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Abstract

Burkholderia cenocepacia is a versatile opportunistic pathogen that survives in a wide vari-

ety of environments, which can be limited in nutrients such as nitrogen. We have previously

shown that the sigma factor σ54 is involved in the control of nitrogen assimilation and viru-

lence in B. cenocepacia H111. In this work, we investigated the role of the σ54 enhancer

binding protein NtrC in response to nitrogen limitation and in the pathogenicity of H111. Of

95 alternative nitrogen sources tested the ntrC showed defects in the utilisation of nitrate,

urea, L-citrulline, acetamide, DL-lactamide, allantoin and parabanic acid. RNA-Seq and

phenotypic analyses of an ntrC mutant strain showed that NtrC positively regulates two

important phenotypic traits: exopolysaccharide (EPS) production and motility. However, the

ntrC mutant was not attenuated in C. elegans virulence.

Introduction

The betaproteobacterium Burkholderia cenocepacia is an opportunistic pathogen that thrives

in different environments, which can be limited in essential elements such as nitrogen [1, 2].

Bacterial adaptations to changes in nitrogen availability have been shown to be stringently reg-

ulated [3–7]. Enterobacteria respond to nitrogen starvation by activating the nitrogen regula-

tory response (Ntr) to facilitate N scavenging from alternative nitrogen sources. The Ntr

system monitors the intracellular ratio of glutamine to α-ketoglutarate. Under nitrogen limit-

ing conditions, the PII signal transduction proteins encoded by glnB and glnK are uridylylated

and, by controlling the kinase and phosphatase activities of the regulator NtrB, regulate the

transcription of nitrogen-regulated target genes [3, 6, 8, 9]. NtrB is a sensor kinase, and is part

of the NtrBC two-component regulatory system. Under nitrogen limiting conditions, NtrB

phosphorylates the response regulator NtrC, which then binds to DNA sequences in the pro-

moter and together with the alternative sigma factor σ54 (or RpoN) activates transcription [10–

12]. The sigma factor σ54 reversibly associates with the core RNA polymerase and recognizes

its cognate promoter sequences via defined consensus sequences at positions –12 and –24 bp

(relative to the transcription start site) [13]. The initiation of σ54-dependent transcription usu-

ally requires such an interaction with an enhancer binding protein (EBP). The specific protein

involved varies depending on the respective environmental signals. NtrC is the EBP in the case
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of nitrogen starvation conditions [14, 15]. EBPs share a conserved modular structure, which

consists of three domains: i) an amino terminal regulatory domain, ii) a central catalytic do-

main that belongs to the AAA+ superfamily of ATPases and is required for interaction with

σ54, iii) a carboxy-terminal DNA-binding domain with a helix–turn–helix motif that is re-

quired for recognition of upstream activator sequences [16]. The EBP catalyzes ATP hydrolysis

and thereby promotes conversion of the closed promoter into an open promoter complex

from which transcription can proceed [16–20]. In enterobacteria, hexamers of phosphorylated

NtrC bind to an upstream activator sequence (UAS), which is usually located 100–150 nucleo-

tides upstream of the transcriptional start site [21, 22].

We have previously characterized the response of B. cenocepacia H111 to nitrogen starva-

tion, a condition that is relevant during chronic lung infection [2, 23] and showed that nitro-

gen assimilation is largely dependent on the sigma factor σ54 [24]. Further phenotypic analysis

of a σ54 mutant showed that this sigma factor is also important for other traits, which have

been previously shown to play important roles during infection with B. cenocepacia [18, 25–

30]: exopolysaccharide (EPS) production, biofilm formation and motility. The sigma factor σ54

is also required for H111 virulence in the Caenorhabditis elegans infection model [24].

Among the regulatory genes highly up-regulated under nitrogen starvation conditions was

the two-component regulatory system NtrBC, suggesting that NtrC is the EBP of σ54 during

nitrogen starvation [24]. In this study, the ntrC gene (I35_2149) was mutated in B. cenocepacia
H111 and the derived NtrC regulon during nitrogen starvation was compared with the previ-

ously identified σ54 regulon. Phenotypic analysis of the ntrC mutant strain confirmed the tran-

scriptomics data and showed that NtrC controls utilization of several nitrogen sources, EPS

production and motility. While biofilm formation was partially compromised in the ntrC
mutant, NtrC was not important for C. elegans virulence, suggesting that for this phenotype

σ54 interacts with other EBPs or σ54 functions independently of EBPs.

Material and methods

Bacterial strains, media and growth conditions

The bacterial strains and plasmids used in this study are listed in S1 Table. E. coli and B. cenoce-
paciaH111 cells were routinely grown in Luria broth (LB) [31] at 37˚C using the following

concentrations of antibiotics (in μg/ml): ampicillin (100 for E. coli), chloramphenicol (20 for E.

coli and 80 for B. cenocepacia) and gentamycin (10 for both E. coli and B. cenocepacia). Cultures

for RNA-Seq were grown first in AB minimal medium [32] using 10 mM sodium citrate as

carbon source and 15 mM ammonium chloride (NH4Cl) as nitrogen source. Nitrogen starved

conditions were created using AB minimal medium containing 0.3 mM NH4Cl. Cultures were

grown in 500 ml Erlenmeyer flasks containing 100 ml medium on a shaker (200 rpm) at 37˚C.

For each strain or condition, the growth of three independent cultures was analysed.

Construction of B. cenocepacia H111 mutant strains

Plasmid DNA from E. coli strains was obtained by using the QIAprep Spin Miniprep Kit (QIA-

GEN). To generate H111-ntrC (an insertional mutant in I35_2149, the ortholog of B. cenocepa-
cia J2315 BCAL2222), a 508 bp internal fragment of I35_2149 was amplified with Ex Taq

polymerase (TaKaRa) using primers ntrC_mut_new_F and ntrC_mut_new_R (see S1 Table).

The PCR product was cloned into pGEM1-T Easy Vector (Promega) and then sub-cloned

into pSHAFT2 [33] as a NotI fragment to generate pSHAFT2-ntrC. The resulting plasmid was

mobilized into B. cenocepacia H111 wild type by triparental mating. Correct genomic integra-

tion was verified by PCR using oligos ntrC_Comp_F and pSHAFT_R. To complement

H111-ntrC, the complete I35_2149 ORF was amplified with Phusion High-Fidelity DNA

NtrC-regulation of motility and EPS production in B. cenocepacia
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polymerase (Thermo Fisher Scientific) using oligos ntrC_Comp_F and ntrC_Comp_R (S1

Table). The PCR product was first cloned into pGEM1-T Easy Vector, digested with EcoRI,

and then cloned into EcoRI-digested pBBR1MSC-5 (GmR) to create the complementing plas-

mid pBBR1-ntrC. The sequence of the I35_2149 ORF in the complementation vector was veri-

fied by DNA sequencing. The complementing plasmid was mobilized into H111-ntrC by

triparental mating to generate the complemented strain.

RNA-Seq and data analysis

H111 wild-type and mutant strains were grown to exponential phase in AB minimal medium

containing 15 mM NH4Cl, and washed twice in AB minimal medium without NH4Cl. The

cells were further incubated for 1 hour under nitrogen starvation conditions. Three indepen-

dent RNA-Seq experiments were performed from three independent biological replicates.

Total RNA was extracted using a modified hot acid phenol protocol [34]. The complete

removal of genomic DNA using RQ1 RNase-Free DNase (Promega) was verified by a PCR

reaction with 40 cycles. Samples were further purified using the RNeasy Mini Kit (QIAGEN)

and RNA quality was checked using RNA Nano Chips (Agilent 2100 Bioanalyzer). A total of

150 ng RNA was used for cDNA synthesis and library preparation using the Ovation1 Com-

plete Prokaryotic RNA-Seq Library System from NuGEN. The cDNA libraries were analyzed

and quantified by capillary electrophoresis using D1000 ScreenTape from Agilent (size range

100–800 bp). Illumina single-end sequencing was performed on a HiSeq2500 instrument. The

sequence reads were processed and then mapped to the recently finished H111 genome

sequence (accession no. HG938370, HG938371, and HG938372) [35] using CLC Genomics

Workbench v7.0 (CLC bio) allowing up to 2 mismatches per read. The mapped reads were

analysed using the DESeq software [36]. The RNA-Seq raw data files are accessible through the

GEO Series accession number GSE95607.

Functional analysis was based on the EggNOG annotation that is available for B. cenocepa-
cia J2315 [37] and was performed as previously described [24]. Distribution of categories was

determined using a Fischer test with the online quick calculator of GraphPad (p-value < 0.01).

Phenotypic analysis of mutant strains

The utilization of nitrogen sources by H111 wild-type and ntrC mutant strains was assessed

using Biolog PM3B plates according to the manufacturer’s instructions as described previously

[38]. After inoculation, the plates were incubated at 37˚C for 24 hours before the OD590 of each

well was measured by a plate-reader (TECAN). The assay was performed on biological duplicate

cultures for each strain. The OD590 of these was taken to calculate the average values and stan-

dard deviation. The 18 differentially utilized N sources were determined using the following cri-

teria: i) ratio of average final OD590 (wild-type vs. mutant or vice-versa)> 2; ii) the higher

OD590 average value> 0.3; iii) both standard deviations (of wild-type and mutant)< 0.1.

The assimilation of nitrogen sources was also assayed by observing growth in modified AB

minimal medium, where 15 mM NH4Cl was replaced by other nitrogen sources at concentra-

tions according to the number of N atoms in the molecule. The cells were incubated in 16 ml

medium with a starting OD600 of 0.05 for 4 days at 37˚C with shaking at 40 rpm. The final

OD600 of the independent biological triplicate cultures for each strain was used to calculate the

mean and the standard deviation. For each nitrogen source, all 3 strains (wild-type, ntrC
mutant and the complemented mutant) were tested in parallel.

EPS production was assessed on modified YEM medium plates (0.4% mannitol, 0.05%

yeast extract, 1.5% agar [39]). All 3 strains to be tested were streaked in parallel on the YEM

NtrC-regulation of motility and EPS production in B. cenocepacia
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plate to eliminate variations. Independent biological triplicate cultures for each strain were

tested. Images were taken for evaluation after 24 hours incubation at 37˚C.

Biofilm formation was quantified in a microtiter-plate assay as described by Huber et al. [40].

For each condition, all 3 strains were tested in parallel in one plate and independent biological trip-

licate cultures for each strain were tested. Each culture was tested in at least 4 wells in one plate.

The biofilm index was calculated for each well. The mean and the standard deviation of all the bio-

film index data for each strain were used to make the histogram. A two-tailed unpaired Student’s t

test was used to determine the significance between either mutant or complement and wild type.

Swarming and swimming activity were tested in the same way as previously described [41]

with the following modifications: swarming and swimming assays were carried out on AB mini-

mal medium plates containing 10 mM glucose as carbon source and 0.1% casamino acids, solidi-

fied with 0.4% and 0.2% agar, respectively. Independent biological triplicate cultures of each strain

were tested. Swarming assays were carried out with minor modifications. In detail, swarming

plates were freshly prepared and air-dried for half an hour under the laminar flow after solidifica-

tion. Pre-culture cells were washed twice with AB minimal medium and adjusted to OD600 0.5.

Then 3 μl of each culture was inoculated at the center of a plate. The plates were incubated in

humid conditions at 37˚C for 5 days. The colony swarming diameter for each plate was measured.

For both swarming and swimming assays, at least independent biological triplicate cultures of

each strain were tested and the 3 strains were always tested in parallel for each assay. To normalize

the data, for each assay the average diameter of the wild type was set to 100% and used as a refer-

ence. The ntrCmutant and complement strain values were shown as a percentage of this reference

value. Swimming and swarming motility were statistically analysed using a two-tailed unpaired

Student’s t test, with either the mutant or complemented mutant compared to the wild-type strain.

Pathogenicity tests using Caenorhabditis elegans Bristol N2 strain and Galleria mellonella
were performed as previously described [24] and [38], respectively. For C. elegans, the number

of synchronized L1 larvae was recorded after seeding with the bacteria into each well of a

96-well plate to test. After 48 hours co-incubation at 20˚C, the worms were scored according

to their developmental stages and the reduction in the total number of surviving larvae was

regarded as “dead”. The assays using both infection models were carried out in triplicate with

all 3 strains tested in parallel.

qPCR analysis

The qPCR analysis was carried out using Brilliant III Ultra-Fast SYBR1 Green QPCR Master

Mix (Agilent, Switzerland) and an Mx3000P instrument (Agilent, Switzerland). The cDNA

was prepared from an independent biological replicate (of both wild-type and ntrC mutant

strains) as previously described [42]. Each PCR reaction was run in triplicate with 3 dilutions

of cDNA (15, 7.5 and 3.75 ng) using 15 μl 2x Brilliant III Ultra-Fast SYBR1 Green QPCR

Master Mix, and 5 μM of individual primers in a total volume of 30 μl. Fold-changes in tran-

scription and the standard deviation of 9 sample dilutions were calculated using the ΔΔ CT

method [43]. The primary σ factor gene rpoDwas used as a reference for normalization. All

the primers used are listed in S1 Table.

Results

Construction and growth analysis of a B. cenocepacia H111 ntrC mutant

and a complemented derivative

To study the role of the σ54 activator protein NtrC in response to nitrogen limitation, an H111

ntrC mutant and a complemented mutant were constructed (S1 Table). The gene I35_2149, an

NtrC-regulation of motility and EPS production in B. cenocepacia
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ortholog of B. cenocepacia strain J2315 gene BCAL2222, was chosen since it showed 55%

amino acid identity and 67% amino acid similarity to NtrC of Escherichia coli. Furthermore, its

transcription was found to be significantly up-regulated by nitrogen starvation and signifi-

cantly down-regulated in the absence of the alternative sigma factor σ54, strongly suggesting

that NtrC is the EBP of σ54 in nitrogen limited environments [44]. Similar to other bacteria,

the gene is located in an operon downstream of the gene coding for its potential sensor kinase

NtrB and the gene glnA which encodes a glutamine synthetase. While the ntrC mutant grew at

a similar rate and to the same final optical density (i. e. OD600 of 4) as the wild type in LB, the

mutant had a moderate growth delay in AB minimal medium containing citrate as carbon

source (S1 Fig). The complemented ntrC mutant displayed a growth defect in both media, but

was able to eventually reach the same final optical density (OD600) as the wild type (data not

shown). In contrast, on LB or AB minimal medium agar plates, the growth of the wild type

and the complemented ntrC mutant was indistinguishable after 24 and 48 hours of incubation,

respectively. The growth defect of the complemented mutant may have been due to the over-

expression of ntrC from the pBBR1MCS-5 plasmid. Our qPCR result showed that when the

cells were grown in LB until stationary phase, ntrC transcription in the complemented strain

was 162 fold higher than the wild-type strain (as determined by qPCR).

NtrC affects the utilization of alternative nitrogen sources

The ability of the wild-type strain and the ntrC mutant to utilize 95 different nitrogen sources

was examined using Biolog plate assays (S2 Table). The utilization of 18 N sources was found

to be affected by NtrC. In 7 cases (nitrate, urea, L-citrulline, acetamide, DL-lactamide, allan-

toin and parabanic acid), the ntrC mutant was compromised in substrate utilization. In con-

trast, with 11 N sources (biuret, L-cysteine, L-isoleucine, L-methionine, hydroxylamine,

methylamine, ethylamine, ethylenediamine, N-acetyl-D-galactosamine, uric acid, ε-amino-N-

caproic acid) the ntrC mutant showed enhanced growth compared to the wild-type. The utili-

zation of selected N sources was also tested using a different experimental setup (Fig 1). When

incubated at 37˚C in AB minimal medium containing 15 mM ammonium as N source, the

H111 wild-type, ntrC mutant and ntrC complemented strains grew at similar rates. Consistent

with the Biolog results, the ntrC mutant was unable to use nitrate or urea as sole N source.

However, in the case of L-citrulline and histamine, growth was only mildly affected in the

mutant compared with the wild-type. Heterologous complementation with ntrC partially res-

cued growth of mutant with most of the N sources tested, except for histamine.

Mapping the NtrC regulon in B. cenocepacia H111

To identify genes controlled by NtrC, RNA-Seq was performed on the ntrC mutant and the

wild-type strain grown under nitrogen limiting conditions. For this, RNA was extracted from

independent biological triplicate cultures of wild-type and ntrC mutant cells grown first in AB

minimal medium containing 15 mM NH4Cl until exponential phase (OD600 = 0.5, S1 Fig) and

then shifted to nitrogen limiting conditions (0.3 mM NH4Cl) for one hour (shift experiment).

Among the 150 top ranked differentially expressed genes (DESeq analysis p-value < 10−20,

absolute log2(Fold Change) > 2.3) (Fig 2 and Table 1), 123 genes (82%) showed decreased

transcription in the ntrC mutant. Genes involved in nitrogen assimilation such as the gluta-

mine synthetase (glnA, I35_2151) and one of the two PII sensor proteins (glnB, I35_2936)

showed 4.8- and 6.5- fold (log2 fold change) reduced transcription, respectively, in the ntrC
mutant. In line with the inability of the ntrC mutant to grow with urea or nitrate as the sole

nitrogen source, the genes required for urea (I35_0765–0775 and I35_7283–7286) and nitrate

(I35_5545–5548) transport and utilization displayed down-regulated transcription in the ntrC

NtrC-regulation of motility and EPS production in B. cenocepacia
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mutant. Sixty-five percent of the genes found to be activated by NtrC have previously been

shown to have increased transcription under nitrogen limited conditions [24], suggesting that

B. cenocepacia NtrC plays a major role in the control of gene transcription during nitrogen

deprivation. Among the top 150 genes significantly differentially transcribed in the ntrC
mutant (Table 1), 95% were also regulated by σ54, suggesting that, as is the case in other bacte-

ria, NtrC is the EBP of σ54 required for activating transcription of genes under nitrogen limit-

ing conditions (see below). Among the common target genes of σ54 and NtrC, many were

potentially involved in nitrogen metabolism: the urease and nitrate reductase gene clusters

described above, a cluster coding for proteins containing a transglutaminase-like domain

(I35_5080–83), a xanthine dehydrogenase (I35_0688–0689), a gene cluster containing a urate

oxidase (I35_1963–64), several genes coding for components of ABC transporters (I35_0158,

I35_4451, I35_4872–73, I35_5228–29, I35_5552, I35_5645, I35_6515, I35_7109–10, I35_7737–

40), and an alanyl-alanine dipeptidase and its associated transporter (I35_5644–46). Moreover,

other genes showed σ54 –NtrC–dependent transcription, including cidAB (I35_3288–89) cod-

ing for a putative holin and anti-holin system, I35_4672–73 encoding a poly-beta-hydroxyalk-

anoate (PHB) depolymerase and a glutathione-S-transferase, and I35_4766 (an ortholog of

BCAM0853), which is part of the bce-I cluster that encodes the main B. cenocepacia EPS cepa-

cian. We found several transcriptional regulators with decreased transcription in the ntrC
mutant, including two genes coding for an ethanolamine operon regulatory protein (I35_0068

and I35_7815), I35_1967, ntrB, I35_4176, I35_4535, I35_4653, nasT (I35_5551), I35_5643,

I35_5874 and I35_6218. An analysis of the categories associated with the top 150 NtrC-regu-

lated genes, revealed that, beside category E (amino acid metabolism and transport), category

N (motility) is over-represented among the genes positively regulated by NtrC (S2 Fig). In fact,

Table 1 contains several genes involved in flagellar biosynthesis (I35_3089–90 and I35_3103)

and rotation (motAB, I35_0133–34), and a gene (I35_0139) involved in chemotaxis.

Fig 1. Nitrogen sources differentially utilised by the wild-type, ntrC mutant and the complemented strains. Cells

were grown at 37˚C for 4 days with slow agitation in order to synchronize the growth. 3 independent cultures of each strain

were tested with each N source. Columns and error bars indicate the average and the standard deviation of final OD600,

respectively.

https://doi.org/10.1371/journal.pone.0180362.g001

NtrC-regulation of motility and EPS production in B. cenocepacia
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Among the 27 genes with increased transcription in the ntrC mutant (Table 1) we found

fimA (I35_1588 encoding a type I fimbria), zmpA (I35_7447 coding for a zinc metallopro-

tease), two genes in a type VI secretion system cluster (I35_0339 and I35_0341), I35_3251 cod-

ing for a subunit of a type I restriction-modification system and several genes involved in the

Tricarboxylic Acid Cycle (TCA) cycle (sucB, sucD, sdhB, gltA and I35_2213 coding for a fuma-

rase). Using a less stringent p-value threshold (DESeq analysis p-value < 10−13, absolute log2(-

Fold Change) > 1.5; S3 Table) additional genes involved in nitrogen metabolism and motility

were identified as NtrC-regulated. Additionally, two genes in the cepacian clusters bceI
(I35_4767 and I35_4772), the gene rhlA (I35_6233) coding for an enzyme catalysing the first

step in biosynthesis of rhamnolipids, I35_1797 coding for the RNA binding protein Hfq and

several protease-encoding genes (clpS, clpX, lon, ybbK) showed decreased transcription in the

ntrC mutant. The NtrC-dependent transcription of genes involved in cepacian, rhamnolipid

biosynthesis and cell motility was validated by an independent qPCR analysis (Table 2).

Fig 2. Differential transcript expression in the ntrC mutant compared to the wild type. MA plot showing the log2 fold change in transcript

expression of B. cenocepacia H111 wild type and ntrC mutant strains grown under nitrogen limited conditions. The top regulated genes (p-value < 0.001,

absolute log2 (Fold Change) > 1.5) are shown in color: genes with increased transcription in the ntrC mutant compared to the wild type are indicated in

orange, down-regulated genes in green. The names of the genes of particular interest are labelled.

https://doi.org/10.1371/journal.pone.0180362.g002

NtrC-regulation of motility and EPS production in B. cenocepacia
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Table 1. List of the 150 genes with statistically significant differential expression, comparing the expression profile of the ntrC mutant with the

profile of the wild type (DE-Seq analysis, p-value < 10−20, absolute log2(Fold Change) > 2.3).

Class Locus IDa Orthologs

J2315b
Descriptiona Gene

name

Log2 ntrC vs

wtc

Amino acid metabolism and

transport

I35_0158 BCAL0151 Leucine-, isoleucine-, valine-, threonine-, and alanine-

binding protein

-3.6

I35_0767 BCAL3106 Urease alpha subunit ureC -5.2

I35_0769 BCAL3104 Urease gamma subunit ureA -4.4

I35_0772 BCAL3102 Urea ABC transporter, ATPase protein urtD -4.2

I35_0774 BCAL3099 Urea ABC transporter, permease protein urtB -5.9

I35_0775 BCAL3098 Urea ABC transporter, urea binding protein -4.8

I35_1846 BCAL1926 Homoserine dehydrogenase hom 2.8

I35_2151 BCAL2224 Glutamine synthetase type I glnA -4.8

I35_2936 BCAL0729 Nitrogen regulatory protein P-II glnB -6.5

I35_4872 BCAM0952 Putrescine transport ATP-binding protein potA -3.1

I35_4873 BCAM0953 ABC transporter, periplasmic spermidine putrescine-

binding protein

potD -3.1

I35_5082 BCAM1235 Protein containing transglutaminase-like domain -9.4

I35_5083 BCAM1236 Large protein containing transglutaminase-like

domain

-6.0

I35_5229 BCAM1377 ABC-type spermidine/putrescine transport

systems,ATPase components

4.0

I35_7109 BCAS0112 ABC-type arginine/histidine transport

system,permease component

-5.2

I35_7110 BCAS0113 Histidine ABC transporter, ATP-binding protein hisP -3.8

I35_7286 BCAS0272 Urea carboxylase -6.0

I35_7447 BCAS0409 Zinc metalloprotease zmpA 2.4

I35_7737 BCAS0574 Glutamate transport ATP-binding protein -4.3

I35_7739 BCAS0576 amino acid ABC transporter, permease protein na(m)

I35_7740 BCAS0577 ABC-type amino acid transport, periplasmic component -10.1

I35_7857 BCAS0734 Pyridine nucleotide-disulphide oxidoreductase -6.8

I35_7858 BCAS0735 Beta-ureidopropionase -6.9

I35_7874 BCAS0751 Gamma-glutamyltranspeptidase -4.8

Carbohydrate metabolism and

transport

I35_1964 BCAL2040 Chitooligosaccharide deacetylase;

putative uricase

-3.2

I35_2891 BCAL0782 Beta-hexosaminidase 4.7

Cell wall, membrane, envelope

biogenesis

I35_0402 BCAL3473 Outer membrane protein (porin) -4.2

I35_0812 BCAL3057 Soluble lytic murein transglycosylase 3.2

I35_3042 BCAL0624 Outer membrane protein (porin) -6.4

I35_3288 BCAL3508 CidA-associated membrane protein cidB -6.0

I35_4371 BCAM0478 Glucosamine—fructose-6-phosphate

aminotransferase [isomerizing]

glmS2 -5.0

I35_4934 BCAM1015 Outer membrane protein (porin) -4.0

I35_5228 BCAM1376 Porin, Gram-negative type 5.6

I35_5644 BCAM1769 D-alanyl-D-alanine dipeptidase ddpX -4.5

I35_5658 BCAM1780 Lipoprotein nlpD -3.5

I35_7271 BCAS0256 Outer membrane protein (porin) -3.2

Cell motility I35_0133 BCAL0126 Flagellar motor rotation protein motA -2.7

I35_0134 BCAL0127 Flagellar motor rotation protein motB -3.1

I35_0139 BCAL0132 Chemotaxis protein methyltransferase cheR -2.5

I35_3089 BCAL0577 Flagellar hook-associated protein flgL -2.9

(Continued )
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Table 1. (Continued)

Class Locus IDa Orthologs

J2315b
Descriptiona Gene

name

Log2 ntrC vs

wtc

I35_3090 BCAL0576 Flagellar hook-associated protein flgK -3.2

I35_3103 BCAL0561 Flagellar biosynthesis protein flgN -3.3

Coenzyme metabolism I35_1039 BCAL1047 Pyridoxal kinase pdxY -2.4

I35_1623 BCAL1711 Component of cobalt chelatase involved in B12

biosynthesis

cobN 3.5

I35_5550 BCAM1687 Uroporphyrinogen-III methyltransferase -11.4

Defense mechanism I35_3251 BCAL0420 Type I restriction-modification system, restriction subunit R 2.9

Energy production and conversion I35_1414 BCAL1516 Dihydrolipoamide succinyltransferase component sucB 2.9

I35_1735 BCAL1819 Oxidoreductase (flavoprotein) -5.4

I35_2213 BCAL2287 Fumarate hydratase class I 3.2

I35_2268 BCAL2344 NADH ubiquinone oxidoreductase chain A nuoA 2.4

I35_2713 BCAL0957 Succinyl-CoA ligase [ADP-forming] alpha chain sucD 2.4

I35_3124 BCAL0541 Aminobutyraldehyde dehydrogenase -2.7

I35_4890 BCAM0970 Succinate dehydrogenase iron-sulfur protein sdhB 2.3

I35_4892 BCAM0972 Citrate synthase gltA 3.1

I35_5545 BCAM1683 Assimilatory nitrate reductase large subunit -6.7

I35_5546 BCAM1684 Nitrite reductase [NAD(P)H] small subunit -6.8

I35_5547 BCAM1685 Nitrite reductase [NAD(P)H] large subunit nirB -6.5

I35_7856 BCAS0733 Dihydropyrimidine dehydrogenase [NADP+] -5.1

Inorganic ion transport and

metabolism

I35_2600 BCAL2740 HoxN/HupN/NixA family nickel/cobalt transporter hoxN -4.7

I35_4451 BCAM0556 Dibenzothiophene desulfurization enzyme B na(m)

I35_5230 BCAM1378 ABC Fe3+ siderophore transporter

inner membrane subunit

3.8

I35_5548 BCAM1686 Nitrate/nitrite transporter -6.6

I35_5552 BCAM1689 Nitrate ABC transporter, nitrate-binding protein -4.2

I35_5646 BCAM1771 Dipeptide transport system permease protein dppB -3.2

I35_5693 BCAM1814 Cyclohexanone monooxygenase -2.8

I35_7283 BCAS0269 Urea carboxylase-related ABC

transporter, periplasmic protein

na(m)

Lipid metabolism I35_4672 BCAM0774 Poly-beta-hydroxyalkanoate depolymerase -6.6

Nucleotide metabolism and

transport

I35_0495 BCAL3380 Allantoicase -3.5

I35_0689 BCAL3172 Xanthine dehydrogenase, molybdenum binding

subunit

xdhB -3.1

I35_7854 BCAS0731 Dihydropyrimidinase dhT -3.7

I35_7855 BCAS0732 Putative pyrimidine permease in reductive pathway -3.8

Post translational modifications I35_0765 BCAL3108 Urease accessory protein ureF -7.1

I35_0766 BCAL3107 Urease accessory protein ureE -7.8

I35_2591 BCAL2731 ATP-dependent Clp protease adaptor protein clpS -2.6

I35_2821 BCAL0849 Putative lipoprotein 3.1

I35_3125 BCAL0540 ATP-dependent protease domain protein -4.1

I35_4673 BCAM0775 Glutathione S-transferase -5.3

I35_5615 BCAM1744 Extracellular protease precursor -2.3

Secondary structures I35_2997 BCAL0668 Dienelactone hydrolase and related enzymes -2.6

Transcription and signal

transduction

I35_0068 BCAL0066 Ethanolamine operon regulatory protein -5.7

I35_0200 BCAL0209 Histone acetyltransferase HPA2 -5.1

(Continued)
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Table 1. (Continued)

Class Locus IDa Orthologs

J2315b
Descriptiona Gene

name

Log2 ntrC vs

wtc

I35_1574 BCAL1663 Serine protein kinase prkA -4.0

I35_1967 BCAL2043 Transcriptional regulator, GntR family -5.9

I35_2150 BCAL2223 Nitrogen regulation protein NR(II) ntrB -5.6

I35_3013 BCAL0652 EAL domain protein -7.2

I35_4176 BCAM0176 Transcriptional regulator, AsnC family -3.6

I35_4382 BCAM0489 Mercuric resistance operon regulatory protein -3.6

I35_4535 BCAM0639 Two-component response regulator -6.5

I35_4613 BCAM0715 Signal transduction histidine kinase 3.5

I35_4653 BCAM0754 Transcriptional regulator, TetR family -3.6

I35_5551 BCAM1688 Response regulator nasT -8.1

I35_5643 BCAM1768 Transcriptional regulators -6.1

I35_5806 BCAM1975 Ethanolamine operon regulatory protein -4.8

I35_5874 BCAM2039 Two-component response regulator -5.0

I35_6218 BCAM2327 Transcriptional regulator -6.7

Translation I35_2322 BCAL2395 Cytoplasmic axial filament protein CafA and Ribonuclease

G

cafA -2.5

I35_2859 BCAL0812 Ribosome hibernation protein yhbH -3.9

Others I35_0339 BCAL0348 Uncharacterized protein impA 3.4

I35_0341 BCAL0350 Hypothetical protein 2.6

I35_0688 BCAL3173 Xanthine dehydrogenase, iron-sulfur cluster and FAD-

binding subunit A

xdhA -3.0

I35_0743 Hypothetical protein 2.9

I35_0963 BCAL2904 Hypothetical protein -2.7

I35_1398 BCAL1500 Transposase and inactivated derivatives -5.2

I35_1575 BCAL1664 Hypothetical protein -3.4

I35_1576 BCAL1665 SpoVR-like protein -3.0

I35_1588 BCAL1677 Type 1 fimbriae major subunit fimA 5.2

I35_1734 BCAL1818 Zn-dependent hydrolases, including glyoxylases -6.6

I35_1736 Oxidoreductase (flavoprotein) -5.2

I35_1739 BCAL1822 Putrescine transport system permease protein potH 3.9

I35_1872 BCAL1952 Hypothetical protein 4.4

I35_1881 BCAL1961 Ankyrin repeat protein -2.5

I35_1963 BCAL2039 Urate oxidase -3.4

I35_2376 BCAL2448 Phenazine biosynthesis protein PhzF like 3.1

I35_2564 BCAL2703 Branched-chain amino acid transport ATP-binding protein -2.4

I35_3012 BCAL0653 Hypothetical protein -4.3

I35_3082 BCAL0584 Outer membrane porin -3.3

I35_3289 BCAL3509 Holin-like protein cidA -8.0

I35_4192 BCAM0193 Hypothetical protein 6.0

I35_4193 BCAM0194 Hypothetical protein 5.9

I35_4195 BCAM0196 Hypothetical protein 4.7

I35_4401 BCAM0507 Uncharacterized protein conserved in bacteria -3.5

I35_4471 BCAM0576 Hypothetical protein -3.4

I35_4651 BCAM0752 Hydrolase-related protein -3.6

I35_4652 BCAM0753 Hypothetical protein -3.9

I35_4669 BCAM0770 Hypothetical protein -7.4

I35_4766 BCAM0853 Transposase and inactivated derivatives -4.1

(Continued)
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NtrC regulates EPS production but has only a slight effect on biofilm

formation

The results from this comparative transcription analysis (Table 1 and S3 Table) suggest that

NtrC is required for activation of transcription of the cepacian clusters (bceI and bceII). Cepa-

cian is the main EPS produced by B. cenocepacia H111 [29, 45–47] and the expression of these

two clusters has previously been shown to be induced under nitrogen limited conditions and

controlled by σ54 [24]. Indeed, EPS production was reduced in the ntrC mutant to a similar

extent as that of the σ54 mutant. EPS production was restored to the level of the wild-type in

the complemented ntrC mutant (Fig 3). Biofilm formation, which was previously shown to be

dependent on the alternative sigma factor (σ54) [24], was only slightly affected in the ntrC
mutant. However, the complemented strain produced significantly more biofilm than the

wild-type strain (Fig 4).

Table 1. (Continued)

Class Locus IDa Orthologs

J2315b
Descriptiona Gene

name

Log2 ntrC vs

wtc

I35_4943 BCAM1098 MutT/nudix family protein -2.7

I35_5080 BCAM1233 Protein containing domains DUF404, DUF407 -8.2

I35_5081 BCAM1234 Protein containing domains DUF403 -9.4

I35_5153 BCAM1304 Phage-related protein -2.4

I35_5345 BCAM1491 Hypothetical protein -4.8

I35_5549 Hypothetical protein -11.1

I35_5645 BCAM1770 Dipeptide-binding ABC transporter, periplasmic component -4.8

I35_5655 BCAM1777A Hypothetical protein -3.6

I35_5695 BCAM1816 Hypothetical protein -2.7

I35_5683 BCAM1804 Methyl-accepting chemotaxis protein -2.9

I35_5753 BCAM1927 Membrane-fusion protein -3.1

I35_6093 BCAM2207 Hypothetical protein -2.5

I35_6098 BCAM2209 Hypothetical protein -3.0

I35_6344 BCAM2444 Conserved domain protein -4.1

I35_6461 BCAM2564 Aerotaxis sensor receptor protein -4.9

I35_6515 BCAM2618 Histidine ABC transporter, histidine-binding periplasmic

protein

hisJ -4.4

I35_6573 BCAM2679 Hypothetical protein -9.0

I35_6574 BCAM2680 Putative exported protein -3.6

I35_6579 Hypothetical protein -4.6

I35_7149 Hypothetical protein -3.7

I35_7282 BCAS0267a 3’,5’-cyclic-nucleotide phosphodiesterase -4.7

I35_7285 BCAS0271 Urea carboxylase-related aminomethyltransferase na(m)

I35_7735 BCAS0571 Salicylate hydroxylase -4.5

I35_7815 Ethanolamine operon regulatory protein -4.2

aNomenclature and description according to GenBank file (accession no. HG938370, HG938371, and HG9383729).
bOrthologs were identified as described in the Material and Methods section.
cFold change (FC) of transcription, comparing ntrC mutant with wild type grown under nitrogen limited conditions.

na, not applicable because the read number in the mutant is equal to 0.

all the genes with an rpoN box in the promoter region are indicated in bold.

https://doi.org/10.1371/journal.pone.0180362.t001
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NtrC regulates swarming and swimming motility

The positive effect of NtrC on the transcription of genes encoding the flagellar motor (motAB)

and flagellar biosynthesis proteins, prompted us to test motility of the strains. We first com-

pared the swarming ability of the wild type strain with those of the ntrC mutant and the com-

plemented strain (Fig 5A). The ntrC mutant was able to swarm, but to a lesser extent than wild

type H111. Complementation increased swarming to above the level of the wild type. Swim-

ming motility was also compromised in the ntrC mutant, but this defect was only partly

restored in the complemented strain (Fig 5B). The results clearly show that NtrC plays an

important role in the control of motility. The stronger effect on swarming is in line with the

decreased transcription of rhlA (coding for a rhamnolipid) and motility-controlling flagellar-

associated genes, such as flgN and flgL, in the ntrC mutant (Table 2).

Virulence of B. cenocepacia H111 in the C. elegans infection model is

not regulated by NtrC

Since σ54 was previously shown to be important for virulence in the C. elegans model, we set

out to elucidate if this phenotype is also dependent on NtrC. For this, we fed nematode larvae

with the wild type, the ntrC mutant and the complemented mutant. As a positive control,

the σ54 mutant was included. While the σ54 mutant showed reduced virulence [24], worms

infected with the ntrC mutant developed only to the L1-L2 larval stage, similarly to worms fed

with the wild-type strain. This result is in line with our RNA-Seq data, which showed that the

transcription of the nematocidal gene aidA (I35_7308), which was shown to be dependent on

σ54 [24], was not controlled by NtrC (S3 Fig). The role of NtrC in the pathogenicity of H111

was also assessed in a different infection model, the larvae of the greater wax moth Galleria
mellonella. In this model, we again did not observe significant attenuation of pathogenicity of

the ntrC mutant compared with the wild type (data not shown).

Discussion

We previously identified the B. cenocepacia genes responding to nitrogen starvation conditions

and found that the alternative sigma factor σ54 (or RpoN) plays a major role in the control of

Table 2. Validation of selected RNA-Seq results by qPCR.

Locus IDa J2315 orthologsb Descriptiona Gene name Log2 FC MT vs WTc Log2 FC MT vs WTd

I35_0767 BCAL3106 Urease alpha subunit ureC -5.0 -5.2

I35_2151 BCAL2223 Glutamine synthetase glnA -3.6 -4.8

I35_4771 BCAM0858 Polysaccharide export lipoprotein bceE -1.2 -2.6

I35_4928 BCAM1009 O-antigen acetylase -1.1 -4

I35_6233 BCAM2340 3-(3-hydroxyalkanoyloxy) alkanoic acids synthase rhlA -1.6 -2.9

I35_0133 BCAL0126 Flagellar motor rotation protein motA -0.9 -2.7

I35_3089 BCAL0577 Flagellar hook-associated protein flgL -2.4 -2.9

I35_3103 BCAL0561 Flagellar biosynthesis protein flgN -1.8 -3.3

aNomenclature and description according to GenBank file (accession no. HG938370, HG938371, and HG938372).
bOrthologs were identified as described in the Material and Methods section.
cFold change (FC) of transcription determined by qPCR, comparing the ntrC mutant (MT) with the wild type (WT) grown in AB minimal medium with a shift

experiment. The standard deviation is less than 10% of the fold change.
dFold change (FC) of transcription determined by RNA-Seq, comparing the ntrC mutant (MT) with the wild type (WT) grown in AB minimal medium (shift

experiment).

https://doi.org/10.1371/journal.pone.0180362.t002
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nitrogen metabolism. That study furthermore uncovered that σ54 controls other important cel-

lular processes such as EPS production, biofilm formation and C. elegans virulence [24]. Sigma

54 is an alternative sigma factor since it binds to a characteristic -24/-12 binding sequence

(GGcacg-N4-ttGC) in the promoter of target genes and requires an additional ATP-dependent

activation event to initiate transcription. This step is provided by transcriptional activators

with an AAA (ATPase Associated with various cellular Activities) protein domain, which bind

as inactive dimers to a consensus sequence upstream of the promoter, assemble as hexameric

rings (in their active form) and interact through DNA looping with the σ54 promoter complex

to activate transcription [20]. This requirement for an activator protein (or EBP) allows σ54 to

tightly and rapidly control gene expression in response to cellular and extracellular signals that

regulate the activity of a specific AAA-domain containing protein. Bacteria usually encode sev-

eral AAA-family activator proteins and each one is needed for a specific and precise response

to an environmental change. By looking for all B. cenocepacia proteins containing a σ54 activa-

tion AAA domain (PFAM family: PF00158), we were able to identify 22 proteins that could

potentially serve as σ54 activator proteins (S4 Table). Among them we identified the regulatory

protein NtrC, which is known to be the master regulator of nitrogen control in other bacteria.

The ntrC gene had previously been shown to have increased expression under nitrogen limit-

ing conditions [24]. The ntrC gene is usually located downstream of ntrB, which encodes a sen-

sor kinase that phosphorylates the response regulator NtrC in nitrogen limited environments.

In this study, we first performed a comprehensive growth analysis of an ntrC mutant on 95

Fig 3. NtrC–dependent EPS production. EPS production in the wild type (1), the ntrC mutant (2) and the

complemented strain (3) was tested on YEM plates. Three independent biological replicates were tested; the

result of one is shown here.

https://doi.org/10.1371/journal.pone.0180362.g003
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Fig 4. Biofilm formation is only slightly dependent on NtrC. Biofilm production was assessed for the wild

type, ntrC mutant and complemented strain in 96-well plates. The columns represent the mean biofilm index

generated from independent biological triplicate cultures of each strain. The error bars indicate the standard

deviation. The increased biofilm formation in the complemented mutant compared to the wild type was
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different nitrogen sources including all common amino acids, the nitrogenous bases, several

di-peptides and other compounds (Biolog Phenotype MicroArray). The ntrC mutant was

revealed to be affected in the utilisation of 7 N sources i. e. nitrate, urea, L-citrulline, acetamide,

DL-lactamide, allantoin and parabanic acid suggesting that utilisation of these sources in B.

cenocepacia is dependent on the presence of a functional NtrC. We next used RNA-Seq analy-

sis to elucidate the role of NtrC in the control of transcription during nitrogen starvation con-

ditions. The results clearly show that NtrC is a major regulator under nitrogen limiting

conditions and that the large majority of the NtrC-regulated genes are co-regulated by σ54. At

the phenotypic level, the ntrC mutant strain behaved like a σ54 mutant strain for the utilization

of alternative nitrogen sources such as nitrate and urea. Both urea and nitrate were not utilised

as nitrogen sources by the mutant strain (Fig 1 and S2 Table). Accordingly, the transcription

of genes involved in urea and nitrate assimilation (urease and nitrate/nitrite reductase, respec-

tively) was significantly down-regulated in the ntrC mutant strain (Table 1). In addition to,

and in line with, a poor utilization of allantoin in the ntrC mutant (S2 Fig and S2 Table), two

genes coding for allantoicases (I35_0495 and I35_1962, Table 2 and S3 Table) showed signifi-

cantly decreased expression in the ntrC mutant. Inspection of the NtrC regulon revealed two

clusters of genes (bceI and bceII) involved in the production of cepacian, the main EPS in B.

cenocepacia [29, 45–47]. Accordingly, EPS production was clearly reduced in an ntrC mutant

and this defect could be rescued by genetic complementation. Control of EPS synthesis by

NtrC has been demonstrated in several bacteria including the human pathogen Vibrio vulnifi-
cus [48], Agrobacterium sp. ATCC 31749 [49] and Sinorhizobium meliloti [50]. However, and

in contrast to our previous results obtained with the σ54 mutant [24], biofilm formation was

only slightly reduced in the ntrC mutant, suggesting that σ54 is using another EBP for control-

ling biofilm formation. This result also suggested that the reduced transcription of the bceI and

bceII clusters does not drastically affect biofilm formation in microtiter plates.

We show here that the ntrC mutant is affected in motility and for the first time that the abil-

ity of B. cenocepacia H111 to swarm is controlled by NtrC and by σ54 (Fig 5). Many factors

have been shown to regulate swarming [51, 52]. For example, in Serratia liquefaciens and in

other bacteria, the flhDmaster operon needed for flagellar biosynthesis is essential for swarm-

ing motility [41, 53]. In B. cenocepacia H111 this social motility is under the control of the

CepRI and RpfRF quorum sensing systems [40, 54] and in B. glumae it has recently been

shown that quorum sensing controls swarming through the regulation of rhamnolipid biosyn-

thesis under nutrient-limited conditions [55, 56]. In Pseudomonas aeruginosa swarming has

been shown to be controlled at the post-transcriptional level by the RsmAB system and by c-

di-GMP levels [57–59]. While transcription of cepRI and rpfRFwas not altered in a ntrC
mutant, we noted in our RNA-Seq data that NtrC positively regulates transcription of several

genes which could be involved in the control of swarming motility: i) motA andmotB, encod-

ing the flagellar motor as well as several genes involved in flagellar biosynthesis; ii) genes

involved in regulation of c-di-GMP levels by coding for proteins with a diguanylate cyclase

phosphodiesterase (EAL) domain and iii) the gene rhlA, which encodes a 3-(3-hydroxyalka-

noyloxy) alkanoic acid synthase, probably involved in rhamnolipid biosynthesis. Additional

work will be required to test these possibilities.

The RNA-Seq approach allowed us to verify genes expected to be under NtrC control [60,

61] and to identify new potential NtrC targets such as the cepacian clusters and genes involved

in motility (motA, motB, flgL, flgK, flgN, rhlA) (Table 1). Moreover, transcription of the holin

statistically significant (*** p<0.0001). However, the slight reduction in the mutant was not statistically

significant (ns).

https://doi.org/10.1371/journal.pone.0180362.g004
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Fig 5. NtrC–dependent motility. The histograms show the swarming (A) and swimming (B) motility of the

ntrC mutant and the complemented mutant relative to the wild-type strain H111. Both assays were performed
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and anti-holin gene pair cidA and cidBwas significantly down-regulated in a ntrC mutant sug-

gesting that this system, which is known to control peptidoglycan hydrolase activity and peni-

cillin tolerance in Staphylococccus aureus [62] and has recently been proposed to be a key

player in the regulation of the stress response [63], is under NtrC control in B. cenocepacia
H111. However, our ntrC mutant was neither affected in antibiotic resistance nor in resistance

to oxidative stress (data not shown).

Several genes coding for proteins involved in the TCA cycle were found among the genes

showing increased transcription in the absence of NtrC under nitrogen limiting conditions,

strengthening the proposal made by Hervas and co-workers that in Pseudomonas putida, NtrC

represses carbon metabolism [61]. The fact that NtrC plays an important role in maintaining

the balance between nitrogen and carbon metabolism under nitrogen limiting conditions may

explain why constantly higher ntrC expression in the complemented mutant (driven by the

promoter of the expression vector pBBR1MCS-5) leads to a growth defect in this strain.

This work demonstrates that NtrC is an activator of σ54-dependent gene transcription, that

controls not only nitrogen metabolism but also various other functions, including EPS produc-

tion and motility. However, as yet unidentified σ54 activators are required to control other

phenotypes such as biofilm production and virulence to C. elegans. Further studies will be

required to identify these activators.

Supporting information

S1 Fig. Growth of the B. cenocepacia H111 ntrC mutant in minimal medium containing cit-

rate as carbon source was delayed compared to the wild type. Wild-type and ntrC mutant

strains were grown in AB minimal medium from a starting OD600 of 0.05. Optical density was

monitored over about 20 hours. The dotted line shows OD600 = 0.5, after which point the sam-

ples were subjected to nitrogen starvation and then harvested for RNA-Seq. The experiment

was done in triplicate. Error bars indicate standard deviation.

(DOCX)

S2 Fig. Differentially transcribed genes categorized by functional classification according

to EggNOG. Percentages of induced and repressed genes are given for the comparison of ntrC
mutant vs. wild-type cells grown under nitrogen limiting conditions. Percentages were calcu-

lated by dividing the number of significantly induced or repressed genes (Table 1) in each

category by the total number of retained genes in the corresponding category. Asterisks (�)

indicate statistical significance for overexpressed genes in a particular category (p-value <

0.01). C, energy production and conversion; E, amino acid transport and metabolism; F nucle-

otide transport and metabolism; G carbohydrate transport and metabolism; H coenzyme

transport and metabolism; I lipid transport and metabolism; J translation, ribosomal structure

and biogenesis; K transcription; L replication, recombination and repair; M cell wall/mem-

brane/ envelope biogenesis; N cell motility; O post-translational modification, protein turn-

over and chaperon; P inorganic ion transport and metabolism; Q secondary metabolites

biosynthesis, transport and catabolism; R general function prediction only; S function un-

known; T signal transduction mechanisms; U intracellular trafficking, secretion and vesicular

transport; V defense mechanisms.

(DOCX)

in triplicate. Significance was calculated by comparing the mutant or the complemented mutant with the wild

type (* p<0.05 and ** p<0.01).

https://doi.org/10.1371/journal.pone.0180362.g005
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S3 Fig. The virulence B. cenocepacia H111 to C. elegans is not dependent on NtrC. Pathoge-

nicity assay of bacterial strains to C. elegans N2 strain was carried out as described in the mate-

rial and methods. The number of L1 larvae in each well of a 96-well plate was counted after

seeding with the bacterial strains to be tested. After 48 hours co-incubation at 20˚C, the devel-

opmental stages of the worms were evaluated and the numbers were counted. Error bars repre-

sent standard deviation of the means (n = 3).

(DOCX)

S1 Table. List of strains, constructs and primers used in this study.

(DOCX)

S2 Table. N source utilization of H111 wild-type and ntrC mutant strains assayed using

Biolog PM3b plates, determined by measuring the OD590 in each well after 24 hours incu-

bation at 37˚C.

(XLSX)

S3 Table. List of the 400 top-ranked differentially transcribed genes in the ntrC mutant

compared to the wild-type under nitrogen limited growth condition (DE-Seq analysis, p-

value < 10−13, absolute log2(Fold Change) > 1.5).

(XLSX)

S4 Table. List of the 22 proteins encoded in the B. cenocepacia H111 genome with a σ54

activation AAA domain (PFAM family: PF00158).

(XLSX)
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