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Abstract 1 

Non-coding variants discovered by genome-wide association studies (GWAS) are enriched in 2 

regulatory elements harboring transcription factor (TF) binding motifs, strongly suggesting a 3 

connection between disease association and the disruption of cis-regulatory sequences. 4 

Occupancy of a TF inside a region of open chromatin can be detected in ATAC-seq where bound 5 

TFs block the transposase Tn5, leaving a pattern of relatively depleted Tn5 insertions known as 6 

a “footprint”. Here, we sought to identify variants associated with TF-binding, or “footprint 7 

quantitative trait loci” (fpQTLs) in ATAC-seq data generated from 170 human liver samples. We 8 

used computational tools to scan the ATAC-seq reads to quantify TF binding likelihood as 9 

“footprint scores” at variants derived from whole genome sequencing generated in the same 10 

samples. We tested for association between genotype and footprint score and observed 693 11 

fpQTLs associated with footprint-inferred TF binding (FDR < 5%). Given that Tn5 insertion sites 12 

are measured with base-pair resolution, we show that fpQTLs can aid GWAS and QTL fine-13 

mapping by precisely pinpointing TF activity within broad trait-associated loci where the 14 

underlying causal variant is unknown. Liver fpQTLs were strongly enriched across ChIP-seq 15 

peaks, liver expression QTLs (eQTLs), and liver-related GWAS loci, and their inferred effect on 16 

TF binding was concordant with their effect on underlying sequence motifs in 80% of cases. We 17 

conclude that fpQTLs can reveal causal GWAS variants, define the role of TF binding site 18 

disruption in disease and provide functional insights into non-coding variants, ultimately informing 19 

novel treatments for common diseases.   20 
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Introduction 21 

 More than 90% of GWAS-implicated variants are located in non-coding genomic regions with 22 

uncharacterized effects on gene regulation1–4, limiting their utility in characterizing disease biology 23 

and implicating novel targets for treatment. Furthermore, given the structure of linkage 24 

disequilibrium (LD) across the genome, a variant with a true biological effect on some trait (i.e., a 25 

causal variant) will be correlated with nearby variants, making it challenging to distinguish which 26 

variants among them is causal5–7. A second challenge after association mapping is to determine 27 

the effector gene(s) regulated by a given causal variant through which the trait effect is conferred. 28 

Single nucleotide polymorphisms (SNPs) associated with gene expression, i.e. expression 29 

quantitative trait loci (eQTLs), as catalogued by the GTEx Consortium, are strongly linked with 30 

approximately 43% of disease-associated GWAS signals8, and on average only 11% of disease 31 

heritability is estimated to be explained by GTEx gene expression9. A recent study modeled that 32 

GWAS loci and eQTLs are systematically biased towards different types of cis-regulatory variants, 33 

suggesting that additional connections beyond those provided by eQTLs are needed to provide 34 

mechanistic insights into observed complex trait association signals10. Other variant-to-gene 35 

mapping approaches which use 3D chromatin architecture data from Hi-C or Capture-C require 36 

the causal variant to be nominated before implicating the effector gene11–13. Methods to 37 

experimentally validate the effects of putative causal SNPs on gene expression are expensive 38 

and time consuming, making the prioritization of candidate variants a key bottleneck in disease 39 

genomics. 40 

 Non-coding GWAS-implicated variants are concentrated in regulatory regions and near 41 

transcription factor (TF) binding motifs1,14,15, suggesting that the disruption of cis-regulatory 42 

sequence plays a mechanistic role in conferring disease risk. ATAC-seq, an experimental method 43 

traditionally used to measure chromatin accessibility, can also be used to detect TF binding. In 44 

this method, the transposase Tn5 inserts sequencing adapters into DNA, preferentially at genomic 45 
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locations where chromatin is open16. However, bound TFs can partially block Tn5, leaving a 46 

pattern of relatively depleted Tn5 insertion sites known as a “footprint”17. Unlike ChIP-seq, which 47 

requires a high-quality antibody and can only be run for one TF at a time, ATAC-seq footprints can 48 

detect binding sites without specifically knowing the identity of the bound TF. In recent years, 49 

multiple algorithms have been developed to quantify binding strength using footprint patterns in 50 

ATAC-seq or DNase-seq data, albeit in relatively small sample sizes18–21. Footprinting analysis is 51 

valuable for implicating causal variants, as it can overcome limitations of resolution in 52 

GWAS/eQTL studies due to LD constraints by precisely locating TF binding, and implicate specific 53 

TFs based on binding motifs at the footprint location22. 54 

 Recent studies have investigated the sequence dependency of TF binding via allele-specific 55 

cleavage patterns in ATAC-seq23, multiplex protein-DNA binding array24, or allele-specific ChIP-56 

seq25. Most recently, a study used DNase-seq footprints in LCLs from 57 genotyped individuals 57 

to uncover SNPs associated with footprint-inferred TF binding, known as footprint QTLs 58 

(fpQTLs)26. However, this study, and many other footprinting studies20,21,27 were limited to sites 59 

which overlapped known TF sequence motifs. Given the limited ability of sequence motifs to 60 

computationally predict true binding locations24,28, this motif-centric approach is much less 61 

powered to detect binding events compared to motif-agnostic approaches.  62 

 Here, we applied footprinting analysis to a uniformly generated dataset of human liver ATAC-63 

seq samples from 170 genotyped individuals, the largest sample size to date, to measure TF 64 

binding strength genome-wide. GWAS have uncovered hundreds of loci associated with liver-65 

related traits including metabolic associated steatotic liver disease (MASLD, formerly NAFLD)29–66 

31, type 2 diabetes (T2D)32, hyperlipidemia13,33, enzyme levels34, and T2D risk factors such as 67 

obesity35–37, most of which have unknown functional mechanisms38. We report 693 fpQTLs 68 

associated with TF binding at an FDR of 5%. fpQTLs are enriched in transcription start site (TSS)-69 

proximal regions, ChIP-seq peaks for liver-expressed TFs, lipid-associated loci, and molecular 70 

QTLs for expression (eQTLs) and chromatin accessibility (caQTLs) mapped in human liver. 71 
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Notably, the measured effect of an fpQTL on TF binding was highly concordant with its effect on 72 

an underlying sequence motif. Finally, we demonstrate that fpQTL discovery can fine-map GWAS 73 

loci by pinpointing the causal variant and implicate a specific TF whose binding motif is disrupted. 74 

Our map of genotype-dependent TF binding sites offers the opportunity to (1) interpret functional 75 

non-coding variants by proposing TF binding as a biological mechanism for association, and (2) 76 

aid the identification of the active variant(s) at GWAS loci where the causal variant was previously 77 

unknown due to LD-related constraints. 78 

Materials and Methods 79 

Study population  80 

The study utilized data collected from 189 specimens obtained from liver transplant recipients 81 

from their respective donor cohorts at the University of Pennsylvania, collected in 2012-2017 and 82 

2018-2020 enrolled under the BioTIP study (Biorepository of the Transplant Institute at the 83 

University of Pennsylvania). Participants were enrolled in the prospective biorepository and 84 

clinical databases, collecting biological samples and clinical data at the time of transplantation, 85 

and at predetermined intervals after transplantation. The study was approved by the University of 86 

Pennsylvania’s Institutional Review Board (2018-2020: FWA00004028, protocol #814870). All 87 

research was conducted in accordance with both the Declarations of Helsinki and Istanbul. The 88 

participants signed informed consent forms before transplantation and at the time of organ 89 

donation. Specimens collected from this protocol used in this study were deidentified and 90 

subsequently anonymized. 91 

ATAC-seq Library Generation 92 

Human liver wedge biopsies were supplied by the Penn Transplant Institute. Samples were 93 

derived from human livers deemed fit for transplantation, and were collected at the time of the 94 

surgery. Samples were flash frozen and stored at -80 C. Chromatin accessibility profiles were 95 
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generated using a modified Assay for Transposase Accessible Chromatin with high-throughput 96 

sequencing (ATAC-seq) called Omni-ATAC16,39. Briefly, approximately 20 mg of tissue was dounce 97 

homogenized in a homogenization buffer. Tissue homogenate was layered over Iodixanol density 98 

gradient and spun. Nuclei were extracted post-centrifugation and quantified using a 99 

hemocytometer. Approximately 50,000 nuclei were rinsed and added to the Omni-ATAC reaction 100 

mix. Transposition reactions were incubated at 37 C for thirty minutes. Reactions were cleaned 101 

with spin columns and eluted. Polymerase chain reaction (PCR) was initially performed for five 102 

cycles. At this point, a qPCR reaction was performed to determine the additional number of PCR 103 

cycles to use. The additional number of PCR cycles was determined by calculating the qPCR 104 

cycle at which the fluorescence intensity was equal to one-third the maximum fluorescent intensity 105 

of the reaction. Libraries were purified and profiles were measured using Bioanalyzer High-106 

Sensitivity DNA Analysis Kit (Agilent). Libraries that passed visual quality control and 107 

concentration checks were frozen at -20 C. 108 

ATAC-seq Library Sequencing 109 

Libraries were pooled in two separate groups, 93 samples and 96 samples, and sequenced at 110 

Vanderbilt University Medical Center (VUMC VANTAGE (Vanderbilt Technologies for Advanced 111 

Genomics)) on the Illumina NovaSeq 6000 with PE150 sequencing. Libraries were pooled and 112 

sequenced such that each sample was covered by approximately fifty million sequencing reads. 113 

ATAC-seq Data Processing 114 

ATAC-seq data were processed following the ENCODE processing pipeline, with slight 115 

modification. Briefly, FASTQ files were processed with fastp (v.0.12.5) with parameters “-y -c -g”. 116 

FastP processed FASTQ files were aligned to GRCh38 using bwa mem (v. 0.7.17-r1188) and 117 

piped into samtools (v.1.9) view with parameters “-S -b -f  2 - > outFile.bam” to generate bam files. 118 

Duplicate reads were marked and removed using Picard Tools (v.1.141) MarkDuplicates with 119 
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parameters “ASSUME_SORTED=true, REMOVE_DUPLICATES=true”. Autosomal reads only 120 

were retained using samtools view with parameters “input.bam -b {1..22} > ${i}.auto.bam”. Open 121 

chromatin peaks were called on all 189 samples using Genrich (v0.6.1) 122 

(https://github.com/jsh58/Genrich) with parameters -j, -m 10 and -g 50.  123 

Genotyping and Imputation from Low Coverage Whole Genome Sequencing 124 

Sample genotype was obtained using low-pass whole genome sequencing from Gencove. 125 

Genotypes were filtered to retain only polymorphic sites within our sample population. 126 

Polymorphic genotypes were filtered on minor allele frequency (MAF) > 0.05 and genotype 127 

posterior probability (GP) > 0.8. Genotypes were phased using Eagle (v2.4.1)40. 128 

Of the 189 ATAC-seq samples, 14 were removed for poor genotyping quality, and 5 were removed 129 

for having a low read count (< 30 million reads), leaving 170 samples used in fpQTL discovery 130 

(see Supplementary Table 1, Figure S1A for sample ancestry and covariate information). 131 

Calculation of footprint scores 132 

Footprint scores were calculated using PRINT41 (https://github.com/HYsxe/PRINT, commit 133 

2023-05-14). ATAC-seq bam files were processed into fragment files as described on the PRINT 134 

Github (Web Resources). Read pairs were removed during this step if (i) both reads mapped to 135 

a different chromosome, or (ii) read 1 mapped to the - strand, but did not cover the entire fragment 136 

(insertions at these reads did not show the expected Tn5 sequence bias). 137 

Every variant that was found within an open chromatin peak and had MAF > 0.05 within our 138 

samples was expanded into a region with 100 bp on either side of the variant (by default, PRINT 139 

uses a “context radius” of 100 bp, meaning the outer 100 bp of a region are needed to calculate 140 

the background insertion distribution).  The Tn5 sequence bias in these regions was calculated 141 

by PRINT using the model trained by Hu et al41.  142 
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For every ATAC-seq sample, getTFBS() was run on the variant regions, following the vignette 143 

provided on the PRINT Github (Web Resources). The only non-default parameter was tileSize = 144 

1, to measure only the FP score at the variant. The vector of TF binding scores (FP scores) across 145 

all variants was extracted for each sample, and these vectors were combined into the footprint 146 

score matrix (n = 170, # variants = 3,258,578).  147 

fpQTL discovery 148 

The distribution of FP scores in each sample was quantile-transformed using the average 149 

empirical distribution observed across all samples, following the lead of GTEx cis-eQTL 150 

mapping42. However, the FP scores for each variant were not transformed to the quantiles of the 151 

standard normal distribution, in order to preserve the signal of extreme FP scores (i.e. FP score 152 

≈ 1) 153 

For every variant considered, the following regression was run in R: 154 

𝑦𝑦 = β0 + β1𝑔𝑔 + 𝛃𝛃𝒄𝒄𝑿𝑿𝒄𝒄       (1) 155 

Where y is the vector of FP scores across all samples, g is the vector of genotypes across all 156 

samples (represented by an additive model as the number of non-reference alleles), and Xc is a 157 

matrix of covariates across samples which includes sex, sequencing batch, and the first three 158 

principal components inferred from genotypes. The estimate of β1 was taken as the estimated 159 

fpQTL effect size of the variant, and the fpQTL significance was calculated as the P-value of the 160 

t-test (two-sided) under the null hypothesis that β1 = 0. To test the effect of covariates on 161 

regression results, we also performed this regression analysis excluding covariates and observed 162 

that SNP P-values did not change drastically (Figure S2E). Multiple test correction was performed 163 

using a false discovery rate (FDR) q-value method43,44. Variants with a calculated FDR q-value < 164 

0.05 were labeled fpQTLs. 165 

 166 
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Allele-specific footprinting 167 

For a given fpQTL, the allelic origin of aligned fragments within heterozygous samples could be 168 

determined if at least one of the paired reads overlapped the SNP. Such fragments were 169 

separated by allele, and the resulting insertion sites were combined across samples (due to low 170 

coverage of allelic fragments) to create “allele-specific insertion patterns”. These insertion 171 

patterns were then fed into PRINT separately to calculate allele-specific footprint scores for that 172 

fpQTL. 173 

Gene locations 174 

The locations of transcription start sites (TSSs) were based on NCBI RefSeq’s curated list of 175 

genes45. The table ncbiRefSeqCurated was downloaded from the UCSC Genome Browser on 176 

Jan 22, 2024.  177 

Liver eQTLs 178 

Association data for expression QTLs from GTEx Analysis V8 were downloaded from the GTEx 179 

Portal8 (GTEx_Analysis_v8_eQTL.tar) 180 

Liver caQTLs 181 

caQTLs were called using the same 189 liver samples, as described in a companion manuscript 182 

by B.M.W. (in preparation).  183 

fpQTL overlap with GWAS loci 184 

GWAS summary statistics and lead variants for BMI36, T2D32, MASLD31, enzymes (alanine 185 

transaminase/ALT, alkaline phosphatase/ALP, gamma-glutamyl transferase/GGT)34, and lipids33 186 

were downloaded from their respective publications (Supplementary Table 5). LD proxies for 187 

lead variants were found using the online tool SNiPA46 with Variant Set = 1000 Genomes Phase 188 

3v5, Population = European, and LD (r2) threshold = 0.8.  189 
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For each liver-related trait, we constructed a 2x2 table, where one dimension represented fpQTLs, 190 

and the other dimension represented SNPs which were in LD (r2 > 0.8) with a GWAS sentinel 191 

variant for that trait. 52805 SNPs, including 20 fpQTLs, did not have LD info in the 1000 Genomes 192 

Phase 3v5 SNP set used by SNiPA, and so were not included in the tables. P-values and odds 193 

ratios were computed using Fisher’s exact test on this table. 194 

fpQTL enrichment for disease heritability 195 

We performed stratified LD score regression using LDSC (http://www.github.com/bulik/ldsc) 196 

v.1.0.1 with the --h2 flag to estimate SNP-based heritability of liver-related traits. We created an 197 

annotation consisting of only significant fpQTL SNPs, which was then used to compute 198 

annotation-specific LD scores and enrichment for each liver trait. 199 

The baseline model LD scores, plink filesets, allele frequencies and variants weights files for the 200 

European 1000 genomes project phase 3 in hg38 were downloaded from the Alkes group (Web 201 

Resources). 202 

ChIP-seq peaks 203 

ChIP-seq peaks from ENCODE 347 were downloaded on the UCSC Genome browser (tables 204 

encRegTfbsClustered and encRegTfbsClusteredSources) on April 25, 2022. Peaks were 205 

considered “liver TF peaks” if at least one of the listed sources was HepG2, liver, or hepatocyte 206 

(see Supplementary Table 3 for list of TFs). 207 

fpQTL motif matching 208 

Position weight matrices (PWMs) for transcription factor motifs were downloaded from the 209 

JASPAR 2024 CORE non-redundant vertebrate database48. See Supplementary Table 4 for list 210 

of motifs and corresponding ChIP-seq TFs.  211 
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Motif scores were calculated by matching JASPAR motifs to a window around each SNP (for both 212 

the reference and alternate allele) using the motifmatchr49 (v1.20.0) package, a wrapper for the 213 

MOODs50 library. SNPs were removed from this analysis if the base in the hg38 sequence did not 214 

match the reference or alternate allele from genotyping (n=317 SNPs filtered, remaining # SNPs 215 

= 3,258,261). Windows were sized based on motif length, to guarantee that a matched motif would 216 

overlap the SNP.  We defined an fpQTL-motif overlap to occur when an fpQTL overlapped both a 217 

motif and a liver ChIP-seq peak from the corresponding TF. 218 

Coordinate intersections 219 

All coordinate intersections were calculated in R (v4.4.0) using GenomicRanges (v1.56.0). 220 

Coordinates were lifted between hg38 and hg19 as necessary using rtracklayer (v1.64.0). 221 

fpQTL enrichment with allele-specific ChIP-seq peaks 222 

rsIDs for all fpQTLs were fed into the online tool ANANASTRA51, which calculates enrichment for 223 

SNPs within the ADASTRA25 database for allele-specific ChIP-seq peaks, using the Local (1 Mb) 224 

background option. 225 

Calculation of Tn5 insertion density 226 

To assess the general enrichment in chromatin accessibility near the ends of chromosomes, we 227 

divided the genome into bins with a width of 200 bp (the width that PRINT uses to calculate FP 228 

score). For each sample, we counted the number of Tn5 insertions in each bin using the fragment 229 

file. The first and last 10,000 bins on each chromosome (i.e. within 2 Mb of a chromosome end) 230 

were labeled “near-telomeric” bins, and the other bins were labeled "central”. We then averaged 231 

the number of insertions in non-empty near-telomeric and central bins to calculate the mean 232 

insertion density for these two regions.  233 

 234 
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Inversion haplotyping 235 

We used the scoreInvHap52 (v1.20.0) R package (https://rdrr.io/bioc/scoreInvHap/) to call 236 

inversion haplotypes using the genotypes of nearby SNPs. Data for the inversions called are 237 

included in the package. 238 

Correcting for Tn5 insertion bias when visualizing Tn5 insertions 239 

For every variant in every sample, PRINT considers the Tn5 insertions at the x-th position within 240 

a 200 bp window around the variant. If Ox represents the observed cut sites at the x-th position in 241 

the sample, then we calculated the corrected cut sites Cx in that sample as: 242 

Cx = Ox – Ex       (2) 243 

where Ex is the expected number of cutsites at position x calculated by: 244 

Ex = bx × O�  / b�      (3) 245 

where bx is the Tn5 bias at the x-th position reported by PRINT, and O�  and b�  are the means of Ox 246 

and bx calculated across all x positions within the 200 bp window.  247 
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Results 248 

Discovery of liver fpQTLs in liver open chromatin 249 

Using a human liver ATAC-seq dataset uniformly generated from 170 genotyped donors 250 

(Figure S1A), we first scored all common SNPs residing within open chromatin regions for their 251 

potential of TF footprints by calculating a footprint score (FP score) for each sample at every SNP 252 

position (Materials and Methods, Figure 1A). For each SNP, we then performed linear 253 

regression analysis to estimate the effect of change in genotype on FP score as the outcome, 254 

including covariates (Materials and Methods, Figure 1B). 693 SNPs exceeded an FDR q-value 255 

< 0.05 multiple-testing threshold and were labeled as fpQTLs (Figure 2A, Supplementary Table 256 

2).  257 

When comparing fpQTL positions to the locations of gene transcription start sites (TSSs), we 258 

observed that TSS-proximal SNPs were more likely than distal SNPs to be detected as fpQTLs, 259 

and TSS-proximal fpQTLs had higher effect sizes than distal fpQTLs (Figures 2B and 2C). It has 260 

been shown previously that proximal loci are more likely to be in highly accessible chromatin and 261 

to have regulatory significance53, suggesting greater power to detect fpQTLs in TSS-proximal 262 

regions. As such, we reasoned that our observed enrichment was likely due to greater statistical 263 

power to detect, rather than proximal SNPs having a stronger effect on TF binding.  264 

To account for systematic biases in ATAC-seq insertion across samples, we next considered 265 

the differences in insertion patterns on each allele within heterozygous samples. We predicted 266 

that for true fpQTLs, the allele associated with increased binding within heterozygous samples 267 

would also be associated with FP score across all samples. For each fpQTL, we calculated allelic 268 

footprint scores using insertions from the reference and alternate alleles separately within 269 

heterozygous samples (Materials and Methods). We observed that the difference between 270 
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alternate and reference footprint scores was significantly correlated with fpQTL effect size in the 271 

expected direction (Figure 2D).  272 

 273 

  274 

Figure 1. ATAC-seq footprinting analysis can detect genotype-dependent binding events 
(A) Calculation of FP score. TF binding is detectable in ATAC-seq experiments because bound TFs block 
the insertion of Tn5, leaving a site of relatively depleted cutsites within a larger ATAC-seq peak, known as 
a footprint. The PRINT software calculates the footprint (FP) score of a local insertion pattern using a 
supervised regression model trained on the insertion patterns of known binding sites. The resulting FP 
score can be interpreted as the relative likelihood of a binding event, which can depend on the genotype of 
a local SNP. (B) fpQTL discovery. Liver samples were taken from 170 donors, and analyzed by ATAC-seq 
and whole-genome sequencing (WGS). PRINT was used to calculate a footprint score at every SNP 
location in every sample, and for every SNP an FP score was regressed onto SNP genotype across 
samples to calculate a P-value for the strength of association. 
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 275 

  276 

Figure 2. fpQTLs are enriched near transcription start sites (TSSs) 
(A) Manhattan plot. For each SNP, the FP score was regressed onto genotype to calculate a coefficient of 
association (β1). P-values were calculated by testing the null hypothesis that β1 = 0. The vertical line 
represents an FDR-adjusted P-value of 0.05. (B) fpQTL proportions based on TSS-proximity. SNPs were 
binned based on distance to the nearest TSS, and the proportion of SNPs within the bin labeled as fpQTLs 
was calculated. 95% binomial confidence intervals are shown. (C) Promoter fpQTLs have higher effect 
sizes (|β1|) than TSS-distal fpQTLs. fpQTLs were considered within a promoter if the distance to the nearest 
TSS was < 1 kb. (D) For all fpQTLs, the regression β1 (x-axis) is plotted against ΔFP score = alt allelic FP 
score – ref allelic FP score (y-axis), where the allelic FP scores were calculated by considering insertions 
in heterozygous samples separately based on their allele. Purple fpQTLs are concordant between their 
across sample and within-sample effect. The number of fpQTLs is labeled in each quadrant (Fisher’s exact 
test OR = 2.2, P-value = 8.1x10-7). 
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fpQTL effects are concordant with TF binding motifs 277 

 For TFs with high-quality antibody availability, binding sites can be mapped with very high 278 

confidence using chromatin immunoprecipitation sequencing (ChIP-seq) data54. To assess the 279 

accuracy of our footprint binding detection, we compared the locations of our fpQTLs to known 280 

binding locations from liver ChIP-seq data in ENCODE47 (Materials and Methods). After 281 

correcting for multiple testing, we observed that fpQTLs were over-represented in liver ChIP-seq 282 

peaks for 49 of the 121 TFs with available data. In particular, we observed enrichment for several 283 

TFs known to be associated with liver metabolism and disease, including HNF4A55 (OR = 4.1, P 284 

= 6.6x10-16), FOXA1 (OR = 2.6, P = 3.7x10-5), FOXA256 (OR = 2.6, P = 1.5x10-5), and JUND57 285 

(OR = 3.5, P = 1.1x10-10) (Supplementary Table 3, Figures 3A and S3A).  286 

 We next examined how fpQTLs altered the strength of binding motifs underlying these ChIP-287 

seq peaks. Specifically, we assessed whether fpQTLs were “concordant” with the motifs they 288 

overlapped; that is, if the allele with the stronger motif match was associated with a higher FP 289 

score25. Among the fpQTL-motif overlaps that we identified at ChIP-seq peaks, a large proportion 290 

(181/227, 80%) were concordant (Supplementary Table 4, Figure 3B; binomial P-value < 291 

2.2x10-16). Additionally, increasing the motif matching significance (P-value) threshold by a factor 292 

of 10 increased this concordance proportion to 91% (Figure S4). Furthermore, the allelic change 293 

in motif score was significantly correlated with the FP score-inferred change in TF binding (Figure 294 

3C, Spearman’s rho = 0.18, P-value = 5.8x10-3), suggesting that variants with a larger impact on 295 

a given motif are more likely to be concordant.  296 

 To test our hypothesis that fpQTLs represent allele-specific binding, we compared our fpQTLs 297 

to SNPs which showed allele-specific ChIP-seq peaks in the ADASTRA25 database. We found 298 

that our set of fpQTLs were significantly enriched for SNPs with allele-specific binding in ChIP-299 

seq for HepG2 cells and liver (Figure S3C), suggesting that fpQTLs reflect true allele-specific 300 
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binding effects. Taken together, these results suggest that fpQTLs influence TF binding strength 301 

by disrupting the binding sequence motif for the given TF.  302 

 303 

 304 

fpQTLs are significantly enriched in other liver QTLs and lipid GWAS signals 305 

 To assess the role of fpQTLs in regulating gene expression, we investigated the overlap of 306 

fpQTLs with genetic variation associated with expression in liver (i.e., liver eQTLs) from GTEx8, 307 

and caQTLs discovered using the same set of liver samples studied here. We observed a highly 308 

significant enrichment of fpQTLs for liver eQTLs (odds ratio = 4.01, P = 1.1x10-20), and an even 309 

higher enrichment for caQTLs (odds ratio = 29.3, P < 2.2x10-308; Supplementary Table 5). For 310 

the set of n=76 SNPs that were both fpQTLs and eQTLs, the allele associated with increased TF-311 

binding was also associated with increased gene expression in 55 (72%) SNPs (Figure S5A). 312 

This suggests that most of the regulatory elements harboring fpQTLs act as enhancers of gene 313 

expression, where TF-binding promotes transcription, rather than as silencers. An even stronger 314 

directional correspondence was observed for chromatin accessibility, where 344 (93%) 315 

Figure 3. fpQTLs are enriched in ChIP peaks and concordant with underlying sequence motifs 
(A) The expected and observed number of fpQTLs within ChIP peaks for every TF with ChIP data. Liver-
related TFs are labeled in red (see Supplementary Table 3). Expected number of fpQTLs was calculated as 
[#SNPs in ChIP peaks × proportion of SNPs that are fpQTLs]. (B) Number of concordant and discordant 
fpQTLs which overlap given motifs, grouped by TF. Three redundant CTCF motifs were excluded. Motifs from 
JASPAR, matched with P=5x10-4. (C) Comparison of fpQTL effect size with the change in motif score, for all 
fpQTL-motif overlaps. The y-axis represents the regression beta, with positive values indicating an increase 
in binding for the allele with the stronger motif. Spearman coefficient and P-value shown. 
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fpQTL/caQTLs act in the same direction, compared to only 27 in the opposite direction (Figure 316 

S5B).  317 

 We next queried if fpQTLs can account for a proportion of the characterized genetic 318 

component of disease. We examined the overlap of fpQTLs with lead SNPs and their LD proxies 319 

identified by liver-related GWAS (Materials and Methods). fpQTLs were significantly enriched 320 

for GWAS SNPs for four out of five lipid traits; however, we did not observe any fpQTLs 321 

overlapping with GWAS SNPs for BMI, T2D, or MASLD (Supplementary Table 5, Figure 4A). 322 

However, fpQTLs were not depleted for any trait, suggesting that the lack of overlap is in part 323 

driven by the small number of fpQTLs (i.e., low statistical power). 324 

 325 

 326 

 Given that odds ratio enrichment tests do not take into account the LD structure of SNP 327 

associations, we also evaluated enrichment for disease heritability at fpQTLs using stratified LD 328 

Figure 4. fpQTLs are enriched for lipid-associated SNPs 
(A) Enrichment of fpQTLs in GWAS/QTL SNPs for different traits, using odds ratios (OR). GWAS SNPs 
investigated were defined as all SNPs which are either (1) a lead SNP reported in literature, or (2) a proxy 
of a lead SNP with r2 > 0.8. The top three traits have no such GWAS SNPs as an fpQTL (OR = 0). P-values 
come from Fisher's exact test, 95% confidence intervals are shown. Traits which are nominally significant 
(P < 0.05) are annotated with ✱. (B) Enrichment of GWAS heritability in fpQTLs for several traits, calculated 
by stratified LD score regression. P-values are calculated by ldsc using permutations. Error bars show ± 
standard error of enrichment. ldsc can sometimes return negative enrichment values, which are indicated 
for T2D and TG. 
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score regression58. Despite observing very high estimated heritability enrichment for MASLD and 329 

lipid traits (Figure 4B), none of these tests were statistically significant given the fpQTL annotation 330 

was relatively small compared to the entire genome. However, the high heritability enrichment in 331 

traits without a high overlap with lead SNPs or proxies suggests that fpQTLs overlap several sub-332 

significant signals which the GWAS were not powered to detect. Overall, the enrichment of 333 

fpQTLs with GWAS signals was much lower compared to enrichment with other forms of QTL.  334 

Greater chromatin accessibility increases power to detect fpQTLs 335 

We also observed that the likelihood of a SNP being labelled as an fpQTL increased with the 336 

degree of openness of its chromatin peak. Indeed, fpQTLs are located within peaks with a higher 337 

average openness across samples (measured in ATAC-seq fragment counts per million, or CPM) 338 

compared to non-fpQTL SNPs (Figure S6A), and the measured effect size and significance of 339 

fpQTLs is significantly correlated with the average number of Tn5 insertions near the fpQTL 340 

(Figures S6B and S6C). We hypothesize that this effect is due to both (i) enrichment of functional 341 

significance in highly accessible regions58–60, and (ii) greater power to detect footprint activity 342 

when PRINT can consider more Tn5 insertions to calculate FP score. For example, if a TF-bound 343 

SNP is located in a relatively inaccessible peak, then the lack of local insertions will prevent PRINT 344 

from confidently assigning a high FP score, despite the presence of a TF.  345 

We next tested whether chromatin accessibility increases fpQTL power or if this effect is driven 346 

solely by increased functional activity within highly accessible peaks. We elected to measure the 347 

relationship between the average number of insertions near a SNP and its average FP score 348 

across samples. We observed that high insertion counts corresponded to higher FP scores even 349 

after removing SNPs with known regulatory function (Figures S6D-F). This observation suggests 350 

that PRINT skews towards assigning higher FP scores to SNPs near more insertions, regardless 351 

of functional activity. 352 
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The increase in fpQTL power due to chromatin accessibility explains our observation that 353 

fpQTLs are enriched nearer the ends of chromosomes, closer to the telomeres. Of SNPs within 354 

2 Mb of the chromosome ends, 130 (0.08%) are fpQTLs, compared to 563 (0.02%) for the more 355 

central SNPs (odds ratio = 4.3, Fisher’s P-value < 2.2x10-16). These “telomeric-neighboring” 356 

regions were in fact not enriched for the ChIP-seq peaks of any TF, which therefore did not explain 357 

the high concentration of fpQTLs at these locations. Instead, we hypothesize that telomeric-358 

neighboring regions are enriched for fpQTLs because they are more accessible on average than 359 

other regions, therefore increasing fpQTL detection power. Indeed, telomeric-neighboring regions 360 

(within 2 Mb of chromosome ends) had significantly higher insertion density compared to central 361 

regions in all of our liver ATAC-seq samples (Figure S7A). fpQTLs in these telomeric-neighboring 362 

regions resided in peaks with a significantly higher mean CPM and were flanked by a higher 363 

number of Tn5 insertions (Figures S7B and S7C).  364 

In addition to an enrichment of fpQTLs near the ends of chromosomes, the fpQTL Manhattan 365 

plot showed a highly significant signal on chromosome 17, which we mapped to a known common 366 

inversion at the 17q21.31 locus61. Calling inversion haplotypes on our samples and including them 367 

in the regression revealed that the significant SNPs on the ends of the inversion were tagging the 368 

inversion itself, potentially altering TF binding at its boundary regions. Additionally, this correction 369 

revealed four SNPs within the inversion associated with TF binding (Figure S8). Indeed, this 370 

inversion has been implicated in HDL lipid levels and other obesity related traits62, along with brain 371 

morphology and neuroticism63,64.  372 

fpQTLs can be used to fine-map GWAS loci 373 

Unlike GWAS and other forms of QTLs, the trait tested against each SNP in fpQTL discovery 374 

(footprint score) is different at every SNP, meaning test statistics between nearby SNPs are not 375 

correlated due to LD. As a result, fpQTLs provide single-SNP resolution to fine-map GWAS loci 376 

or QTLs by pinpointing a putatively causal SNP among a credible set of GWAS/QTL variants. To 377 
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explore the fine-mapping ability of fpQTLs, we examined GWAS loci for liver traits harboring at 378 

least one significant fpQTL.  379 

First, we examined the lipid-associated SORT1 locus, which has been extensively studied 380 

through experimental validation to determine that the association is driven specifically by 381 

rs12740374, creating a TF binding site65,66. Our fpQTL results identified the same SNP as the 382 

causal variant, given rs12740374 was the most significant at the locus (Figures 5A and 5B). 383 

Assessing the bias-corrected insertions around rs12740374 (see Materials and Methods for 384 

insertion corrections), samples with the alternate allele showed a strong depletion of insertions 385 

directly adjacent to the variant, suggesting a genotype-dependent binding event consistent with 386 

previous results65 (Figure 5C). This rediscovery of a known causal SNP supports the hypothesis 387 

that fpQTL discovery can be a powerful tool in fine-mapping.  388 

We next sought to investigate fpQTLs which could explain less defined GWAS loci. At the lipid 389 

(LDL)-associated ZFPM1 locus, the fpQTL rs55823018 was by far the most significant compared 390 

to adjacent SNPs in partial LD (Figure 5D). This SNP increased TF binding and resided in a ChIP-391 

seq peak for the Retinoid X receptor alpha (RXRA), and concordantly increased the matching 392 

strength of the underlying NR1H4::RXRA sequence motif. A second instance was observed at the 393 

lipid-associated SLC12A8 locus, where the fpQTL rs11710930 overlapped a ChIP-seq peak for 394 

hepatocyte nuclear factor 4 alpha (HNF4A) and was concordant for the underlying motif (Figure 395 

5E). HNF4A is well-established as an important TF for liver function, and has been previously 396 

implicated in liver dysregulation55,67–69. Furthermore, SLC12A8 has been implicated as an effector 397 

gene for T2D risk70, but the role of this locus in lipid levels remains to be investigated. Taken 398 

together with orthogonal ChIP-seq and eQTL results, our fpQTL method adds to the confluence 399 

of evidence implicating this specific variant as causal for increased lipid levels.  400 
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 401 

  402 

Figure 5. fpQTLs can fine-map GWAS loci 
Significance plots show P-values for fpQTLs (top), LDL GWAS (middle), and eQTLs (bottom). (A) SORT1 
locus significance plot. (B) FP score at rs12740374 (at SORT1 locus) across samples based on genotype. 
(C) Bias-corrected Tn5 insertions around rs12740374 (marked with x) based on genotype, aggregated 
across samples. (D) ZFPM1 locus significance plot, with the effect of rs55823018 on the RXRA binding 
motif shown below. (E) SLC12A8 locus significance plot, with the effect of rs11710930 on the HNF4A 
binding motif shown below 
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Discussion 403 

 A significant limitation to GWAS and QTL studies is the unwieldy number of candidate causal 404 

variants due to constraints of LD, making it challenging to pinpoint which among them is truly 405 

causal. Here, we leveraged statistical inference of TF binding likelihood from experimental data 406 

at base-pair resolution to discover fpQTLs, i.e., variants associated with TF binding. We showed 407 

that liver fpQTLs were concentrated in ChIP-seq peaks, eQTLs, caQTLs, and lipid-associated 408 

loci. Additionally, the vast majority of fpQTLs were concordant with underlying sequence motifs, 409 

increasing our confidence that fpQTLs represent SNPs that are very likely to be causal for TF 410 

binding differences. We also observed specific examples of GWAS loci where fpQTL discovery 411 

implicated both a causal variant and a corresponding disrupted TF binding motif. 412 

 The main limitation of this study was the high level of noise in ATAC-seq insertion positions, 413 

resulting in high variance in footprint score despite our large read count. Additionally, we used 414 

ATAC-seq data from bulk tissue samples rather than single-cell samples, which may mask 415 

footprint signals that only occur in a specific cell type. However, given the majority (60%) of liver 416 

cells are hepatocytes71, we are likely capturing most of the footprint signals from hepatocytes 417 

without introducing false signals from mixed cell types. Furthermore, our fpQTL discovery did not 418 

consider the effect that each SNP could have on the Tn5 sequence bias, which weakly influences 419 

the positions where Tn5 is inserted16,72. PRINT corrects for this Tn5 sequence bias, but relies on 420 

the reference genome, and so the bias of the alternative allele is not considered. Another limitation 421 

of this fpQTL discovery effort was the lack of enrichment in several relevant GWAS traits, limiting 422 

their ability to explain disease associations. We propose that this is due to systematic differences 423 

between QTL and GWAS discovery. A recent study showed that compared to eQTL signals, 424 

GWAS signals are further away from transcription start sites and tend to be near genes under 425 

strong selective constraint with more complicated regulatory landscapes10. This published model 426 

suggests that regulatory variants targeting genes with large trait effects (detected by GWAS) will 427 
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be less frequent due to natural selection, therefore reducing QTL detection power. Under this 428 

model, fpQTL discovery would be similarly hindered at genes with large trait effects, leading to 429 

less GWAS enrichment. 430 

 Curiously, all of our ATAC-seq samples showed greater Tn5 insertion density in telomeric-431 

neighboring regions compared to other regions. This warrants further investigation to (1) assess 432 

the consistency of this phenomenon across cell types and experimental parameters, (2) 433 

understand the implication for this bias in peak-calling and multiple-testing correction due to 434 

changes in power, and (3) determine the source of this bias, whether technical or biological. 435 

However, we deemed these questions outside the scope of our current investigation. 436 

 Our results demonstrate that fpQTL characterization enables the capture of genetically 437 

regulated TF binding signals in human liver with a resolution not constrained by LD patterns. The 438 

approach therefore has the potential to identify regulatory SNPs among trait-associated loci from 439 

GWAS or QTL studies, which typically harbor many variants in LD with the causal SNP. fpQTLs 440 

also suggest transcription factor binding as the mechanism by which non-coding GWAS variants 441 

affect disease risk. Overall, our map of genotype-dependent TF binding sites is a valuable 442 

resource for understanding the genetic etiology of complex traits in the context of liver. By 443 

implicating specific regulatory elements in these liver-related traits, our fpQTL discovery method 444 

should improve research aimed at developing novel therapies by prioritizing variants and TFs for 445 

further experimental study. Furthermore, this method can be equally applied to other tissues and 446 

cell types, expanding the number of genetic traits that can be addressed.  447 
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Supplementary Figures 488 

489 

  490 

Figure S1 
(A) 170 ATAC-seq samples plotted along the first two principal components of genotype. The proportion of 
variance explained by each component is shown on the axes labels. The Gencove genotyping results place 
each sample into one of four ancestry categories, which are labeled by color. (B) Distribution of FP scores 
across all samples and variants. The spike corresponds to variants in samples with no insertions within a 200 
bp window, which are all assigned the same FP score by PRINT.  
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Figure S2 
(A) QQ plot of fpQTL discovery. (B) QQ plot of fpQTL discovery separated based on liver eQTL status. 
SNPs in red are significantly associated with the expression in liver of at least one gene. (C) QQ plot of 
fpQTL discovery separated based on liver caQTL status. SNPs in blue are significantly associated with the 
chromatin accessibility of at least one peak, using the same liver samples as fpQTL discovery. (D) Volcano 
plot of fpQTL discovery, with FDR 5% threshold shown. (E) Comparison of P-values calculated using 
regressions with and without covariates included. (F) Correlation between TSS distance and absolute effect 
size (|β1|) for fpQTLs. 
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Figure S3 
(A) Enrichment of fpQTLs in ChiP-seq peaks for different TFs. 
P-values are from Fisher's exact test on the null hypothesis that the true odds ratio is 1. Tests that passed 
an FDR-adjusted P-value threshold of 0.05 are marked with an asterisk. 95% confidence intervals are 
shown. See Supplementary Table 2 for full list of TFs. (B) Enrichment of fpQTLs in motif sites, for motifs 
which do not have corresponding ChIP-seq data. P-values are from Fisher's exact test on the null 
hypothesis that the true odds ratio is 1. Tests that passed an FDR-adjusted P-value threshold of 0.05 are 
marked with an asterisk. 95% confidence intervals are shown. Motifs matched with P=5x10-5. (C) 
Enrichment of fpQTLs with allele-specific ChIP-seq peaks from ADASTRA, in 3 liver-related tissue types. 
P-values come from Fisher's exact test, 95% confidence intervals are shown. 
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Figure S4 
(A) Number of concordant and discordant fpQTLs which overlap given motifs. Motifs from JASPAR, 
matched with P=5x10-5. (B) Comparison of fpQTL effect size with the change in motif score, for all fpQTL-
motif overlaps. The y-axis represents the regression beta, with positive values indicating an increase in 
binding for the allele with the stronger motif. Motifs matched with P=5x10-5. Spearman coefficient and P-
value shown. 

Figure S5 
(A) Footprint score effect size of fpQTLs compared to eQTL effect size. For every fpQTL, the eQTL effect 
size for the eGene with the most significant association was used. SNPs that are also significant eQTLs 
are plotted in red. The number of eQTLs in each quadrant is labeled. (B) Footprint score effect size of 
fpQTLs compared to caQTL effect size (from Rasqual). For every fpQTL, the caQTL effect size for the peak 
with the most significant association was used. SNPs that are also significant caQTLs are plotted in blue. 
The number of caQTLs in each quadrant is labeled.  
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Figure S6 
(A) Average CPM of a SNPs occupied peak across samples, for both fpQTLs and non-significant SNPs. 
(B,C) The mean number of local Tn5 insertions for fpQTLs (number of insertions within 100 bp,  the window 
used by PRINT to calculate FP score) across samples, compared with (B) the absolute value of the 
regression beta (effect size), or (C) the -log10 P-value from regression. Spearman correlation coefficients 
and P-values from the correlation test are shown. (D,E,F) SNPs were placed into quintiles based on the 
average number of local (within 100 bp) Tn5 insertions across samples, and the distribution of average FP 
score across samples is shown for each quintile. This was done for (D) all SNPs, (E) excluding SNPs that 
overlapped a ChIP-seq peak in a liver cell type, and (F) excluding SNPs which were significant liver eQTLs, 
(Materials and Methods). 
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Figure S7 
(A) The genome was split into bins of 200 bp (the window size PRINT uses to calculate FP score) and the 
number of insertion sites was measured for each bin. For every sample, the average number of insertions 
per bin is shown for both near-telomeric bins (within 2 Mb of a chromosome end, y), and central bins (x). 
(B) The average CPM across samples of the peak occupied by a fpQTL, for both near-telomeric fpQTLs 
(within 2 Mb of a chromosome end, green) and central fpQTLs (grey). (C) The average CPM across 
samples of the peak occupied by any SNP, for both near-telomeric SNPs (within 2 Mb of a chromosome 
end, green) and central SNPs  (grey). 

Figure S8 
fpQTL significance plot at the chr17 inversion without adjusting for the inversion (top) and after including 
the inversion genotype as a covariate in the regression (bottom).  
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