach. Thereby, we conclude this paper
with a small discussion of some future scopes, which are listed below.

• For feature extraction purpose, we have used some old pre-trained deep learning
models; in recent times, lots of new deep learning nets have been developed for
classification, such as capsule net, exception net, and so on. These can be used for
deep feature extraction.

• Some ML classifiers have also been evolved in recent times. These classifiers can be
used in calculating the fitness function of the CGRO algorithm and they can achieve
better results.

• The CGRO algorithm can be hybridized with other FS algorithms, as proposed in
recent times, which can improve the results with a good margin.
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