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One of the outstanding problems in the sorting of neuronal spike trains is the resolution
of overlapping spikes. Resolving these spikes can significantly improve a range of
analyses, such as response variability, correlation, and latency. In this paper, we
describe a partially automated method that is capable of resolving overlapping spikes.
After constructing template waveforms for well-isolated and distinct single units, we
generated pair-wise combinations of those templates at all possible time shifts from
each other. Subsequently, overlapping waveforms were identified by cluster analysis,
and then assigned to their respective single-unit combinations. We examined the
performance of this method using simulated data from an earlier study, and found that
we were able to resolve an average of 83% of the overlapping waveforms across various
signal-to-noise ratios, an improvement of approximately 32% over the results reported in
the earlier study. When applied to additional simulated data sets generated from single-
electrode and tetrode recordings, we were able to resolve 91% of the overlapping
waveforms with a false positive rate of 0.19% for single-electrode data, and 95% of
the overlapping waveforms with a false positive rate of 0.27% for tetrode data. We
also applied our method to electrode and tetrode data recorded from the primary visual
cortex, and the results obtained for these datasets suggest that our method provides an
efficient means of sorting overlapping waveforms. This method can easily be added as
an extra step to commonly used spike sorting methods, such as KlustaKwik and MClust
software packages, and can be applied to datasets that have already been sorted using
these methods.

Keywords: spike sorting, overlapping waveforms, tetrode, visual cortex, electrophysiology

INTRODUCTION

When recording extra-cellularly from multiple neurons, it is common to have action potential
waveforms from one neuron altered by the action potentials of other neurons. This often results
in waveform shapes and amplitudes that are significantly different from single-unit waveforms,
thereby posing problems for spike sorting algorithms, especially when those algorithms are
automated. This problem is exacerbated when using devices like electrode arrays (Normann
et al., 1989), silicon electrodes (Anderson et al., 1989), and tetrodes (Wilson and McNaughton,
1993; Gray et al., 1995), which enable recording from large numbers of neurons simultaneously.
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Resolving these waveforms correctly into their constituent single
units can be critically important for a range of analyses like
response variability (Berry et al., 1997; de Ruyter van Steveninck
et al., 1997), correlation (Maldonado et al., 2008; Cohen and
Maunsell, 2009; Ecker et al., 2010), latencies (Keat et al., 2001;
Gollisch and Meister, 2008), and information rates (Reich et al.,
2000, 2001). Many attempts have been made to address this
problem, but the resolution of overlapping waveforms is still
not routinely performed in spike sorting. This could be due
to limiting constraints of some of the available methods, some
of which are described in the following paragraphs, or because
of the high complexity of some other methods, which makes
incorporating them into current spike sorting workflows difficult.

The most common approaches used to resolve overlapping
waveforms in extracellular recordings create combinations of
previously identified single-unit waveforms, usually referred to
as templates, and then measure the similarity between the
overlapping waveforms and the template combinations. These
methods usually use the amplitude values of the waveforms to
find the best match, although other features such as Fourier
coefficients of the waveforms have also been used (Rinberg et al.,
2003; Wang and Liang, 2005). Different techniques, such as
different machine learning techniques, were used to compare the
overlaps with the templates, such as support vector machines
(SVM) (Ding and Yuan, 2008) and RELAX (Li and Stoica, 1996;
Wang et al., 2009), a decoupled parameter estimation algorithm,
that was used by Wang and Liang (2005). Also, Zhang et al.
(2004) subtracted the templates from the overlaps, and used
the similarity of the residue with a Gaussian distribution to
find the best match, as they assumed the noise distribution
was Gaussian. A similar method was used by Vargas-Irwin and
Donoghue (2007). In all these techniques, a certain threshold
needs to be determined to find the best matching template.
Template-matching methods usually tend to be slow as well,
because comparisons of all potential overlapping waveforms with
all template combinations are needed. Recently, Adamos et al.
(2010), addressing most of these issues, used a neural network
to match overlapping waveforms with the templates generated by
superimposing single-unit templates. However, it seems that the
capability of this neural network in rejecting waveforms that do
not belong to any of the identified single units, or combinations
of those single units, remains to be investigated.

A very similar approach to Zhang et al. (2004) and Vargas-
Irwin and Donoghue (2007) was taken by Prentice et al. (2011)
and Pillow et al. (2013), in which they also subtracted the
best matching spikes from the recorded signal until the residue
was indistinguishable from noise. The difference was that these
methods used greedy algorithms to find the match instead of
using a brute-force search. This meant they will scale better.
However, both these methods needed to make assumptions about
factors (such as the distribution of noise or spike trains) that are
simplified. For example, Prentice et al. (2011) assumed a Poison
distribution for the firing of the cells, which is reasonable, but may
not be applicable in a number of cases (Berry et al., 1997; Berry
and Meister, 1998). As mentioned by both these studies, adding
more constraints to make these assumptions more similar to real
recordings may make these methods computationally expensive.

Other methods that do not involve template matching
concentrated on extracting more robust features other than
amplitude to cluster overlapping waveforms with single-unit
waveforms. Among these methods, Hulata et al. (2002) and
Quiroga et al. (2004) represented the waveforms using wavelet
coefficients, and used k-means clustering and superparamagnetic
clustering, respectively. However, they appear to have trouble
resolving overlapping waveforms resulting from the near
simultaneous firing of multiple neurons.

Another group of methods aimed to decompose the overlaps
into their components. For example, in Oweiss and Anderson
(2007), the overlapping waveforms were decomposed using
the discrete wavelet packet transform, Takahashi et al. (2003)
applied the independent components analysis (ICA) technique,
and Franke et al. (2010, 2015) used a set of linear filters to
decompose the overlapping waveforms. For these methods, like
other methods discussed earlier, one needs to set a threshold
to measure the similarity. Franke et al. (2010, 2015) used an
analytical method to find the threshold, but it seems that to use
this method, it is necessary to assume a Gaussian distribution for
noise, as well as the distribution of single-unit spikes. Moreover,
the other drawback of the method described in Takahashi
et al. (2003) and Franke et al. (2010, 2015) is that two single
units with different amplitudes but similar amplitude patterns
cannot be distinguished from each other, although this could be
advantageous in dealing with bursting cells. Ekanadham et al.
(2014), who used Continuous Basis Pursuit in order to estimate
the most probable spike patterns given the observed recording,
also suffered from the same drawback, although their method
has the advantage that it can be scaled for sorting multi-electrode
array recordings.

More recently, methods developed for use with high density
multi-electrode arrays, with much smaller spacing between
electrodes, have taken advantage of the fact that the activity of
one neuron appears on several different electrodes, and the spatial
information provided by these arrays can be used to resolve
overlapping waveforms (Marre et al., 2012; Pachitariu et al., 2016;
Rossant et al., 2016; Yger et al., 2017; see review by Lefebvre
et al., 2017). However, a lot of recordings in larger animals,
and in human subjects, are still performed with electrode arrays
with electrode spacing larger than 200 µm (e.g., Blackrock Utah
Array, Microprobe Floating Microelectrode Arrays, etc.). These
electrode separations greatly reduce the likelihood of multiple
electrodes recording the activity of one neuron, and thus negates
some of the advantages that these methods provide.

In order to eliminate some of these difficulties, we propose
a partially automated method to resolve overlapping waveforms
based on template matching. Our method uses KlustaKwik
to perform the clustering, and the MClust software package
to visualize and inspect the results of the spike sorting. As
KlustaKwik is among the most popular automated clustering
methods used for spike sorting (Wild et al., 2012), and MClust
is a widely used package for spike sorting, applying our method
to currently sorted datasets may be less problematic compared
to some other methods. Our method has been designed to be
added as an extra step to spike sorting routines currently in use
for single electrode and tetrode recordings, and has the advantage
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that it can be parallelized in order to decrease the computational
load. In our method, all steps, except the single-unit template
selection, are automated and unsupervised. We show that despite
the simplicity of our automated approach, it can successfully
produce spike trains with fairly high accuracy in simulated data.

MATERIALS AND METHODS

The method is comprised of the following main steps: (1)
Finding the single unit templates; (2) Generating the overlapping
waveform templates; (3) Clustering the non-single-unit spikes
and the overlapping waveform templates together (to find the best
matching overlapping waveform template for each overlapping
spike); and (4) Assigning the identified overlapping spikes to
the single unit template clusters based on the best matching
overlapping waveform templates. We describe these steps in
detail in the following sections.

Spike Extraction
An amplitude thresholding method (Quiroga et al., 2004; Yen
et al., 2007) was applied to extract the spikes. In summary, the
local minima of the high-pass filtered data were identified if they
exceeded a certain threshold, and 1 ms of data around each local
minimum were isolated as a spike. This was 10 points before and
20 points after each minimum for the example datasets used in
this paper, as the sampling rate for these datasets was 30 kHz. As
a result, all spikes were aligned at the local minimum (point 11
for our examples), and this point will be referred to as the “trigger
point” of a spike in the rest of the paper.

The extraction threshold was set as a multiple of the standard
deviation of the background noise. Although, four times the
standard deviation of the background noise is commonly used in
the field (Quiroga et al., 2004), sometimes this can be changed for
a dataset based on the signal to noise ratio of the recorded signal.
Potential errors associated with this spike extraction method are
discussed in detail in Quiroga et al. (2004). Figure 1 shows three
spikes extracted from a segment of a single electrode recording,
using this method.

Clustering
For both identifying the single unit templates and overlapping
waveforms, we used KlustaKwik (Harris et al., 2000), a clustering
method that fits the data with a mixture-of-Gaussian model
optimized using the classification expectation maximization
(CEM) algorithm (Celeux and Govaert, 1992), a modified version
of the expectation maximization (EM) algorithm. KlustaKwik
is commonly used for spike sorting and can be easily used for
clustering high dimensional data collected from multichannel
recording electrodes (Kadir et al., 2014). KlustaKwik has a
number of parameters, such as the minimum and maximum
number of clusters, and a cost function that can be adjusted
in order to improve the performance of the clustering for a
particular dataset. As the focus of this paper is not on the
advantages of using a particular clustering method, we will not
describe the effect of adjusting these parameters here, but refer to
Wild et al. (2012) for more details on the effect of varying these

parameters, and also for a comparison between KlustaKwik and
other state of the art clustering techniques commonly used for
spike sorting. For the examples used in this paper, we used the
default values for nearly all the parameters in KlustaKwik, except
the minimum number of clusters (5 for electrode data and 30 for
tetrode data), the maximum number of clusters (30 for electrode
data, and 100 for tetrode data), and the cost function (Bayesian
Information Cost for electrode data, and Akaike Information
Cost for tetrode data). These parameters worked well in our
experience, but were not chosen based on any objective measures.

In order to compute waveform features for clustering, we used
MClust1, another popular software package. Techniques similar
to what was proposed by Bestel et al. (2012) can be applied, to find
the best feature set for a particular dataset. However, in practice
in our lab, we selected the features by assessing the resulting
clusters visually. It should be mentioned that KlustaKwik and the
features that were used here can be replaced easily by any other
clustering method or feature set, as our method is not dependent
on a specific clustering method or waveform feature.

Constructing the Single Unit Templates
As the first step in sorting the extracted spikes, we needed
to identify the single units that contributed to forming the
overlapping waveforms. Our method is based on template
matching, and single units are used to generate templates that
were subsequently matched with overlapping waveforms. In
order to find the single units, we clustered all the spike waveforms
using the method described earlier. The resulting clusters were
subsequently inspected, and the largest and densest clusters with
large isolation distances, a measure of the separation of a cluster
from other points (Schmitzer-Torbert et al., 2005), were chosen
as potential templates. However, sometimes clusters with large
isolation distances contained only waveforms with very small
amplitudes. These clusters were removed from consideration as
template clusters, because they mostly looked like multi-unit
activity. The inter-spike-interval histogram of each cluster was
also inspected to reject clusters with large numbers of refractory
violations (i.e., intervals smaller than 1 ms), as that implied that
those clusters contained a mixture of waveforms from different
cells. The candidates were visually inspected to ensure the clusters
were made up of waveforms of different shapes. If a number of
clusters exhibited similar waveforms, we merged these clusters
together, as long as they did not add noise, or refractory period
violations, to the template clusters.

We also checked the stability of the waveform features of the
template clusters over time to ensure that only stable recordings
were used in the subsequent analysis steps. This was easily
accomplished by assessing the plots that showed each feature
versus time using MClust. After the single unit template clusters
were selected, the remaining clusters consisted of overlapping
and multi-unit waveforms. We then computed the average of all
the waveforms in each template cluster to construct the single-
unit templates. These average waveforms will be referred to as
single-unit templates for the rest of this paper. Figure 2 shows
four clusters with the largest isolation distances for each of the

1http://redishlab.neuroscience.umn.edu/MClust/MClust.html
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FIGURE 1 | Waveform Extraction. (A) A short segment of the high-pass filtered data is shown here. Three local minima that exceeded the extraction threshold
(dashed line) are highlighted by arrows. The extracted waveforms are indicated by thin broken lines. Regions of overlap between the extracted waveforms are
indicated by the thick broken lines. (B) The three extracted waveforms corresponding to the three trigger points shown in (A). The trigger points appear as data point
11 in each of the extracted waveforms. The first and second numbers in the parentheses indicate the data point number and the voltage, respectively.

sample electrode and tetrode datasets. For the sample electrode
data, using these four clusters, we generated two single unit
template clusters. The cluster shown in magenta (Cluster 4) was
comprised mainly of waveforms with small amplitudes. It also
contained a sharp edge in the feature space that implied that some
of the waveforms that belonged to this cluster were cut off by the
extraction threshold. This was typical of multiunit activity, so it
was not selected as a template cluster. On the other hand, the
waveforms in Cluster 2 and Cluster 3 were very similar to each
other, and as a result, we merged these two clusters into a larger
single-unit template cluster. Cluster 1 was selected as the other
template cluster. For the sample tetrode data, all four highlighted
clusters shown in Figure 2B were selected as template clusters.

Single Unit Template Superposition and
Generation of Synthetic Waveforms
We then generated a set of templates for the overlapping spikes.
These templates were subsequently matched with overlapping

waveforms to identify the single units that contributed to each
overlapping waveform.

In order to generate the templates for overlapping waveforms,
first, for each pair of single unit templates, the two single unit
templates were shifted relative to each other, and then were
linearly added together point by point to create a superposition
waveform corresponding to each shift. Since each single unit
template was 32 data points long, the superposition waveforms
consisted of different numbers of points, ranging from 32
points (when the two templates overlapped completely) to
63 points (when the two templates overlapped by just one
point). In order to match these superposition waveforms to
the 32-point overlapping waveforms, 32-point waveforms would
have to be generated from these superposition waveforms. We
did this by using the same amplitude thresholding procedure
described earlier in the spike extraction section to extract 32-
point waveforms from each superposition waveform. We referred
to these waveforms extracted from the superposition waveforms
simply as synthetic waveforms. This was to distinguish them from
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FIGURE 2 | Clustered waveforms and candidate template clusters. (A) Electrode data. The features shown are the first principle component on the horizontal axis,
and the voltage at the trigger point on the vertical axis. (B) Tetrode data. The features shown are the waveform area for the first channel on the horizontal axis, and
waveform area for the second channel on the vertical axis. (Left) Initial clusters. Clusters with large isolation distances are highlighted in red, green, blue, and
magenta. Isolation distances for the electrode data computed using the features shown were: Cluster 1 – 33.0; Cluster 2 – 0.85; Cluster 3 – 4.79; Cluster 4 – 7.23.
For tetrode data, they were: Cluster 1 – 2.75; Cluster 2 – 0.84; Cluster 3 – 0.85; Cluster 4 – 1.13. (Right) Waveforms corresponding to highlighted clusters. For the
tetrode data, the 32 data points from each of the four channels are plotted next to each other. The average waveform for each cluster is plotted in black.

the real overlapping waveforms in the recordings, which we will
simply refer to as overlapping waveforms. As an example, two
synthetic waveforms that were extracted from the superposition
of two templates at one phase shift are shown in Figure 3. In
Figure 3A, the two templates (shown in blue and red) were
superimposed with a phase shift of 19 data points to generate
the superposition waveform. Two minima were then identified
at data points 11 and 30 (labeled as trigger points of Synthetic
Waveform 1 and Synthetic Waveform 2, respectively, in the
figure). The 10 data points before each of these trigger points,
and the 21 data points after, were extracted to form the synthetic
waveforms shown in Figure 3B. It should be mentioned again
here that these synthetic waveforms looked different from the
single-unit templates as they were extracted from combinations
of the original single-unit templates.

Similar to some other methods, such as Quiroga et al.
(2004) and Herbst et al. (2008), we assumed it was unlikely
that more than two neurons would fire simultaneously, and

as a result the error associated with not sorting these overlaps
would be small. Thus, in the current implementation of our
method, we only considered pair-wise combinations of template
waveforms. Although it may be possible to extend our method
to sort overlaps generated as a result of synchronous firing of
more than two cells, it is not straightforward because of the
significant increase in the number of combinations, and the
increase in likelihood that different combinations can create
similar overlapping waveforms.

Matching of Synthetic Waveforms with
Overlapping Waveforms
The next phase of the template matching procedure was the
comparison of the overlapping waveforms with all the synthetic
waveforms generated from combining the single unit templates.
In order to perform this, we developed a method based on
clustering. We grouped all the recorded spike waveforms that
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FIGURE 3 | Extraction of synthetic waveforms. (A) Superposition (thick black line) of two templates (red and blue lines) with their trigger points separated by 19 data
points. (B) Extracted synthetic waveforms. The data point number and amplitude of the trigger points are shown in parentheses.

did not belong to the template clusters with the synthetic
waveforms, and then re-clustered this new set of waveforms
using KlustaKwik. We assumed that the overlapping waveforms
and their best matching synthetic waveforms would be clustered
together, and this method would be more accurate for template
matching, as we would be able to use more than one feature
to compare the overlapping waveforms with available templates,
compared to solely using amplitude. Also this allowed us to avoid
using iterative subtraction of the templates from the overlapping
waveforms, which Lewicki (1998) pointed out might lead to
matching errors due to the noise generated by the inaccuracies of
the templates. The results of the second clustering for the sample
electrode and tetrode datasets shown earlier (Figure 2) are shown
in Figures 4A,B, respectively. Waveforms from six of the clusters
that included both synthetic and overlapping waveforms for the
tetrode data are also shown (Figure 4C).

Features we used for re-clustering of the sample electrode
data were area, trigger value, Fast Fourier Transform (FFT), and
the first principal component of the waveform. For the sample
tetrode data, we used area, trigger value, FFT, the first principal
component of the waveform, spike width, and peak value. It

should be mentioned again that we empirically found that these
features gave us better clustering results, but these features may
vary from dataset to dataset.

In order to identify the best matching synthetic waveform for
an overlapping waveform, we computed the Pearson correlation
coefficient for all possible pairs of synthetic and overlapping
waveforms inside each of the clusters that included both synthetic
and overlapping waveforms. The synthetic waveform with the
highest correlation coefficient was selected as the best match,
and used in the next stage to determine how the overlapping
waveform would be assigned to one or both of the single unit
template clusters that formed that synthetic waveform. We also
attempted using other similarity measures like sum-squared
error, but found that the correlation coefficient returned the best
overall results. In Figure 5A, an overlapping waveform (green),
from the sample tetrode recording shown in Figures 2, 4, is
shown along with the synthetic waveform (black) with the highest
correlation coefficient. Other synthetic waveforms in the same
cluster are shown in blue for reference. It is important to note
that if we had used only the correlation coefficient to find the
best match when comparing an overlapping waveform with all
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FIGURE 4 | Results of second clustering of data shown in Figure 2. (A) Electrode data. (B) Tetrode data. Synthetic waveforms are highlighted as black circles.
These waveforms were clustered with real overlapping waveforms. (C) Waveforms from six clusters that included both synthetic (blue) and overlapping waveforms
(green) for the tetrode data. Two distinct minima can be seen on each channel corresponding to the single spikes that contributed to the overlap.

possible synthetic waveforms, this could have incorrectly grouped
waveforms with similar time courses but different amplitudes.
However, since the correlation coefficients were computed only
on waveforms that were clustered together using both amplitude
and shape features, this significantly reduced the possibility of
errors using the correlation coefficient.

Assignment
Figure 5B shows the single unit templates and the corresponding
phase shift between these templates that generated the synthetic
waveform with the highest correlation coefficient in Figure 5A.
It can be seen that these single unit templates had small phase
shifts with respect to each other, and as a result were highly
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FIGURE 5 | Matching of synthetic and overlapping waveforms for the tetrode data recording shown in Figures 2, 4. (A) The synthetic waveforms (blue) clustered
with one overlapping waveform (green) are shown with the best-matched synthetic waveform highlighted in black. (B) The template waveforms (blue and red) that
generated the synthetic waveform (black) shown in (A). The cluster numbers refer to the cluster numbers in Figure 2B.

overlapped so that the resulting synthetic waveform looked like
one single spike and had only one minimum. This means that
in place of the overlapping waveform that was matched with
this synthetic waveform, one spike must be added to each single
unit template as the two spikes happened almost simultaneously
at this time point. This scenario for assigning overlapping
waveforms to their corresponding single units is illustrated with
two additional scenarios in Figures 6A–C. Each plot in the
top row shows an overlapping waveform (green) with its best-
matched synthetic waveform (black). In the corresponding plot
in the bottom row, the superposition waveform from which
the synthetic waveform was extracted is plotted using a dotted
black line, and the extracted synthetic waveform is plotted
using a thick black line. The two single unit templates that
were combined to generate the superposition waveform, and
subsequently the synthetic waveform, are shown in the thin red
and blue lines.

Figure 6A describes the first scenario. In this scenario, single
units fired relatively far apart in time from each other, and the
resulting overlapping waveform was considered an overlapping
spike solely due to the minor differences in the waveform when

compared to the single unit spikes. This can be deduced from
the large phase shift between the single unit templates when
assessing the superposition waveform from which the matching
synthetic waveform was extracted (bottom plot in Figure 6A).
It can be seen that for the synthetic waveform in this plot, the
trigger point of the first template (blue waveform, Point 17) was
outside the 32 points of the synthetic waveform (Point 32 to
Point 63 of the superposition waveform), so the first template
had only a small effect on the synthetic waveform. In this case,
the overlapping waveform matched with this synthetic waveform
should be assigned to the single unit cluster that mainly formed
the synthetic waveform, which is the second template (red) in this
example.

On the other hand, when two single units fired very
close to each other in time, this resulted in overlapping
waveforms deviating significantly from either of the single
spikes (Figures 6B,C). As can be seen in the bottom row of
Figures 6B,C, in contrast to Scenario 1, the trigger points of
the two single unit templates that generated the superposition
waveform were inside the 32 data points of the best-matching
synthetic waveform, suggesting that the single units fired very
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FIGURE 6 | Waveform assignment. (A–C) The different scenarios under which overlapping waveforms were assigned are illustrated. (Top) Overlapping waveforms
(green) are shown along with their best-matched synthetic waveforms (black). (Bottom) The best-matched synthetic waveform (black) was extracted from the
superposition waveform (dotted and thick black line) that was the result of adding the two template waveforms (blue and red) together. The arrows in both the top
and bottom plots highlight the trigger points of the overlapping, synthetic, and template waveforms. (D,E) Final single-unit clusters after assigning the overlapping
waveforms in the electrode (D) and tetrode data (E). The data shown is the same as in Figures 2, 4. The arrows in (D) indicate the positions of the overlapping
waveforms shown in (A–C) in the waveform feature space.

close to each other in time to generate the overlapping waveform.
In this case, it is possible that the single spikes occurred almost
simultaneously, and as a result, the overlapping waveform only
contained one minimum (Figure 6B, Scenario 2). It is also
possible that even though the single unit spikes overlapped,
the time shift was still large enough for two distinct minima,

corresponding to the contributing spikes, to be identified in the
overlapping waveform (Figure 6C, Scenario 3).

For Scenarios 2 and 3, the assignment was performed based
on the number of local minima that exceeded the extraction
threshold in the overlapping waveform. In order to do this, we
used the same extraction threshold that was used initially to
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extract the spike waveforms from the high-pass filtered data. For
example, in the top plot of Figure 6B, the arrow highlights the
single local minimum in the overlapping waveform (shown in
green), while in the top plot of Figure 6C, two local minima
(highlighted by the arrows) exceeded the extraction threshold
in the overlapping waveform. If more than one local minima
in the overlapping waveform were identified (Scenario 3), the
overlapping waveform was only assigned to one of the templates.
This was because separate spikes were most probably extracted
from the high-pass filtered data (corresponding to each local
minimum) in the initial spike extraction phase, so we only
needed to assign the current waveform to one single unit. The
other waveform that was extracted, and potentially matched
with some other synthetic waveform, will be assigned to its
corresponding single unit cluster separately. In this scenario,
the overlapping waveform was always assigned to the template
with the trigger point that was closer to the trigger point of the
synthetic waveform, as that single unit was probably the one
that contributed the most to the overlapping waveform. In the
example in Figure 6C, the overlapping waveform was assigned to
the single unit corresponding to the blue template shown in the
bottom plot, because the trigger point of the synthetic waveform
(Point 42) was closer to the trigger point of the blue template
(Point 43) rather than the trigger point of the red template (Point
35). In Scenario 2, only one local minimum was identified in
the overlapping waveform, and this suggested that the two single
units combined in such a way to create only one overlapping
waveform, so we assigned the overlapping waveform to both
single unit clusters.

Final Processing
After adding the overlapping waveforms to their corresponding
single unit clusters, we checked for refractory period violations.
If the interval between two spikes was smaller than 1 ms, one
of them was removed from the single-unit cluster and added
to the multi-unit cluster. The waveform that was removed was
the waveform with the smaller correlation coefficient when
compared to the mean of the cluster. The final single-unit
clusters after the overlapping waveforms had been assigned
to the proper clusters are shown in Figure 6D for the
sample electrode data, and Figure 6E for the sample tetrode
data.

Other waveforms that were not clustered with any synthetic
waveforms were grouped together and formed the multi-unit
cluster (not shown in Figures 6D,E). The source code used in
this method (written in MATLAB) is available for download from
https://cortex.nus.edu.sg/sorting/.

Evaluation
In order to assess the performance of our method, we tested our
method on datasets with different signal to noise ratios using the
simulated data from Quiroga et al. (2004), which was downloaded
from their website2.

2http://www2.le.ac.uk/departments/engineering/research/bioengineering/
neuroengineering-lab/spike-sorting

In this dataset, there were four sets of simulations, Easy1,
Easy2, Difficult1, and Difficult2, each consisting of waveforms
from three neurons, with Easy1 and Easy2 made up of clearly
distinct waveforms, while Difficult1 and Difficult2 consisted of
waveforms that were more similar in shape. In this paper, we
only show the results for the Difficult1 and Difficult2 datasets.
The Difficult1 and Difficult2 datasets were each composed of four
different subsets with increasing levels of noise, ranging from
standard deviations of 0.05 to 0.2 times the spike amplitude. The
details on how these simulated data were generated can be found
in Quiroga et al. (2004).

We sorted the data using our method, using the same wavelet
coefficients that were used in the Quiroga study as our clustering
features. We selected these coefficients manually, because we did
not find the probability measure returned by the Lilliefors test,
used in the Quiroga study, to be a reliable measure for choosing
bi-modally distributed features when applied to our dataset.
Using manual selection, we reduced the number of coefficients
required to cluster the data to four coefficients with multimodal
distributions instead of the ten non-normally distributed wavelet
features in the Quiroga study.

In order to examine the performance of our method
for additional datasets, we generated two simulated datasets
using the waveforms from electrode and tetrode recordings,
respectively that were previously performed in our lab. For
the electrode data, extra-cellular recordings were performed
using Tungsten microelectrodes in the primary visual cortex of
behaving macaque monkeys (Friedman-Hill et al., 2000; Gray
et al., 2007). For the tetrode recordings, the data were recorded
in the striate cortex of anesthetized cats during the presentation
of natural movies (Yen et al., 2007). In both datasets, the analog
signals were digitized at a rate of 30 kHz on each channel.

We followed a method similar to that used by Quiroga et al.
(2004) to generate the simulated data. For each recording, we
first identified the template clusters, and averaged the waveforms
in the template clusters to obtain the templates. Then, for each
template, we generated a surrogate spike train using a method
derived from Berry and Meister (1998). We made the following
two changes to their method: (1) instead of deriving the recovery
function from neuronal responses, we used a sigmoid function
with a 5-s standard deviation; and (2) instead of deriving the
free-firing rate from the PSTH obtained from the recordings,
we generated random values from a uniform distribution in the
interval of [0, 20] spikes per second. This method enabled us
to generate spike trains that exhibited refractory periods that
were more realistic compared to those exhibited by Poisson spike
trains (Berry and Meister, 1998). Spike trains were generated for
each template cluster independently (i.e., 2 template clusters for
each of the 4 electrode recordings, and 3 template clusters for
each of the 4 tetrode recordings), and each spike in the surrogate
spike train was then replaced by the corresponding template.
These spike trains were then added together to create the signal
part of the synthetic raw data.

In order to generate noise in the synthetic data, we first
generated spike trains that consisted of a mix of spike waveforms
extracted from our data, and then scaled the signal amplitudes
down to resemble noise. We did this by constructing 1000
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TABLE 1 | The results of applying Wave_clus (WC), KlustaKwik (KK), and our method (CM: current method) to simulated data from Quiroga et al. (2004).

Dataset Spikes Sorted (WC) Sorted % (WC) Sorted (KK) Sorted % (KK) Sorted (CM) Sorted % (CM)

D1_0.05 3383 (365) 3193 (199) 94% (55%) 3017 (237) 89% (68%) 3349 (331) 99% (91%)

D1_0.1 3448 (317) 3313 (190) 96% (60%) 3127 (216) 91% (70%) 3409 (279) 99% (88%)

D1_0.15 3472 (343) 3183 (195) 92% (57%) 3114 (231) 90% (72%) 3393 (280) 98% (82%)

D1_0.2 3414 (313) 2767 (153) 81% (49%) 3013 (197) 88% (68%) 3238 (232) 95% (74%)

D2_0.05 3364 (349) 3137 (125) 93% (36%) 3014 (206) 90% (59%) 3337 (322) 99% (92%)

D2_0.1 3462 (271) 3326 (143) 96% (53%) 3146 (177) 91% (65%) 3416 (230) 99% (85%)

D2_0.15 3440 (372) 3055 (201) 89% (54%) 2848 (230) 83% (62%) 3151 (297) 92% (80%)

D2_0.2 3493 (351) 1983 (141) 57% (40%) 2759 (215) 79% (64%) 3022 (246) 87% (70%)

Average 87% (51%) 88% (66%) 96% (83%)

The number in each column includes both single spikes and overlapping waveforms. The numbers for overlapping waveforms are shown in parentheses.

other surrogate spike trains using a method similar to the
above, except that we drew the free firing rate from a uniform
distribution on the interval [0, 200], and instead of replacing
spikes by templates, each spike was replaced by a waveform
randomly picked from all the extracted waveforms in the
recording. These waveforms consisted of single-unit, multi-unit,
and overlapping waveforms. Next, we added these 1000 spike
trains together, removed the mean value of the noise from the
generated noise signal, and normalized the amplitude of the noise
signal to 1 µV by dividing the noise signal by its maximum
amplitude. We then scaled the noise by an amplification factor
to equalize the standard deviation of the simulated noise with
the standard deviation of the background signal in the actual
recording. The simulated noise data was then added to the
signal data generated above to form the final synthetic raw
data.

For the electrode data, we selected four recordings, each with
two template clusters, to generate four synthetic raw datasets. For

TABLE 2 | The results of applying our method to the simulated electrode datasets.

Dataset Spikes Sorted Sorted % False positives

1 68394 (2435) 66099 (2136) 96% (87%) 49 (0.07%)

2 68662 (2463) 68386 (2357) 99% (95%) 5 (0.007%)

3 69086 (2489) 67330 (2238) 97% (89%) 320 (0.46%)

4 68341 (2651) 66911 (2496) 97% (94%) 159 (0.23%)

Average 97% (91%) 0.19%

The number listed in the second to the fourth column includes both single spikes
and overlapping waveforms, with the numbers for overlapping waveforms shown
in parentheses.

TABLE 3 | The results of applying our method to the simulated tetrode datasets.

Dataset Spikes Sorted Sorted % False positives

1 102382 (7396) 101776 (7157) 99% (96%) 122 (0.11%)

2 102743 (7467) 99987 (7234) 97% (96%) 170 (0.16%)

3 102106 (7344) 100452 (7088) 98% (96%) 130 (0.12%)

4 102488 (7499) 94640 (6870) 92% (91%) 719 (0.70%)

Average 97% (95%) 0.27%

The number listed in the second to the fourth column includes both single spikes
and overlapping waveforms, with the numbers for overlapping waveforms shown
in parentheses.

the tetrode data, we selected four recordings with three single unit
templates to generate four synthetic raw datasets. Each synthetic
raw dataset was 30 min long with a sampling rate of 30 kHz.
These simulated data for both electrode and tetrode are available
at https://cortex.nus.edu.sg/sorting/Downloads.html.

For both our simulated dataset and that from the Quiroga
study, we defined an overlapping waveform as a waveform that
was generated by the overlap of two single units with a phase shift
smaller than 1 ms.

In addition to simulated datasets, to assess the characteristics
of our method when sorting real datasets, we sorted the real
electrode and tetrode recordings described earlier, using our
automated method.

RESULTS

The results of sorting the simulated data from the Quiroga study
with Wave_clus (Quiroga et al., 2004), KlustaKwik, and our
method are shown in Table 1. It can be seen that our method
performed well in resolving single-unit and overlapping spike
waveforms for this dataset at various signal-to-noise ratios. On
average, our method was able to resolve an average of 83% of
the overlapping waveforms, an improvement of approximately
32% over the results reported in the Quiroga study, and a 17%
improvement over just using KlustaKwik.

In order to find out how well our method can be applied
to different datasets, we also applied our method to simulated
dataset that were generated using our electrode and tetrode
recordings. The results of applying our method to these datasets
are shown in Tables 2, 3, respectively. Our method was able
to resolve single-unit and overlapping waveforms with a high
degree of accuracy for both the electrode (91%, with 0.19% false
positives) and tetrode (95%, with 0.27% false positives) data. It
should be noted that while the spike waveforms used to generate
the simulated data varied significantly in shape and amplitude
across datasets, we used one set of features to sort all the electrode
datasets, and one set of features to sort all the tetrode datasets.
These features were selected earlier to sort the real recordings
based on subjective measures, and were not specifically selected
to sort the simulated data. Also, we did not change any of the
parameters for the clustering to sort different simulated datasets.
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FIGURE 7 | Correlation coefficients of the best matching synthetic waveforms to the overlapping waveforms. (A) Results from electrode data. (B) Results from
tetrode data. Note the log-scale on the vertical axis.

We also sorted the real electrode and tetrode recordings
mentioned above. The histograms of the correlation coefficients
for the best matching waveform in the electrode and tetrode
datasets are shown in Figure 7. We found a large proportion
of the correlation coefficients were larger than 0.8 (96.66% for
electrode data and 83.10% for tetrode data), suggesting that
our algorithm was often able to match overlapping waveforms
with the appropriate synthetic waveforms. However, in a small
number of cases, the correlation coefficients were smaller than
0.2 (0.42% for the electrode data and 1.02% for the tetrode
data) and even negative, showing that while in most cases the
clustering performance was acceptable, occasionally waveforms
were clustered inappropriately with other waveforms that looked
significantly different.

We also wanted to ensure that our method was not sensitive to
the phase shift of the single spikes that constituted an overlapping
waveform, and were able to resolve the spikes regardless of
the amount of overlap. Thus, we measured the time difference
between the trigger points of the two templates that made up
each best-matching synthetic waveform. The histograms of the
absolute value of these time differences are shown in Figure 8.
We only included overlapping waveforms assigned in Scenarios
2 and 3 described above. Most of the cells exhibited a uniform
distribution over a range of time differences (30 data points
would be equivalent to 1 ms) indicating that the algorithm was
able to recover overlapping waveforms over a range of time
differences. On the other hand, some of the cells displayed
remarkably precise time differences (e.g., the bottom-most and
the 3rd-from-the-bottom histograms in Scenario 2 for electrode
data). Considering the uniform distribution observed in other
cells, we were confident that this effect was not due to a bias
in the sorting process. For Scenario 2, because only one trigger
point was found in the overlapping waveform, the trigger points
were typically less than 12 points (i.e., 0.4 ms) apart. For Scenario
3, because two trigger points were found, the time differences
typically spanned a greater range. Overall, we found 74.24% of
the differences were smaller than 10 data points (i.e., 0.3 ms),

while 13.84% of the differences were larger than 15 data points
(i.e., 0.5 ms).

DISCUSSION

Our automated method for resolving overlapping waveforms
produced good results when sorting the simulated datasets we
studied. The main difference between our method and methods
previously reported is that we used a clustering method to
find the best match for each overlapping waveform among
possible synthetic waveforms. This improved the performance,
as we were able to use more than one feature to compare the
overlapping waveforms with available templates. Also, unlike
nearly all the methods we discussed in the Introduction, our
method did not require setting a fixed threshold on similarity
measures (e.g., correlation coefficients, root-mean-square error,
etc.) to identify the synthetic waveforms that were similar
to the overlapping waveforms, which makes it easy to apply
this method to different datasets. Instead, we chose to let the
clustering algorithm decide if waveforms belong together. While
this implies that appropriate features have to be used during
the clustering at this stage, we found in our experience that the
same features used to identify clusters of single units can be used
successfully to resolve overlapping waveforms.

Another advantage of our method was that we generated
superpositions at all possible phase shifts, which gave us the
ability to resolve overlapping waveforms that were generated
by synchronous firing of two single units. Moreover, because
we extracted the synthetic waveforms from these superpositions,
instead of performing comparisons at all the data points, we were
able to substantially increase the efficiency of our method. Unlike
a number of other methods used in overlap resolution (Lewicki,
1998; Zhang et al., 2004), we have also made no assumptions
about the noise or the distribution of neuronal activity.

In addition, our method makes use of software packages like
KlustaKwik and MClust, which are already in widespread use
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FIGURE 8 | Distribution of the absolute value of the time differences in the trigger points in the best-matching synthetic waveforms in the two assignment scenarios
in the electrode and tetrode data. Each row represents a single recording. (A) Distribution of trigger point differences when only one trigger point was found in the
overlapping waveform (Scenario 2) in the electrode data. (B) Distribution of trigger point differences when two trigger points were found in the overlapping waveform
(Scenario 3) in the electrode data. (C) and (D) Same as (A) and (B) but for tetrode data.

in many electrophysiology laboratories around the world. This
makes it easier for our method to be integrated into the spike
sorting workflow in most situations than if, for instance, SVM,
neural networks, Hidden Markov Models, or linear filters were to
be added.

While resolving overlaps was automated and unsupervised,
the template cluster selection using measures of cluster isolation
and similarity was performed manually in our approach.
However, as the resolution of overlapping waveforms is
independent of how the templates are selected, other potential
automated methods could be used to choose the single-unit
templates.

Although one of the advantages of our method is that we
avoid using a fixed threshold to assign the overlaps to suitable
single units, or exclude noise from our assignments, it does
not imply that no parameters need to be set. Suitable features
and clustering method still have to be selected carefully, and
may vary from dataset to dataset. In addition, the clustering

algorithms have different parameters that must be tuned
properly. However, since these typically need to be done to
identify single units in the first place, our method simply reuses
these same parameters in resolving overlapping waveforms, and
does not introduce additional parameters that have to be fine-
tuned.

Our method, however, cannot deal effectively with differences
in spike waveforms from a single cell caused by electrode
movement or bursting cells (Gray et al., 1995). Currently, these
have to be identified and dealt with manually, although any
clustering method that addresses these problems can be used
instead of the KlustaKwik software package that is used here,
which do not address this issue. Also, an incremental method
as suggested by Ekanadham et al. (2014) to address the same
issue with their method, or a new method proposed by Shan
et al. (2017), may be good candidates to sort spikes that exhibit
shape and amplitude changes as a result of tissue relaxation or
movement of the electrode as time passes.
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Also, we should mention another method that has several
advantages over our method. This method, described in Herbst
et al. (2008), uses a template matching approach that finds the
combination of templates with the smallest mean square error
relative to each spike using Hidden Markov Models. Herbst et al.
(2008) obtained better results compared to our method in sorting
the Quiroga et al. (2004) dataset. The main advantage of this
method over our method, and all the other methods described
earlier, is that the method can be used to automatically detect
the templates. However, the threshold (p-value related to firing
probability of the cells) learned in the learning phase usually
has to be adjusted in order to sort the spikes, because otherwise
the rate of false positive will be relatively high. They proposed
a mathematical equation to guess the proper p-value, but when
we applied the proposed equation to our experimental dataset,
we still needed to lower the threshold based on the observed
results until we obtained acceptable results. Along with some of
the newer sorting methods for high density multi-electrode arrays
that are available to resolve overlapping waveforms (Marre et al.,

2012; Pachitariu et al., 2016; Rossant et al., 2016; Yger et al.,
2017), it will be interesting to perform a comparison between
these various methods for resolving overlapping waveforms in a
future study.
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