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ABSTRACT

Advances in sequencing technologies have acceler-
ated the sequencing of new genomes, far outpacing
the generation of gene and protein resources
needed to annotate them. Direct comparison and
alignment of existing cDNA sequences from a
related species is an effective and readily available
means to determine genes in the new genomes.
Current spliced alignment programs are inadequate
for comparing sequences between different
species, owing to their low sensitivity and splice
junction accuracy. A new spliced alignment tool,
sim4cc, overcomes problems in the earlier tools by
incorporating three new features: universal spaced
seeds, to increase sensitivity and allow compari-
sons between species at various evolutionary
distances, and powerful splice signal models
and evolutionarily-aware alignment techniques, to
improve the accuracy of gene models. When
tested on vertebrate comparisons at diverse
evolutionary distances, sim4cc had significantly
higher sensitivity compared to existing alignment
programs, more than 10% higher than the closest
competitor for some comparisons, while being
comparable in speed to its predecessor, sim4.
Sim4cc can be used in one-to-one or one-to-many
comparisons of genomic and cDNA sequences, and
can also be effectively incorporated into a high-
throughput annotation engine, as demonstrated by
the mapping of 64 000 Fagus grandifolia 454 ESTs
and unigenes to the poplar genome.

INTRODUCTION

Advances in DNA sequencing will bring a significant
growth in the number and diversity of available genomes
over the next few years. More than 100 animals and
50 plants have been sequenced to various degrees

of completion and more are slated to be sequenced
(http://www.ncbi.nlm.nih.gov/genomes/leuks.cgi; http://
www.genome.gov/10002154). With costs falling sharply
and increased accessibility to sequencing technologies,
it will soon become feasible for individual investigators
to sequence their species of interest. To be useful to
researchers, these genomes will need to be analyzed to
determine genes and other functional elements. While
new genome sequencing projects are progressing at a
fast pace, however, the generation of expressed DNA
(cDNA, EST, mRNA) and protein sequences needed to
annotate them has been slow (1). Moreover, sequencing of
full-length mRNA sequences critical for annotation qual-
ity has focused on a handful of high-priority species (2–5).
An economical and increasingly popular approach is to
generate mixed collections of resources from multiple
closely related organisms and share them across several
projects (http://www.fagaceae.org). Mapping gene infor-
mation already available in databases provides an efficient
means to annotate the new genomes, one which requires
fast and accurate alignment tools that can be readily used,
with little or no human intervention, for a variety of
comparisons.
Tools for aligning cDNA and genomic sequences typi-

cally have been designed for high sequence similarity and
lose power in comparisons across species, or are too slow
to handle large annotation tasks. Indeed, programs
such as sim4 (6), Spidey (7), BLAT (8), MgAlignIt (9),
ESTmapper (10) and GMAP (11) use heuristic alignment
methods to align sequences of the same species efficiently
and with high accuracy, but their performance drops
significantly as the sequence similarity decreases. Only a
few of these programs have been adapted to aligning
sequences cross-species. For instance, BLAT translates
both the query and the database into protein sequences
before matching and GMAP uses an adjusted parameter
set, but the quality of output is below what is required for
automated annotation. Other tools, such as GeneSeqer
(12), EST_GENOME (13) and EXALIN (14), employ
probabilistic or exact dynamic programming methods
and are capable of aligning sequences cross-species, but
lack the speed required for whole-genome annotation

*To whom correspondence should be addressed. Tel: +1 301 405 9901; Fax: +1 301 314 1341; Email: florea@umiacs.umd.edu
Present addresses:
Leming Zhou, Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Liliana Florea, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.

� 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



and are still limited in the range of evolutionary distances
they address.
Computationally, aligning a cDNA with a genomic

sequence containing that gene entails partitioning the
cDNA into exons and the genomic sequence into exons
and introns, such that exons are similar between the two
sequences except for a few differences caused by sequen-
cing errors and polymorphisms. Additionally, introns
must start and end with specific splice signals (GT–AG
is the most common). In comparisons between species,
evolutionary mutation and gap patterns compound
the differences, increasing the difficulty of alignment.
Thus, a cross-species spliced alignment tool must be able
to handle sequence differences arising from a variety of
sources and to correctly identify the splice junctions, and
it must do so efficiently and without user intervention
to allow application to large automated genome annota-
tion projects. By far the main challenge that confronts
existing cross-species alignment tools is their low sensitiv-
ity, leading in turn to incomplete gene models and poor
splice junction accuracy. Further challenges arise from
differences in gene models caused by evolutionary block
insertion and deletion events.
Among the most important factors for program sensi-

tivity is the match pattern used to identify exact or
near-exact word matches between the sequences, called
the seed. The traditional blast (15) seed required an exact
match of 11 contiguous positions (11111111111), and is
called continuous. This seed has been adopted by most
alignment algorithms until its limitations have recently
been revealed (16). To improve sensitivity, spaced seeds
allow mismatches at specified positions in the seed pattern.
Judiciously chosen spaced seeds that take into account the
characteristics of the alignment achieve significantly higher
sensitivity than continuous seeds (17,18), and some have
already been successfully implemented into whole-
genome alignment programs such as PatternHunter (16)
and blastz (19). Alignments of gene sequences have
characteristics that differentiate them from genomic
alignments, including higher order dependencies between
positions (20), transition-transversion biases (21) and
3-periodicity due to their codon structure. We recently
incorporated these features into new mathematical
models and were able to design improved seeds for
cross-species cDNA-to-genome alignment (22). An addi-
tional practical consideration for developing alignment
tools, especially as the number of species-to-species
comparisons increases, is their applicability range.
Designing seeds for even one comparison is computation-
ally expensive. An economical alternative is to identify
a small number of program parameters that perform
well on a large number of comparisons and thus can be
seamlessly used without regard to the species compared.
We recently characterized and identified such seeds,
which we termed universal, for a large number of verte-
brate comparisons (23,24), and incorporate them into our
program sim4cc.
Starting from the design principles above, we developed

an algorithm and software tool, called sim4cc (sim4
for cross-species comparisons), for aligning cDNA
and genomic sequences between species at various

evolutionary distances. Sim4cc is built on the foundation
of our earlier program sim4 (6), one of the earliest splice-
d-alignment tools, but has incorporated significant
changes to adapt it to cross-species comparisons, includ-
ing universal spaced seeds designed for a wide range of
species comparisons, more sophisticated splice site models
and evolutionarily-aware alignment algorithms. Like its
predecessor, sim4cc is designed to align a cDNA with a
genomic region containing a homolog of that gene, but it
can be incorporated easily into a high-throughput genome
annotation engine. Moreover, with its small memory
footprint and user-friendly interface, it is well suited for
use by individual researchers who wish to analyze their
genomic sequence of interest on their local computer.
Source code for the program is available free of charge
from our web site http://www.cbcb.umd.edu/software/
sim4cc.

MATERIALS AND METHODS

We first describe the foundation of sim4cc, followed by
improvements.

Basic Sim4cc algorithm

Like sim4 (6), sim4cc has the following stages.

(i) Determining ‘exon cores’: A blast-like search detects
seed matches between the sequences and extends
them to gap-free local alignments (MSPs), scoring
1 for a nucleotide match, �1 for a transition and �3
for a transversion. A maximally scoring subset of
the MSPs is selected using sparse dynamic program-
ming, and neighboring MSPs are merged to form
‘exon cores’. This initial coarse gene structure is
then gradually refined in the following stages.

(ii) Exon refinement: Gaps between consecutive ‘exon
cores’ are filled with two alignment procedures:
the first, a fast greedy sequence-alignment algorithm
that extends the exons toward each other; and the
second, a new blast-like search invoked with more
permissive parameters to find new, previously
missed exons.

(iii) Intron refinement: Intron boundaries are reposi-
tioned, if necessary, to better conform to the con-
sensus splice signals (GT–AG). The best intron
position is chosen based on a score that combines
splice signal strength with the quality of alignment
in the surrounding exons. The procedure allows for
non-canonical splice signals.

(iv) Nucleotide-level alignment: Homologous exons
between the two sequences are aligned with a
greedy algorithm, and exon alignments are then
concatenated via long intron gaps to produce the
final spliced alignment of the two sequences.

Several limitations become apparent when comparing
sequences cross-species, including loss of sensitivity, a
decrease in splice junction accuracy, and local inaccuracies
in the nucleotide-level alignment that arise from evolu-
tionary mutations. The following sections describe
algorithmic improvements to address these problems.
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Universal spaced seeds

Spaced seeds have recently emerged as a mechanism to
increase alignment sensitivity. Unlike continuous seeds,
which require an exact match of k contiguous bases and
are represented as vectors of 1s, spaced seeds allow for
some positions in the seed pattern to vary, for instance
the seed 101100001011 has the wildcard positions 2, 5, 6,
7, 8 and 10. The number of 1s in the seed is called the seed
weight and controls the specificity (22). The length of the
seed is called span. Alignments are also represented as
(0, 1) strings, where 1s represent matches and 0s mis-
matches, drawn from a probabilistic model, for instance
a Bernoulli or Markov chain. Given a seed and an align-
ment model, the seed sensitivity can be estimated as the
probability that it will detect a random alignment string of
length L=64 (16) generated from the alignment model.
Optimal seeds can then be determined mathematically
using dynamic programming (17,18,22).

To better suit the characteristics of coding sequences,
including but not limited to higher-order dependencies
between positions (20), specific transition-transversion
biases and codon-based periodicity, we recently extended
the models to incorporate these features, most notably by
introducing a new wildcard symbol (x) that allows transi-
tions but not transversions, and by using a higher order
3-periodic Markov model of alignment. With these exten-
sions we were able to derive more sensitive seeds than
previously reported that also had better sensitivity-
specificity tradeoffs in practice (22). These considerations
are important for fine tuning sensitivity and specificity
when developing alignment tools.

Furthermore, to accommodate the multitude and
variety of new genomes, we characterized and designed
seeds that work well for a wide range of comparisons, so
called universal seeds. Our approach was founded on two
principles: first, that similar alignment models induce sim-
ilar behavior of seeds (23), and second, that with high
probability seeds optimized for more distant comparisons
perform well on the closer ones (24). We recently designed
and validated such seeds for a comprehensive set of
66 pairwise comparisons of twelve vertebrate species
(human, chimp, macaque, mouse, rat, cow, dog, opossum,
chicken, frog, fugu and zebrafish). Using the Kullback–
Leibler Divergence (25) as a measure of comparison close-
ness, the comparisons were clustered into four groups with
remarkable evolutionary significance, largely correspond-
ing to different depths in the phylogenetic tree of the
species, and seeds were optimized for each group. In the
end, seeds optimized for the most distant set of compar-
isons, between frog or fishes and the rest of the sampled
species, were selected to be implemented in sim4cc (23).
The default seed in stage i. is 1xx1011011011xx11, and
alternative seeds, such as those reported in (23,24), can
be specified by the user via the command line.

Splice junction models

When comparing sequences within the same species, rela-
tively simple strategies are sufficient to refine the exon
edges in stage iii. In cross-species comparisons, as the dis-
tance between the predicted and true exon ends increases,

more sophisticated splice junction strategies are needed.
We tested and incorporated two probabilistic splice
models to augment the simple 4� 4 GT–AG position
weight matrix (PWM) implemented in sim4: the
Glimmer model (26) and the GeneSplicer model (27).

The Glimmer fixed Interpolated Context (IC) splice-site
model. The Glimmer method (26) was used to produce a
probabilistic model of splice signals from a training set of
fixed-length strings by creating a separate, non-periodic
ICM model for each position i in the string. The proba-
bility of the entire length-n string is then the product of
the probabilities of each character i, 1� i � n, with the
appropriate ICM model for each position. The position-
i model represents the probability of the character at posi-
tion i conditioned by the Markov context window consist-
ing of characters 1 . . . (i – 1) that precede it in the string.
Because there will practically never be enough training
data to learn a model that uses all the characters in this
context window, a subset of them is selected by computing
the pairwise mutual information between each position k
(from 1 to i –1) and the predicted position i. The position k
with the maximum mutual information is chosen and the
training data set is partitioned based on the character
occurring at position k. Within each partition subset the
process is repeated until a maximum number of positions
are reached, or the size of the training set drops below a
minimum value. To score splice sites, a positive model is
learned from a training set of true splice sites, and a neg-
ative model is learned from a training set of non-splice
sites. The score of a given test string is the log-odds
ratio of these two models for that string.

The GeneSplicer Interpolated Markov (IM) splice-site
model. The splice site scores produced by GeneSplicer
(27) reflect the strength of the splice site signal in a fixed
window around the splice site consensus (GT, AG),
weighted by the probability that there is a switch between
the coding and non-coding sequences at that position.
Thus, the score of a fixed-length sequence f predicted to
contain a splice site is given by:

Scoreð f Þ ¼ log
PðS5

0 ð f ÞjCÞ

PðS50 ð f ÞjCÞ
Pð f jsplicesiteÞ

PðS3
0 ð f ÞjCÞ

PðS30 ð f ÞjCÞ

where Ps denote probabilities, S5
0 ð f Þ and S3

0 ð f Þ represent
the upstream and downstream regions of the splice site
consensus contained in f, respectively, and C and C repre-
sent the coding and non-coding complementary events
that characterize a region according to the type of splice
site (e.g. C is ‘coding’ for donor sites and ‘non-coding’ for
acceptor sites). The probability Pðf jsplice siteÞ is estimated
with the Maximum Dependence Decomposition method
(20), while all the other probabilities are estimated using
coding and non-coding content sensors represented by two
interpolated Markov models built on all coding and non-
coding regions in the training data, respectively.
The models were trained on an aggregate data set con-

sisting of 10 000 positive and 50 000 negative examples
from twelve vertebrate genomes (human, chimp, macaque,
mouse, rat, cow, dog, opossum, chicken, frog, fugu and
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zebrafish) (Supplementary Data S3). The final splice site
scores in stage (iii) of the sim4cc algorithm are then deter-
mined by a linear combination of the quality of alignment
in the two 30-bp windows surrounding the start and the
end of the intron, and the splice signal strength determined
by the consensus PWM and by either of the GeneSplicer
or Glimmer models, as specified by the user. Specifically, if
i, iþ 1, j1, j2 (between 1 and 30) represent the current end-
points of the two adjacent exons in the cDNA and geno-
mic windows, respectively, then the splice configuration
score is [modified from (28)]:

Score ði, iþ 1, j1, j2Þ ¼ ðSimði, j1Þ þ � �PWMdonð j1Þ

þð1� �Þ �GSdonð j1ÞÞ þ ðSimðiþ 1, j2Þ

þ��PWMaccð j2Þþð1� �Þ�GSaccð j2ÞÞ

where Simði, j Þ ðSimð i, j ÞÞ is the percent sequence identity
of the best sequence alignment ending at positionsði, jÞ in
the two windows, respectively, PWMð�Þ is the original
dinucleotide splice site score implemented in sim4, GSð�Þ
is either the GeneSplicer or Glimmer splice signal score,
and � is a constant between 0 and 1, calibrated by itera-
tively testing values in 0.01 increments in sim4cc. The con-
figuration with the maximum score is chosen as the splice
junction.

Nucleotide-level and exon-level alignment

Evolutionary changes, both point mutations and inser-
tions or deletions of exonic blocks, can produce significant
differences between sequences that will confound align-
ment programs. To account for local sequence variations,
we implemented affine-gap penalty greedy alignment algo-
rithms (29). Apart from substitutions and small indels,
large deletions or insertions of exonic material cause
differences in gene structure between the species that
are more challenging to detect and interpret. Based
on empirical analyses, we set a minimum intron size of
50 bp. Lastly, some spurious exons are likely to occur at
alignment ends. Most of these are eliminated without sig-
nificant loss in sensitivity by removing short terminal
exons that are farther than 20 kb from the alignment core.

Construction of vertebrate reference data sets

To evaluate the performance of sim4cc and several other
spliced alignment programs, reference annotation sets
were constructed for four types of comparisons: between
human and mouse, dog, chicken and zebrafish, respect-
ively. To create an initial annotation, in a first stage
human RefSeq (3) mRNA sequences were aligned to the
human genome version hg18 (http://www.genome.ucsc.
edu) using the high-throughput software ESTmapper
(10). Alignments were then refined by comparison with
the expert curated VEGA annotation (30). On human
chromosome 1, of the 2554 RefSeq ESTmapper align-
ments 1808 had exon-intron structure identical to the
VEGA annotation and did not require adjustment.
Another 114 differed by less than 10 bp at one or several
exon boundaries. Manual inspection of this set resolved
24 of these in favor of the VEGA annotation and 87 in
favor of ESTmapper, while the remaining three genes were

ambiguous. Furthermore, 287 alignments showed signifi-
cant differences in gene structure between the two annota-
tions, possibly due to splice variations, and the remaining
325 did not have a VEGA match. These two latter cate-
gories were therefore excluded from our selection. In the
end, the procedure produced 1922 human gene annota-
tions on chromosome 1.

In stage two, these initial annotations were trimmed
to contain only regions in common to the two species.
For this purpose, orthologs of human mRNAs in three
of the four species (mouse, dog and chicken) were deter-
mined from homoloGene (build 54, April 2007) (1), and
by blast reciprocal matches (coverage �0.6 and E< 10�6)
for the zebrafish species not yet represented in
homoloGene. Sequences in each pair were then aligned
with the program blastz (19) to find gene regions in
common to the two species. Lastly, the common regions
were projected onto the human annotation via
the ESTmapper mRNA-genomic alignments to determine
a final set of gene annotations on human chromosome
1 for evaluating the tools.

Data sets for the annotation of plant genomes

To test whether sim4cc is suitable for the annotation of
plant genomes, 64 237 American beech ESTs produced by
454 pyrosequencing and 8163 unigenes of these sequences
generated with the software SeqManPro (Lasergene) were
downloaded from the web site of The Fagaceae Project
(http://www.fagaceae.org). The poplar genome (version
1.1) and annotation were obtained from the web site of
the Joint Genome Institute (http://genome.jgi-psf.org/
Poptr1_1/Poptr1_1.download.html). All cDNA sequences
were mapped to the Populus trichocarpa genome using the
high-throughput tools GMAP, with the cross-species
option ‘–X’, and ESTmapper, considering only the best
alignment per query. The filter parameters for
ESTmapper were modified as follows: for ESTs, greater
than 50% coverage, 70% or higher sequence identity and
at least 100 bp of aligned sequence were required, and for
unigenes, more than 70% sequence identity and at least
100 bp of aligned sequence. In stage two, sim4cc was
applied to the genomic regions identified earlier, extended
by 50 kb in each direction. For each query sequence, a
‘genomic coverage’ value was computed as the fraction
of the gene’s bases contained in alignments. Similarly,
the ‘gene coverage’ was determined as the fraction of
bases overlapping the reference annotation. The numbers
of sequences with coverage x or higher, before and after
the application of sim4cc, when varying x, were plotted
and used for evaluation.

To determine novel ‘genes’ not present in the published
poplar annotation, unigene spliced alignments with more
than 80% genomic coverage and less than 20% gene cov-
erage were identified for each method. For each query
sequence (‘gene’) in the set, potential paralogous matches
elsewhere on the genome were detected based on two cri-
teria: at least 50% genomic coverage and higher or similar
sequence identity, or at least 50% gene coverage. The
remaining sequences after eliminating these potential
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paralogs were deemed new ‘genes’ (Supplementary
Table S5).

RESULTS

We start by evaluating the performance of sim4cc and
several spliced alignment programs on four types of com-
parisons between species at diverse evolutionary distances:
human–dog, human–mouse, human–chicken and human–
zebrafish. For simplicity, we will refer to these by the
second species. For each comparison, a gold reference
was generated consisting of annotations of genes in the
human genome based on sequence homology at gene
(mRNA) level between the species. During evaluation,
the output of each tool is directly compared with the ref-
erence annotation to determine its sensitivity and specifi-
city at exon, nucleotide and splice junction (intron) level.

Construction of vertebrate reference data sets

An accurate and comprehensive ‘gold reference’ is essen-
tial to evaluate the programs’ performance. The four ver-
tebrate comparisons above were selected because the
species are richly represented in the GenBank curated
repositories, and because they sample a sufficiently diverse
range of evolutionary distances to allow observations on
the possible uses and limitations of the tools. An ideal
reference data set should capture all and only orthologous
gene regions between the species, to evaluate the complete-
ness of alignments produced by the programs, and should
contain accurate representations of the gene structures on
the reference genome, to evaluate the correctness of the
gene models produced.

To generate an accurate representation of the genes
along the reference genome, we start from an initial set
of spliced alignments of human mRNAs on the human
genome and compare them with the curated set of annota-
tions in the Vertebrate Gene Annotation (VEGA) data-
base, using manual analysis to reconcile any discrepancies
(see Methods section). The procedure generates 1922 gene
annotations on human chromosome 1. Furthermore,
to produce a complete reference set for each comparison,
homologous regions between mRNA orthologs in the two
species are projected onto the curated human gene anno-
tations produced earlier to determine the final ‘gold refer-
ence’. In most cases, alignments of mRNA orthologs were
contiguous, evidence that the core gene structure has been
preserved between the species. A small number of align-
ments showed gaps greater than 50 bp (three in dog, 47 in
mouse, six in chicken and three in zebrafish) in either
sequence, likely caused by evolutionary insertions or dele-
tions. Annotations of these genes were modified to remove
the species-specific regions. This procedure produced 46
(dog), 818 (mouse), 158 (chicken) and 232 (zebrafish)
gene pairs. The average sequence identities between ortho-
logs for the four comparisons were 84.1%, 79.8%, 74.1%
and 68.2%, respectively.

Since only the human gene annotation is used during
the evaluation process, other evolutionary events such as
merging or splitting of exons in either species do not affect
the evaluation outcome. The evaluation scheme only

determines whether the conserved regions are contained
in the alignment and whether the gene structure produced
on the human genome agrees with the reference
annotation.

Comparative evaluation

We evaluated the performance of sim4cc and seven other
programs on the four reference sets. The seven programs
include the same-species tools BLAT (8), sim4 (6) and
GMAP (11), and the cross-species programs EXALIN
(14), GeneSeqer (12), Exonerate (31), GMAP with the
cross-species option ‘-X’ (GMAPX) and translated
BLAT (tBLAT). BLAT and GMAP are designed for
high-throughput genome-wide operation, whereas the
remaining programs are intended to align cDNAs to geno-
mic regions. Except for the cross-species options, the
default parameters were used. We use each program to
map the 818 mouse, 46 dog, 158 chicken and 232 zebrafish
RefSeq mRNA sequences against their homologous geno-
mic regions on human chromosome 1, then compare the
outcome against the reference annotation. Thus, genes
that do not have an a priori determined homolog on
human chromosome 1 are not mapped. GMAP and
GMAPX produced the same output in our settings, and
therefore only one is reported. We apply standard sensi-
tivity and specificity measures [Sn=TP/(TP+FN),
Sp=TP/(TP+FP)] (32) to measure the accuracy at the
nucleotide, exon and splice junction levels. The values for
all programs are listed in Table 1. When only the protein
coding regions are considered, while the performance of
all programs improves due to the higher sequence similar-
ity, the trends are similar (Supplementary Table S1).
The eight programs have very similar specificity, but

vary significantly in their sensitivity.
As expected, programs for same-species comparisons

(sim4, BLAT) perform the worst in all cases, by all cri-
teria. Cross-species programs reach 72–97% sensitivity at
the nucleotide level depending on the comparison and
excluding the outliers, namely GeneSeqer for all compar-
isons, and GMAP and Exonerate for chicken and zebra-
fish. It should be noted that among all programs tested,
GeneSeqer has been designed for the analysis of plant
genomes (Supplementary Table S2) and therefore its per-
formance on vertebrate comparisons may not be represen-
tative. Sim4cc has the highest nucleotide sensitivity for all
four comparisons, achieving between 2% (dog) and 19%
(zebrafish) higher sensitivity compared to the closest com-
petitor, either Exonerate (dog, mouse) or EXALIN
(chicken, zebrafish), and between 10% (dog) and 16%
(zebrafish) more than the next closest program, tBLAT.
The gains are more pronounced as the evolutionary dis-
tance increases. When the gene model is considered,
sim4cc has better or comparable accuracy with
EXALIN, and both programs are significantly better
than the rest of the methods. In a comparison between
the two, sim4cc’s intron specificity is somewhat lower for
distant comparisons, due partly to the larger number of
internal unmatched cDNA regions caused by dissimilar
sequences, but its run time is 200–400 times faster for all
comparisons. Indeed, the advantages of sim4cc are even
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better showcased when the tradeoff between speed and
accuracy is considered. Sim4cc has the highest accuracy
while being comparable in speed with its predecessor sim4
and also, for this specific task, with the high-throughput
programs GMAP and BLAT. Thus we believe sim4cc is
the program best suited for comparative gene annotation.

Performance with sequence similarity level

We further sought to assess the programs’ performance
based on species-independent factors, by grouping align-
ments based on their percent sequence identity. The 1254
alignments were divided into five-percentage point inter-
vals and performance statistics were determined for
each group. Nucleotide sensitivity values of different pro-
grams for different sequence similarity levels are plotted in
Figure 1, and other statistics are shown in Supplementary
Figure S4. The lowest sequence similarity levels, between
50–65%, had only a handful of alignments and thus were
not representative, and were omitted. The results confirm

Table 1. Performance of spliced alignment programs on the four vertebrate reference data sets

Method Nucleotide Exon Splice junction Time

Sn Sp Sn Sp Sn V=0(=10) Sp V=0(=10)

Mouse: 818 genes, 8264 exons, 7408 introns
sim4 0.690 0.996 0.899 0.993 0.710 (0.741) 0.660 (0.689) 28.6 s
BLAT 0.656 0.987 0.831 0.945 0.070 (0.517) 0.047 (0.352) 2min 33.3 s
tBLAT 0.774 0.985 0.942 0.985 0.183 (0.814) 0.142 (0.634) 8min 55.7 s
GMAP 0.719 0.996 0.785 0.995 0.758 (0.763) 0.952 (0.958) 1min 22.3s
Exonerate 0.849 0.984 0.870 0.996 0.811 (0.828) 0.920 (0.939) 20min 19.4 s
GeneSeqer 0.603 0.988 0.647 0.921 0.574 (0.582) 0.829 (0.840) 4 h 24min 54.8 s
EXALIN 0.846 0.997 0.948 0.996 0.926 (0.941) 0.942 (0.957) 6 h 33min 29.3 s
sim4cc 0.934 0.995 0.973 0.997 0.932 (0.944) 0.939 (0.951) 57.3 s

Dog: 46 genes, 419 exons, 370 introns
sim4 0.818 0.995 0.936 0.980 0.795 (0.816) 0.770 (0.791) 1.5 s
BLAT 0.778 0.988 0.866 0.939 0.059 (0.608) 0.048 (0.488) 7.6 s
tBLAT 0.869 0.981 0.932 0.950 0.162 (0.824) 0.141 (0.716) 30.4 s
GMAP 0.875 0.996 0.861 0.989 0.849 (0.854) 0.978 (0.984) 4.0 s
Exonerate 0.959 0.983 0.943 0.997 0.878 (0.900) 0.931 (0.954) 38.3 s
GeneSeqer 0.677 0.995 0.671 0.941 0.600 (0.603) 0.914 (0.918) 11min 55.0 s
EXALIN 0.940 0.996 0.972 0.984 0.965 (0.973) 0.960 (0.968) 14min 7.4 s
sim4cc 0.972 0.988 0.965 0.976 0.941 (0.951) 0.961 (0.972) 2.1s

Chicken: 156 genes, 1624 exons, 1462 introns
sim4 0.414 0.992 0.589 0.987 0.287 (0.304) 0.428 (0.452) 6.3 s
BLAT 0.347 0.978 0.433 0.881 0.017 (0.132) 0.023 (0.178) 29.1s
tBLAT 0.739 0.986 0.834 0.975 0.142 (0.653) 0.143 (0.658) 1min 50.7s
GMAP 0.315 0.989 0.257 0.991 0.214 (0.216) 0.932 (0.940) 18.4 s
Exonerate 0.424 0.945 0.530 0.988 0.425 (0.438) 0.851 (0.873) 2min 50.2 s
GeneSeqer 0.451 0.987 0.431 0.915 0.372 (0.384) 0.810 (0.835) 30min 15.6 s
EXALIN 0.762 0.998 0.825 0.996 0.788 (0.806) 0.954 (0.975) 1 h 14min 23.5 s
sim4cc 0.872 0.982 0.879 0.993 0.799 (0.816) 0.872 (0.890) 9.5 s

Zebrafish: 232 genes, 2549 exons, 2315 introns
sim4 0.101 0.984 0.196 0.991 0.029 (0.031) 0.161 (0.171) 7.6 s
BLAT 0.064 0.966 0.083 0.798 0.001 (0.008) 0.007 (0.067) 39.4 s
tBLAT 0.573 0.984 0.628 0.960 0.086 (0.376) 0.129 (0.568) 2min 31.6 s
GMAP 0.057 0.993 0.023 1.000 0.010 (0.010) 0.958 (0.958) 14.8 s
Exonerate 0.298 0.890 0.244 0.990 0.145 (0.148) 0.812 (0.829) 3min 34.5s
GeneSeqer 0.143 0.989 0.128 0.940 0.116 (0.117) 0.871 (0.877) 9min 19.4 s
EXALIN 0.509 0.997 0.539 0.994 0.480 (0.495) 0.954 (0.984) 1 h 20min 31.5 s
sim4cc 0.701 0.970 0.732 0.985 0.546 (0.567) 0.757 (0.785) 18.8 s

All programs were run with their default parameters. Columns represent sensitivity and specificity values at nucleotide, exon and splice junction
(intron) level, the latter when allowing for a margin V (0 or 10) of error around the splice site. Sensitivity was calculated as Sn=TP/(TP+FN) and
specificity as Sp=TP/(TP+FP). Run times were averaged over 10 executions of the program on a Dell workstation with 3.2GHz Intel CPUs and
2 GB RAM.

Figure 1. Performance of spliced alignment programs (nucleotide sen-
sitivity, vertical axis) with varying sequence identity levels (horizontal
axis). The numbers of gene pairs for each sequence identity level in
decreasing order from 90–95% to 65–70% are: 40, 135, 266, 281, 211
and 156.
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our previous observations. As the plots indicate, all pro-
grams perform well for highly similar sequences, but
cross-species programs gain increasingly over their same-
species competitors as sequence similarity decreases.
Sim4cc, GMAP and EXALIN performed the best at
85–90% sequence identity, followed relatively closely by
Exonerate, tBLAT and, surprisingly, sim4. As the
sequence identity falls below 85%, significant differences
in performance emerge between the programs, with
GMAP and sim4 losing power sharply, and more gradual
decreases for the other tools. Sim4cc consistently shows
the best performance, for all sequence identity levels,
with significant performance gains (e.g. a 7% gain for
the 75–80% interval and 11% gain for the 65–70% inter-
val) over its closest competitor, EXALIN. The contrast
between the top performers, sim4cc and EXALIN, and
the rest of the programs is even starker when splice junc-
tions are considered (Supplementary Figure S4). While
this experiment can serve as a general guide in selecting
a program to use depending on the expected sequence
similarity, it should be used with caution, since significant
differences in mutation patterns between species, such as
proportion of gaps versus point mutations, may alter the
performance of the tools.

Detailed analyses of Sim4cc-spliced alignments

To observe sim4cc’s advantages and limitations more
closely, we examined the 46 dog–human alignments and
the first 100 alignments from each of the mouse-human
and chicken-human alignment sets produced with sim4cc.

Of the 46 dog–human alignments, 29 were in full con-
cordance with the reference annotation, an additional
three missed the last or first exons and two more had
internal cDNA gaps but without contradicting the
gene structure. The remaining 17 alignments collectively
harbored seven incorrect splice junctions and six cases of
alternative placements of exons, of which three involved
relatively short internal exons (21 bp, 21 bp and 35 bp
respectively) and the other three were short spurious mar-
ginal exons.

Similarly, the 100 mouse-human alignments contained
77 that were in agreement with the reference annotation:
64 fully agreed with the annotation, five were incomplete
at either end, and eight differed from the annotation only
by cDNA gaps. Two of the cDNA gaps were caused by
missed exons contained in very long introns (80 kb and
110 kb), which are very infrequent and are a well-known
challenge to spliced alignment programs. The remaining
23 alignments collectively harbored two cDNA gaps,
19 inaccurate splice junctions, and seven cases of alterna-
tive placement of exons, of which four involve short inter-
nal exons of lengths 5–30 bp. Such short exons have long
confounded alignment programs (33) and appear over-
represented in our data set.

As expected, the accuracy of gene models is lower for
human–chicken alignments. Although, again, 60 align-
ments do not contradict the gene structure in the reference
annotation, only 38 of these fully agreed with the annota-
tion, five missed only terminal exons, and 17 also
contained cDNA gaps. Of the remaining 40 alignments,

25 had relatively small differences in their gene structure
due to cDNA gaps and/or inaccurate splice junctions
(�30 bp off), while 15 had more significant differences,
including misplaced exons or portions of exons. The
extent to which these inconsistencies affected the gene con-
tent is reflected in the evaluation statistics: the sensitivity
and specificity at the splice junction level are smaller than
for the closer comparisons, however, only a small fraction
of bases are missed or aligned incorrectly. It should be
noted, also, that many of the observed discrepancies
appear to be genuine evolutionary differences that had
not been identified by our stringent criteria (>50 bp).

Application to the large-scale annotation of a plant genome

Recent years have seen an unprecedented growth in the
resources generated for plant genomics, including but not
limited to genomic sequences, cDNAs and expression pro-
filing resources, which are expected to continue to develop
over the coming years. There are currently 13 plant gen-
omes completed or close to completion (http://
www.ncbi.nlm.nih.gov/genomes/leuks.cgi?p3=11:Plants&
taxgroup=11:Plants|12%3A), several others in progress,
and many more expected to be sequenced. The plant
cDNA resources already available in databases or being
generated by the application of new sequencing technolo-
gies represent a tremendous resource for annotating these
genomes.
To test the applicability of sim4cc to a whole-genome

annotation project for the growing repertoire of plant spe-
cies, we applied it to the poplar genome. The genome of
Populus trichocarpa has recently been sequenced and
annotated (34), and is the first forest tree to be sequenced.
With its 485.5 million bases of genomic sequence split into
22 010 scaffolds varying in length between 35.6 million bp
and 1001 bp, with an average of 22 056 bp and a median of
1534 bp, the poplar genome is a good model for future tree
sequencing efforts. The gene annotation project produced
45 555 gene variants.
Several cDNA repositories for plant species exist and

more are being created. The Fagaceae Project (http://
www.fagaceae.org/) is a collaborative effort to develop
genomic resources and tools for the Fagaceae family of
trees, including chestnuts, oaks and beeches, with the goal
to build genetic and physical maps of these species.
Complementary DNA libraries were built and used to
produce ESTs for five of these species, using a combina-
tion of conventional and 454 sequencing, which will be
used in the comparative mapping of the species. This col-
lection of sequences thus represents an excellent resource
for testing our program.
We mapped 64 237 454 ESTs and 8163 unigenes of these

sequences generated with the software SeqManPro
(Lasergene) to the poplar genome, in two stages. First, a
high-throughput program, either GMAP (11) or
ESTmapper (10), was run to locate matching regions.
The parameters of the programs, number of reported
regions, and statistics of the mapped sequences are listed
in Table 2. There is little bias in the length of cDNAs
between the mapped and unmapped sets, barring the
100 bp threshold, indicating that it is not the length but
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rather the lack of sequence similarity that is the primary
reason why roughly 60% of the sequences failed to map
with any of the methods. GMAP appears to be less sensi-
tive than ESTmapper in detecting matching regions, but it
is likely that both programs suffer from their choice of
seed and stringent matching criteria. To take full advan-
tage of the repertoire of cross-species resources, more
sensitive tools are needed. In stage two, sim4cc was used
to generate a more complete alignment of the cDNA
against the genomic regions extended in both directions
by 50 kb.
We sought to quantify the improvement in cDNA

alignments when sim4cc is used compared to the initial
high-throughput generated alignments. Figure 2 shows
the numbers of sequences, either 454 ESTs (A) or unigenes
(B), with more than a fraction x of their bases aligned to
the poplar genome before and after the sim4cc applica-
tion, when varying the threshold x. The advantage of
using sim4cc is clear, with unigenes gaining on average
roughly 13% and 454 ESTs adding 6% of aligned
sequence.
Similarly, we also wanted to analyze the enrichment in

aligned sequence against a known reference annotation.
The 45 555 annotated transcripts were generated by an
independent effort and represent a suitable data set for
our analysis, albeit not yet curated and likely incomplete.
Figure 3 shows the numbers of sequences with more than
a fraction x of their bases overlapping the existing annota-
tion, both before and after the application of sim4cc.
Again, the increase in sensitivity is clear, with genes gain-
ing 12% (unigenes) and 9% (ESTs), respectively, of
aligned sequence on average. When comparing the out-
come of the two evaluation methods, against the genome
versus against the reference annotation, there is good

concordance between the mapping curves, however the
absolute mapping rates against the annotation are smaller.
Such differences can be explained by new genes or por-
tions of genes that are sampled by the ESTs, or may be
false positives. The phenomenon is more pronounced for
ESTs, which are a more abundant source of gene varia-
tion, including alternative splicing events.

Comparative mapping of other species’ cDNAs to a
target genome can be used to enrich the existing annota-
tion. We sought unigene sequences that are not yet repre-
sented in the poplar annotation and thus are potential new
genes. Using a conservative rule, we looked for sequences
with high (�80%) coverage on the genome, but with little
(� 20%) or no overlap with the existing annotation.
Depending on the high-throughput method used, this pro-
cedure identified 58 (GMAPX) and 97 (ESTmapper) new
‘genes’, respectively, for a combined 109 new ‘genes’ for
both methods (Supplementary Table S5). Blast searches
against NCBI’s non-redundant databases of proteins
and nucleotide sequences (1) showed several matches to
plant ribosomal RNAs or other repeats, but also matches
to genes such as putative receptor protein kinase,
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Figure 2. Number of Fagus grandifolia (A) 454 EST sequences (out of
64 237) and (B) unigenes of these sequences (out of 8163) that can be
aligned to the poplar genome at varying coverage cutoffs (horizontal
axis), both before and after the application of sim4cc. Only those
ESTmapper (EM) alignments covering more than 50% of the input
sequence were retained.

Table 2. Characteristics and mapping statistics of Fagus grandifolia

cDNA sequences on the poplar genome

Data All Mapped

EM GMAPX

454 ESTs
Sequences 64 237 24 810 19 034
Length (avg) 229 bp 242 bp 225 bp
Regions n/a 85 806 64 742

sim4cc-alignment statistics
Sequence id. (avg) n/a 94.19 90.81
Coverage (avg) n/a 97.26 93.00

454 unigenes
Sequences 8163 2887 1625
Avg length 359 bp 397 bp 449 bp
Regions n/a 3243 2643

sim4cc-alignment statistics
Sequence id. (avg) n/a 83.29 83.10
Coverage (avg) n/a 89.31 87.11

454 ESTs were mapped with the tool ESTmapper (EM) at �50%
coverage and �70% sequence identity and unigenes at �70% sequence
identity, retaining only alignments longer than 100 bases. Only the
‘best’ alignment for each query was selected to determine matching
regions (note: if indistinguishable from each other, several best align-
ments may be retained). GMAP was used in cross-species mode ‘�X’,
and all other parameters as set by default. Alignment statistics were
averaged over all regions. n/a=Not applicable.
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transcription regulator and numerous hypothetical or
unnamed proteins.

DISCUSSION

Comparative gene annotation by mapping foreign cDNAs
to a target genome has been instrumental in finding genes
in many eukaryotic genomes (34–39). Its importance for
gene annotation only grows as new species are being
sequenced, which may not have the necessary native
cDNA and protein resources to annotate them. A com-
parative strategy will particularly benefit the large number
of draft genomes, many of them fragmented, and niche
genomes that are of interest to small research commu-
nities. A broad potential application area is plant geno-
mics, where concerted efforts are made to leverage
genomic information across species (40,41).

Most spliced alignments programs were designed to
align cDNAs against the genome of the same or a very
closely related species and are inadequate for cross-species

comparisons. The critical factor is poor alignment
sensitivity, which in turn drives lower splice junction accu-
racy. Additional design considerations include speed and
robustness with different types of species-to-species com-
parisons or sequence data. We developed a new program,
sim4cc, which overcomes difficulties in existing spliced
alignment tools. To increase alignment sensitivity, it uses
spaced seeds that allow the detection of approximate
matches according to mathematically optimized match-
mismatch patterns (22). Additionally, our seeds were
specifically designed to work well for a wide range of
sequence comparisons, at various evolutionary distances,
and therefore can be seamlessly used regardless of the spe-
cies compared (23,24). Critical to designing our ‘universal’
seeds has been sampling from a variety of species-to-spe-
cies comparisons, especially from the more distant ones.
Optimizing seeds requires specific technical expertise to
train the alignment models, compare and cluster compar-
isons into groups and mathematically derive good seeds
for each group, and is computationally very expensive
(e.g. designing seeds for a single species-to-species com-
parison took two months on a 10 CPU computer cluster).
In our earlier publications (23,24) we determined and
reported seeds for cDNA-to-genome comparisons
among vertebrates for various degrees of sequence diver-
gence and for a variety of seed weights or, equivalently,
specificity levels (22), which can be readily used by both
program users and program developers. While we do plan
to develop similar models and seeds for plant compari-
sons, and will release them as soon as they become avail-
able, due to the inherent robustness of spaced patterns we
expect that the seeds trained on the vertebrate set will
work well on those applications as well. Lastly, to increase
the accuracy of sim4cc we further improved gene models
by introducing complex splice site models (26,27) and by
post-processing alignments to take into account likely evo-
lutionary events. As a result, sim4cc outperforms existing
methods when accuracy and speed are considered. In par-
ticular, it has >10% higher sensitivity than the closest
competitor for some comparisons, while being two
orders of magnitude faster. Importantly, while it performs
well on relatively close comparisons, it also works reason-
ably well for distant species as much as >250 Myrs apart,
such as human and chicken, thus extending the evolution-
ary range typically targeted by cDNA-to-genome align-
ment programs. Similarity-based programs are expected
to perform better on coding regions compared to UTRs,
due to the higher sequence similarity in those regions.
Delimiting UTRs is an important step in annotating
genes and a precursor to answering many downstream
biological questions, from identifying alternative and
dual promoters, to finding alternative polyadenylation
sites and binding sites of microRNAs to their mRNA
targets (42,43). Most importantly, cDNA-to-genome
alignment programs are the only source of UTR informa-
tion for gene annotation, which cannot be provided by
either de novo gene finders or protein alignments (44).
Notably, sim4cc seems to better capture alignments in
UTR regions compared to other heuristic programs and
even some exact dynamic programming-based tools
(Table 1 and Supplementary Table S1), likely owing to
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Figure 3. Number of Fagus grandifolia (A) 454 EST sequences (out of
64 237) and (B) unigenes of these sequences (out of 8163) sequences
that overlap the gene annotation of the poplar genome at varying cov-
erage cutoffs, both before and after the application of sim4cc. Only
those ESTmapper (EM) alignments covering more than 50% of the
input sequence were retained.
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the robustness of the spaced seed patterns and the align-
ment algorithms used to extend and bridge seed matches.
Lastly, we tested sim4cc on EST reads obtained with the
new 454 sequencing technology, which are likely to be
generated in the future. Of course, sim4cc is not a silver
bullet and will not be applicable to all types of compar-
isons, for instance when sequencing errors and high muta-
tion rates compound. In these cases, protein alignments
may be a better alternative.
Sim4cc has a small memory footprint and can be com-

piled and run on most platforms. Given its accuracy,
parameter independence and speed, it can be effectively
integrated into a whole-genome annotation pipeline. It is
also user friendly, with a small parameter list and the same
input and output format as its predecessor, sim4, and
therefore well suited for use by individual researchers.
Although the improvement over existing tools is clear,

further refinements are needed to improve the perfor-
mance and to test the limits of nucleotide based align-
ments. For instance, short exons are hard to detect and
are often split between the adjacent exons owing to the
longer seed span and low sequence identity
(Supplementary Table S6). Richer splice context models
and an additional exon refinement stage could be later
implemented to detect short exons (33,45). Moreover, evo-
lutionary insertions and deletions of genetic material can
alter the gene structure. Although most of these are
located in the UTRs and can be identified from the
output when using the open reading frame program
option, some occur in the protein domain. These regions
will appear as matching, albeit weakly, and will be erro-
neously reported as part of the gene, and thus will remain
a weakness of comparative methods based purely on
sequence alignments. Lastly, sim4cc is not a tool for
whole-genome comparison, but can easily become one
by combination with a search engine that pre-identifies
likely matching regions. We have tested two such high-
throughput programs, ESTmapper and GMAP, but it is
apparent that more sensitive approaches, which incorpo-
rate spaced seeds and better match filters, are needed.
We will test such extensions for future distributions of
the program.
Sim4cc is distributed free of charge from http://

www.cbcb.umd.edu/software/sim4cc/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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