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Dramatically expanding our ability for clinical genetic testing for inherited conditions and complex diseases such as
cancer, next generation sequencing (NGS) technologies are allowing for rapid interrogation of thousands of genes
and identification of millions of variants. Variant annotation, the process of assigning functional information to
DNA variants based on the standardized Human Genome Variation Society (HGVS) nomenclature, is a fundamental
challenge in the analysis of NGS data that has led to the development of many bioinformatic algorithms. In this
study, we evaluated the performance of 3 variant annotation tools: Alamut® Batch, Ensembl Variant Effect Predictor
(VEP), and ANNOVAR, benchmarked by a manually curated ground-truth set of 298 variants from the medical exome
database at the Molecular Diagnostics Laboratory at Lurie Children's Hospital. Of the 3 tools, VEP produces the most
accurate variant annotations (HGVS nomenclature for 297 of the 298 variants) due to usage of updated gene transcript
versions within the algorithm. Alamut® Batch called 296 of the 298 variants correctly; strikingly, ANNOVAR exhib-
ited the greatest number of discrepancies (20 of the 298 variants, 93.3% concordancewith ground-truth set). Adoption
of validated methods of variant annotation is critical in post-analytical phases of clinical testing.
Introduction

Genetic testing has witnessed a transformative revolution in the last de-
cade with the introduction of next generation sequencing (NGS)
technologies.1–3 With its unprecedented cost-effective scalability, continu-
ously improving efficiencies, and diagnostic yield, NGS has not only
allowed for an exponential increase in the elucidation of genetic causes for
both rare Mendelian and complex heterogenous disorders, but it is also prov-
ing to be an essential tool for identifying therapeutic targets in neoplasms,
and screening for prenatal aneuploidy and pediatric onset disorders.4–7 The
rapid proliferation of diagnostic tests, from small hotspot mutation and
large panels to whole exome and whole genome platforms, has allowed for
rapid interrogation of tens of thousands of genes and identification ofmillions
of variants, many of which we have never seen before.8–10

While whole genome sequencing results in the detection of about 4 mil-
lion variants per individual, exome sequencing that covers only the 1%
protein-coding portion of the genome, detects about 20 000 variants.11,12

Though most of these variants likely only contribute to human population
diversities since a single exome harbor only about 100–200 potential
disease-causing changes, identification of the 1 or 2 disease-causing vari-
ants among these many alterations is a classic needle in the haystack
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problem that ends being a meticulous and arduous process as part of the
NGS bioinformatics pipeline.13 Thus, translating sequencing information
into clinical practice in this era of genomic testing is limited by the accurate
annotation and interpretation of the variants rather than detection of vari-
ants alone. This discovery of novel genetic variants at this extraordinary
pace has also reiterated the need of a standardized approach for describing,
documenting, and communicating genetic variants, first recognized by the
scientific community in the pre-NGS era,14,15 and has resulted in the wide-
spread adoption of the Human Genome Variation Society (HGVS) nomen-
clature system by research and clinical genetic testing laboratories.16–19

Variant annotation is the process of describing the nature and the effect
of the genomic aberrations produced by a variant that involves adding aux-
iliary metadata to quality filtered raw putative variant calls.20 The most
basic annotations will classify variants based on their relationship to
genes, their transcripts, and other key features such as exons, introns, and
splice sites, in addition to frequently providing information regarding
known allele frequencies, predicted deleterious effects, and involvement
in known human diseases and phenotypes.21

Variant annotation is dependent wholly on the genemodels withinwhich
they reside, and has seen a prolific growth in both capability and scale in the
past decades, evolving into its own research field.21,22 Conforming variant
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coordinates from the transcript to the genome, and vice versa, is a compli-
cated process that is dependent on the genomic and transcript sequence ac-
cessions and versions, and the alignment tools used, consequently resulting
in significantly different locations of the variants.23,24

Both theoretical and empirical based variant annotation approaches
have been used. A series of empirically based tools including the open
source SnpEff,25 Variant Effect Predictor (VEP, Ensembl),26 VarReporter,27

ANNOVAR,28 the commercial Alamut Batch,29 and tools developed by indi-
vidual laboratories such as Invitae,30 for outputting HGVS syntax from next
generation sequencing data have gained prominence over the years. A signif-
icant proportion of these tools enable variant annotation based on Ensembl
transcripts while parallelly leveraging the rich annotations in dbNSFP,31 a
database of curated annotations and functional effect predictions for all po-
tential non-synonymous and splice site SNVs in the human reference genome.

Alamut® Batch (Sophia Genetics, formerly Interactive Biosoftware), a li-
censed gene annotation software, is widely used in clinical laboratories, in-
cluding Lurie Children's Molecular Diagnostics Lab, for supporting variant
annotation and classification using HGVS standards. However, the efficiency
of performing variant annotation by Alamut® Batch is limited by its licensing
structure, and thus prompted our evaluation of other potential,well supported
open-source replacement tools like VEP. In this study,we compare the concor-
dance of variant nomenclature generated by the open source ANNOVAR and
Variant Effect Predictor (VEP), and the commercial Alamut® Batch.

Materials and methods

A test set of 298 intronic and exonic variants across 191 genes, previ-
ously classified and reviewed in clinical reports by the Molecular Diagnos-
tics Laboratory at Lurie Children's Hospital was curated and used for this
study. These variants were generated by targeted gene panel sequencing
using the ~4700 gene medical exome panel on 105 patients [Fig. 1].
Briefly, 150 bp paired end reads generated using the Illumina NextSeq
550 at an average depth of 250 per sample were mapped to the human
Fig. 1.Overview of the targeted gene panel sequencing pipeline using the ~4700 gene m
exonic variants across 191 genes evaluated in this study. Briefly, 150 bp paired end read
were mapped to the human genome GRCh38/hg38 using BWA v0.7.12 and GATK v4.
reviewed using Alamut® Visual (v2.15, Sophia Genetics) and Integrative Genomics Vi
necessary. After the validation process, the variants were distributed with respect to
Insertions, and Complex variants), thereby constituting the ground-truth set, and subse
Genetics), Ensembl Variant Effect Predictor (VEP v105.0, 2017) and ANNOVAR (v. Oct
the 3 software packages.
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genome GRCh38/hg38 using Burrows Wheeler aligner (BWA) v0.7.12, se-
quence alignment and map (SAM) files converted to binary alignment and
map (BAM) format and sorted using SAMtools v1.9. Local realignment
around the known indels was performed by GATK v4.1.4.1 on the sorted
BAM files and Picard-tools v2.18.27 was used to remove Polymerase
chain Reaction (PCR) duplicates. Finally, base quality score recalibration
was performed using GATK again to generate the VCF (Variant Call File),
a de facto standard used in reporting genetic variants.

The 298 variants represented the following 191 genes: ACTA2,
ADAM17, ADAMTS10, ADAMTS17, ADAMTSL4, ADSL, AICDA, AK2,
ALDH5A1, ALDH7A1, ANKRD26, AP3D1, ASNS, ATM, ATRX, BGN,
BLOC1S6, BTK, C1QC, C1S, C2, C3, C5, C6, C9, CACNA2D2, CARMIL2,
CCDC151, CD247, CD46, CD79A, CDAN1, CFB, CFHR4, CHD7, CIITA,
CLN6, CLPB, CNTN2, CNTNAP2, COL12A1, COL1A2, COL3A1, COL5A1,
COL5A2, COLEC11, CR2, CSF2RB, CSF3R, CTC1, CTSC, CXCR4, DEPDC5,
DGKE, DNAH11, DNAH5, DOCK8, DRC1, DYNC1H1, ELANE, ENG, EPG5,
EPHB4, ERCC6L2, FANCA, FANCB, FANCD2, FANCI, FANCL, FASN, FAT4,
FBN1, FBN2, FCGR2A, FOXP3, GABBR2, GABRD, GAMT, HRAS, HYOU1,
ICAM1, IFIH1, IFNGR2, IKBKG, IL10RA, IL12RB1, IL17RA, IL17RC, IL7R,
JAK3, JMJD1C, KCND2, KCNT1, KMT2D, KRIT1, LCK, LIG1, LPIN2, LRBA,
LTBP2, LYST, MASP1, MASP2, MECP2, MEFV, MICU1, MKL1, MLH1,
MSH2, MSH6, MTHFD1, MVK, MYH11, MYLK, NALCN, NF1, NFKBIA,
NLRC4, NLRP1, NOD2, NOTCH1, NRXN1, OFD1, PARN, PIGQ, PLCB1,
PLCG2, PLOD1, PNKD, POLE2, POLG, PRICKLE1, PSTPIP1, PTPN11,
PTPRC, RAF1, RBCK1, RECQL4, RFXANK, RFXAP, RMRP, RNASEH2B,
RNF213, RNF31, RTEL1, RUNX1, RYR3, SBDS, SCN3A, SCN8A, SERPINA1,
SERPING1, SETD2, SLC13A5, SLC25A22, SLC29A3, SLC2A10, SMARCAL1,
SOS1, SOS2, SPINK5, ST3GAL3, STAT3, STAT5B, STRADA, SZT2, TBK1,
TGFBR1, TICA1, TINF2, TIRAP, TMC6, TMC8, TNFRSF13B, TNFRSF1A,
TNXB, TPP1, TPP2, TRAF3IP2, TSC1, TSC2, TTC37, TTC7A, TYK2,
UNC13D, VPS13B, VPS45, WRAP53, ZBTB24, ZCCHC8, and ZNF341.

The 298 variants were manually reviewed using Alamut® Visual
(v2.15, Sophia Genetics, formerly Interactive Biosoftware) and Integrative
edical exome panel on 105 patients used to generate the test set of 298 intronic and
s generated using the Illumina NextSeq 550 at an average depth of 250 per sample
1.4.1 used to generate the variant call file (VCF). The 298 variants were manually
ewer (IGV v2.10.2),[10] and orthogonally confirmed with Sanger sequencing when
their classification (Single nucleotide variants (SNVs), Deletions, Duplications,
quently independently annotated using Alamut® Batch (v1.4.2, July 2015, Sophia
ober 24, 2019). Custom functions were written in python to compare the results of
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Genomics Viewer,32 (IGV v2.10.2), and orthogonally confirmed with
Sanger sequencing when necessary. As a HGVS nomenclature tool,
Mutalyzer,33 (v2.0.35), was used to verify the outputted data with respect
to the standard HGVS nomenclature guidelines. After this validation pro-
cess, the variants were distributed with respect to their classification (Sin-
gle nucleotide variants (SNVs), Deletions, Duplications, Insertions, and
Complex variants), thereby constituting the ground-truth set.

Subsequently, these 298 variants were independently annotated using
Alamut® Batch (v1.4.2, July 2015, Sophia Genetics, formerly Interactive
Biosoftware), Ensembl Variant Effect Predictor (VEP v105.0, 2017) and
ANNOVAR (v. October 24, 2019). For single nucleotide variations
(SNVs), the substitutions were further divided into missense variants
(219 variants), which causes a substitution in the amino acid residues,
and is a non-synonymous change; nonsense variants (19 variants), which
prematurely end the protein with a stop codon, also a non-synonymous
change; and silent variants (19 variants), which had no effect on the
Fig. 2. Relative concordance of variant nomenclature generated by ANNOVAR, Variant
ground-truth set. Variant types evaluated were: single nucleotide variants (SNVs), del
The majority of the variants were classified as SNVs, followed by deletions, duplicat
packages - Alamut® Batch, Variant Effect Predictor (VEP), and ANNOVAR. The relati
unable to identify one of the variants, and ANNOVAR was unable to annotate 4 chang
truth and the 3 variant annotation tools - Alamut® Batch, Variant Effect Predictor (VE
between the 3 software packages. VEP and Alamut® Batch were 99% concordant, h
discrepant variants called by ANNOVAR. Variant types evaluated were: single nucl
undefined (Undef). The majority of the discrepancies were classified as SNVs and ANNO

3

amino acid, and is a synonymous change. The effect of 39 variants is
not predicted to have an effect on the amino acid since those variants
were in the intronic region. Genomic variants were recognized as du-
plications if the alternate nucleotides were a repeat of the sequence
prior to the genomic location of the variant. Complex variants were
identified when multiple base pairs were involved and can be de-
scribed as having deleted nucleotide(s) as well as inserted nucleotide
(s). Custom functions were written in Python to compare the results
from the 3 software packages (https://github.com/sachT19/Variant-
Nomenclature-Comparer).

Previous manual evaluation for each of the software was completed by
Lurie's Bioinformatics team. Alamut Batch annotations were part of clinical
testing at Lurie Children's, therefore a standardized operating procedure
was followed by different bioinformaticians. VEP annotations were run by
a bioinformatician and ANNOVAR was added as an additional tool subse-
quently and the annotation process performed by ST.
Effect Predictor (VEP), and Alamut® Batch. A. Distribution of variant types in the
etions (del), duplications (dup), insertions (Ins), and complex (complex) variants.
ions, complex, and insertions. B. Variant distribution profile of the 3 annotation
ve annotation profiles are very similar between the 3 software, although VEP was
es. C. Exact concordance of HGVS syntax at the coding level between the ground
P), and ANNOVAR. A total 278 of the 298 variants were found to be concordant
owever, ANNOVAR produced 20 discrepancies. D. Distribution profile of the 20
eotide variants (SNVs), deletions (del), duplications (dup), insertions (Ins), and
VAR was unable to annotate four variants.

https://github.com/sachT19/Variant-Nomenclature-Comparer
https://github.com/sachT19/Variant-Nomenclature-Comparer


Table 1
Detailed characterization of the functional annotation of the discrepancies between the 3 variant annotation packages - Alamut®Batch, Variant Effect Predictor (VEP), and ANNOVAR. Amajority of the discrepancieswere due to the
various transcripts used by the 3 different software.

Chrom Gene Alamut Batch
cNomen

Alamut Batch
pNomen

VEP cNomen VEP pNomen ANNOVAR cNomen ANNOVAR
pNomen

Ground Truth
cNomen

Ground
Truth
pNomen

Ground
Truth
Location

Pathogenicity

Discordant variants between alamut batch and ground truth

1 CSF3R NM_000760.3:c.2092C > T p.Arg698Cys
NM_000760.4:
c.2041–30C > T .

NM_000760:exon17:c.2041–30C
> T .

NM_00760.4:
c.2041‐30C
> T p.? Intronic VUS

9 ERCC6L2 NM_020207.4:c.1408G > T p.Val470Phe
NM_020207.7:c.1375G >
T NP_064592.3:p.Val459Phe NM_020207:exon8:c.1375G > T p.V459F

NM_020207.7:c.1375G >
T p.Val459Phe Exonic VUS

Discordant variants between VEP and ground truth

X BTK NM_000061.2:c.-4456C > T p.? . . NM_000061.2:
c.-4456C > T . NM_000061.2:c.-4456C

> T p.? 5'UTR VUS

Discordant variants between ANNOVAR and ground truth

2 FANCL NM_018062.3:c.1096_1099dup p.Thr367
Asnfs*13

NM_018062.4:
c.1096_1099dup

NP_060532.2:p.Thr367
AsnfsTer13

NM_018062:exon14:
c.1099_1100insATTA p.T367fs NM_018062.3:

c.1096_1099dup
p.Thr367
Asnfs*13 exonic Pathogenic

3 IL17RC NM_153461.3:c.1674_1676del p.Leu559del NM_153461.4:
c.1674_1676del NP_703191.2:p.Leu559del NM_153461:exon17:

c.1672_1674del p.558_558del NM_153461.3:
c.1674_1676del p.Leu559del exonic VUS

7 COL1A2 NM_000089.3:c.432 + 2 T > A p.? NM_000089.4:c.432 + 2
T > A . UNKNOWN . NM_000089.3:c.432 +

2 T > A p.? intronic VUS

7 DNAH11 NM_001277115.1:c.10691 + 2
T > C p.?

NM_001277115.2:
c.10691 +
2 T > C

. UNKNOWN .
NM_
001277115.1:c.10691 +
2 T > C

p.? intronic VUS

7 DNAH11 NM_001277115.1:
c.13523_13543dup

p.Ala4508_
Leu4514
dup

NM_001277115.2:
c.13523_
13543dup

NP_001264044.1:
p.Ala4508_
Leu4514dup

NM_001277115:exon82:
c.13521_13522
insGCTGGAGTGGCTCTGCTTCTA

p.L4507delins
LAGVALLL

NM_
001277115.1:c.13523_
13543dup

p.Ala4508_
Leu4514dup exonic VUS

8 VPS13B NM_017890.4:c.5513_5527del p.Asp1838_
Thr1842del

NM_017890.5:
c.5513_5527del

NP_060360.3:p.Asp1838_
Thr1842del

NM_017890:exon34:
c.5511_5525del p.1837_1842del NM_017890.4:

c.5513_5527del
p.Asp1838_
Thr1842del exonic VUS

9 COL5A1 NM_000093.4:c.2153del p.Gly718
Alafs*86 NM_000093.5:c.2153del NP_000084.3:p.

Gly718AlafsTer86 NM_000093:exon23:c.2152delG p.G718fs NM_000093.4:c.2153del p.Gly718
Alafs*86 exonic VUS

10 MICU1 NM_006077.3:c.1A > G p.? NM_006077.4:
c.1A > G NP_006068.2:p.Met1? NM_006077:exon11:c.1187-62G

> G NM_006077.3:c.1A > G p.? exonic VUS

11 WRAP53 NM_018081.2:c.1566_1567del p.Pro523
Argfs*6

NM_018081.2:
c.1566_1567del

NP_060551.2:p.
Pro523ArgfsTer6

NM_018081:exon10:
c.1564_1565del p.A522fs NM_018081.2:

c.1566_1567del
p.Pro523
Argfs*6 exonic VUS

13 RFXAP NM_000538.3:c.524_527del p.Lys175
Argfs*8

NM_000538.4:
c.524_527del

NP_000529.1:p.
Lys175ArgfsTer8 NM_000538:exon1:c.523_526del p.K175fs NM_000538.3:

c.524_527del
p.Lys175
Argfs*8 exonic VUS

16 TSC2 NM_000548.4:c.599 + 5_599
+ 7del p.?

NM_000548.5:c.599 +
5_599
+ 7del

. NM_000548:exon6:r.spl .
NM_000548.4:c.599 +
5_599
+ 7del

p.? intronic VUS

17 WRAP53 NM_018081.2:c.1564dup p.Ala522
Glyfs*8 NM_018081.2:c.1564dup NP_060551.2:p.

Ala522GlyfsTer8 NM_018081:exon10:c.1558dupG p.C519fs NM_018081.2:c.1564dup p.Ala522
Glyfs*8 exonic VUS

17 FASN NM_004104.4:c.5113C > T p.Arg1705Trp NM_004104.5:c.5113C >
T

NP_004095.4:p.
Arg1705Trp

NM_004104:exon29:c.5098 +
98C > T

NM_004104.4:c.5113C >
T

p.Arg1705
Trp exonic VUS

17 NF1 NM_000267.3:c.6834del p.Lys2279
Asnfs*19 NM_000267.3:c.6834del NP_000258.1:p.Lys2279

AsnfsTer19 NM_000267:exon45:c.6833delC p.T2278fs NM_000267.3:c.6834del p.Lys2279
Asnfs*19 exonic VUS

17 TNFRSF13B NM_012452.2:c.204dup p.Leu69
Thrfs*12 NM_012452.3:c.204dup NP_036584.1:p.

Leu69ThrfsTer12 NM_012452:exon3:c.204dupA p.L69fs NM_012452.2:c.204dup p.Leu69
Thrfs*12 exonic Pathogenic

19 ICAM1 NM_000201.2:c.1546C > T p.Gln516* NM_000201.3:c.1546C >
T NP_000192.2:p.Gln516Ter NM_000201:exon6:c.1426 + 92C

> T
NM_000201.2:c.1546C >
T p.Gln516* exonic VUS

19 JAK3 NM_000215.3:c.566 + 6_566
+ 41del p.?

NM_000215.4:c.566 +
6_566
+ 41del

. NM_000215:exon5:r.spl .
NM_000215.3:c.566 +
6_566
+ 41del

p.? intronic Likely
benign

20 KMT2D NM_003482.3:c.2992C > A p.Pro998Thr NM_003482.4:c.2992C >
A NP_003473.3:p.Pro998Thr NM_003482:exon11:c.2481A > T p.Q827H NM_003482.3:c.2992C >

A p.Pro998Thr exonic Likely
benign

X DKC1 NM_001363.4:c.1512_1514dup p.Lys505dup NM_001363.5:
c.1512_1514dup NP_001354.1:p.Lys505dup NM_001363:exon15:

c.1491_1492insAAG p.T497delinsTK NM_001363.4:
c.1512_1514dup p.Lys505dup exonic Likely

benign

X MECP2 NM_004992.3:c.806del p.Gly269
Alafs*20 NM_004992.4:c.806del NP_004983.1:p.

Gly269AlafsTer20 NM_004992:exon4:c.806delG p.G269fs NM_004992.3:c.806del p.Gly269
Alafs*20 exonic Pathogenic
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Results

In this study, we evaluated the performance of 3 variant annotation soft-
ware packages: the commercial Alamut® Batch, and the open source
Ensembl Variant Effect Predictor (VEP), andANNOVAR, against amanually
curated ground-truth set of 298 variants from the medical exome database
at the Molecular Diagnostics Laboratory at Lurie Children's Hospital. All 3
platforms generate transcript and protein-based variant nomenclature
from genomic coordinates according to the guidelines by the HGVS. Our
analysis of the 298 variants revealed that a vast majority of them were sin-
gle nucleotide variants (SNVs, 92.6%) in the ground-truth set; the rest com-
prise a smaller number of deletions, duplications, complex, and insertions
[Fig. 2a]. SNVs are the most prevalent form of genetic variants and have
been shown to play a potential role in the predisposition of disease.34

Although the input transcript alignments for VEP, ANNOVAR, and
Alamut® Batch were identical, the tools produced a different number
of transcripts and annotations. As shown in Fig. 2b, individually, all 3
tools - Alamut® Batch, VEP, and ANNOVAR - exhibited similar annota-
tion profiles with regards to distribution of variant types, although VEP
was unable to identify one of the variants, and ANNOVAR was unable to
annotate 4 changes.

To investigate the degree of concordance between the 3 software pack-
ages, we compared the variant annotation calls with reference to the
ground-truth set.When the annotations from all 3 software tools are exactly
equivalent at the coding level, it is referred to as 100% concordance. A total
278 of the 298 variants were found to be concordant between the 3 soft-
ware packages (Fig. 2c). While Alamut® Batch and VEP exhibited compa-
rable accuracy and precision with the ground truth with >99%
concordance, ANNOVAR exhibited the greatest number of discrepancies
(20 of the 298 variants, 93.3% concordance), a majority of which were
non-SNVs (13/20) [Fig. 2c and d].

The functional annotation of the discrepancies between the 3 software
packages are further characterized in Table 1. As observed for the 2 discrep-
ancies in the CSF3R and the ERCC6L2 gene, the NM transcript versions be-
tween Alamut® Batch and VEP are different, resulting in varying genomic
coordinates, and thus, differing nomenclature based on the locations in the
gene transcript versions. In the case of the CSF3R gene, while Alamut®
Batch called the variant as exonic, VEP was in agreement with the ground
truth in calling the alteration as intronic. In some cases, the implications
of annotating on a different region of the gene can be severe and result in
an incorrect diagnosis of the patient's condition.35 For the third discrepancy
between Alamut®Batch and VEP, present on the BTK gene, the former cor-
rectly identified it as a 5´ UTR variant, while the latter was unable to
annotate it.

Of the 20 discrepancies between ANNOVAR and the ground truth, 16
were exonic, while 4 were intronic. The transcript version for ANNOVAR
was not provided by the software, so the cause for these discrepancies is un-
known. For the 4 variants that it was unable to call, 2 were splicing variants
and 2 were intronic variants. These 20 discrepancies additionally exhibit a
spectrum of pathogenicity, ranging from likely benign to pathogenic. An
overwhelming majority of the variants (14/20) were classified as Variants
of Unknown Significance (VUS), so their phenotypic effect has not been dis-
covered yet. Despite substantial progress in variant detection genome-wide,
a significantmajority of annotated genes have yet to be assigned function in
the context of human disease traits.36

Discussion

Based on this data, it is evident thatwith respect to the HGVS nomencla-
ture standards and clinical integrity, VEP has produced most accurate vari-
ant annotations. The inconsistencies in the datawere observed in SNVs, and
with the exception of the upstream gene variant, VEP was able to correctly
identify and produce the HGVS nomenclature for 297 out of 298 variants.
On the other hand, Alamut® Batch called 296 out of the 298 variants cor-
rectly. Performing significantly worse than the former 2 softwares,
ANNOVARwas only able to correctly annotate 278 out of the 298 variants.
5

Similar observations have been reported by other studies evaluating the
performance of other variant annotation tools. McCarthy et al. (2014) re-
corded 551 983 concordant variants out of the 637 841 (86.5%) between
ANNOVAR and VEP; the discrepancies arising due to a difference in tran-
script versions.24 A 92.6% concordance (100/108 variants) between SnpEff
and VEP was reported by Yen et al. (2017).25

To our knowledge, our study is the first relative performance evaluation
of all 3 tools - ANNOVAR, Alamut® Batch, and VEP. Due to the advantage
of the VEP algorithm to default the usage of the latest transcript version and
unlimited licensing requirements, the Lurie Molecular Diagnostics Labora-
tory has decided to incorporate VEP as the variant annotator replacing
Alamut® Batch.

While the chemistries of NGS library generation havematured and costs
of sequencing have greatly declined over the last decade, the primary chal-
lenges facing a clinical genetic testing laboratory are in the expeditious
analysis of large amounts of genetic data and interpretation of their clinical
significance, as the scope of testing has approached exome and genome
scales. While extensive cataloging of the human genetic variation is hap-
pening at a rapid pace, accurate detection and annotation of genetic vari-
ants are crucial to ensuring pediatric patients are receiving an accurate
molecular diagnosis for their genetic conditions. Accurate identification
and annotation of genetic variants will enable the establishment of substan-
tial literature and information on the genetics of specific disease areas.
Without accurate genetic variant identification and annotation to form
the basis of a strong scientific literature, clinical interpretation of Variants
of Unknown Significance (VUS) will continue to be a challenge for clinical
diagnostics. Therefore, adoption of appropriate and validated methods of
variant annotations is critical in the post analytical phases of clinical
testing.
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