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Abstract.	Endochondral bone formation involves multiple steps, consisting of the condensation of 
undifferentiated mesenchymal cells, proliferation and hypertrophic differentiation of chondrocytes, 
and then mineralization. To date, various factors including transcription factors, soluble mediators, 
extracellular matrices (ECMs), and cell-cell and cell-matrix interactions have been identified to 
regulate this sequential, complex process. Moreover, recent studies have revealed that epigenetic 
and microRNA-mediated mechanisms also play roles in chondrogenesis. Defects in the regulators 
for the development of growth plate cartilage often cause skeletal dysplasias and growth failure. In 
this review article, I will describe the current understanding concerning the regulatory mechanisms 
underlying chondrogenesis.
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Introduction

In mammals, most of the skeleton including 
the long bones of the limbs and the vertebral 
columns is formed through endochondral bone 
formation, which consists of the mesenchymal 
condensation of undifferentiated cells, 
proliferation of chondrocytes and differentiation 
into hypertrophic chondrocytes, followed by 
mineralization (1–3). Proliferating chondrocytes 
form orderly parallel columns in the growth 

plates, and are characterized by the expression 
of type II, IX, and XI collagen (Col II, IX and 
XI) and proteoglycans such as aggrecan. 
When chondrocytes differentiate, they become 
hypertrophic and begin to produce a high level 
of alkaline phosphatase and type X collagen (Col 
X). Eventually, the terminally differentiated 
chondrocytes undergo apoptosis, and the 
cartilaginous matrix is mineralized and replaced 
by bone (1–3). These mature chondrocytes express 
vascular endothelial growth factor (VEGF) and 
matrix metalloproteinases (MMPs) (4, 5). VEGF 
induces blood vessel invasion, and MMPs aid in 
the degradation of the cartilaginous matrix (4, 
5). Accumulating evidence provided by human 
diseases, mouse models and cell studies has 
identified a number of factors to be involved in 
the regulation of proliferation and differentiation 
of chondrocytes (Fig. 1). Among them are various 
transcription factors, soluble growth factors, 
ECMs, and epigenetic factors. In this review 
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article, I will provide an updated overview of 
the molecular mechanisms regulating the 
development of growth plate cartilage.

Transcription Factors Involved in 
Chondrogenesis

Among the transcription factors involved 
in chondrogenesis, SOX9 has been the most 
extensively studied. SOX9 is a member of the 
Sox family of transcription factors characterized 
by a high-mobility-group-box DNA binding 
motif related to that of the sex-determining 
factor SRY, and is a responsible molecule for 
campomelic dysplasia characterized by severe 
skeletal malformation (6, 7). Evidence provided 
by mouse models has also revealed that Sox9 
is indispensable for chondrogenesis. Sox9 
begins to be expressed at the mesenchymal 
osteochondroprogenitor stage, and transactivates 
several genes specific to proliferating 
chondrocytes such as Col2a1 encoding Col II 
(8, 9). Sox5 (L-Sox5) and Sox6 were shown to 
cooperate with Sox9 to activate the chondrocyte-
specific enhancers in these genes (10, 11). The 
activating transcription factor (ATF)/cyclic AMP 
response element binding protein (CREB) family 
and the AP1 family member c-Fos are required 
to maintain the proliferative capacity of early 
chondrocytes (12, 13).

Hypertrophic maturation of chondrocytes 
requires the Runt domain family transcription 
factors Runx2 and Runx3 as well as a decrease in 
the expression and/or activity of the Sox proteins. 
Runx2/Runx3-double knockout mice lack 
hypertrophic chondrocytes (14, 15). It has been 
reported that Runx2 directly transactivates the 
genes Ihh (Indian hedgehog), Col10a1 encoding 
Col X, and MMP13 (15–17). Recently, it has also 
been shown that Sox9 suppresses the expression 
of Runx2 and β-catenin signaling, which inhibits 
the hypertrophic change of chondrocytes (18). A 
basic helix-loop-helix type transcription factor, 
Twist-1 functions as another repressor of Runx2 
in the perichondrium (19). Other transcription 
factors, such as MADS-box transcription factors 
Mef2c and Mef2d (myocyte enhancer factor 2c 
and 2d), Msx2, the AP1 family member Fra2, 
and FoxA family transcription factors, also 
facilitate chondrocyte hypertrophy (20–25). The 
transcription factor hypoxia-inducible factor-Iα 
(HIF-1α) is one of the major regulators of the 
hypoxic response in mammals and plays a role 
in chondrocyte survival and gene regulation for 
VEGF, which induces blood vessel invasion into 
cartilage (26, 27). Thus, a complex transcriptional 
network governs the process of chondrogenesis 
from chondrocytic commitment to terminal 
differentiation.

Soluble Regulators of Chondrogenesis

Fibroblast growth factors (FGFs) play critical 
roles in chondrogenesis by activating signaling 
through FGF receptors (FGFRs), as indicated 
by a spectrum of human chondrodysplasias and 
dwarfism caused by gain-of-function mutations 
in the FGFR3 gene (28–31). Among the 
FGFRs, Fgfr3 is expressed in cells undergoing 
mesenchymal condensation and proliferating 
chondrocytes. On the other hand, Fgfr1 is 
expressed in prehypertrophic and hypertrophic 
chondrocytes (32–34). It has been suggested that 
FGFR3-mediated signaling negatively regulates 
chondrocyte proliferation and differentiation (35–
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Fig. 1.	Molecular network controlling the 
development of growth plate cartilage.
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37). In FGFR3-related chondrodysplasias such as 
achondroplasia, constitutive activation of FGFR3 
results in the activation of the downstream ERK 
and STAT pathways (28). Although various 
FGFs are expressed in cartilage, FGF18 is 
suggested to be a physiological ligand for FGFR3 
in chondrocytes, because of similar histology in 
the growth plates between Fgf18-knockout mice 
and Fgfr3-knockout mice (38, 39).

Ihh is a secreted signaling molecule, 
expressed by prehypertrophic chondrocytes. A 
line of evidence provided by genetically altered 
mouse models has revealed that Ihh increases 
the expression of parathyroid hormone-related 
protein (PTHrP) in perichondrial cells and 
chondrocytes at the ends of long bones, which 
delays chondrocyte hypertrophy through the 
PTH/PTHrP receptor expressed in proliferating 
chondrocytes. Thus, Ihh and PTHrP function 
in a local negative feedback loop to regulate the 
onset of hypertrophic differentiation (40). In 
addition, it is also reported that Ihh stimulates 
the proliferation and maturation of chondrocytes 
independently of PTHrP, in which activation of 
Wnt and bone morphogenetic protein (BMP) 
signaling is suggested to be involved (41–43).

The importance of C-type natriuretic peptide 
(CNP) signaling in chondrogenesis was shown 
by the severe dwarfism of CNP-knockout mice 
(44, 45). CNP exerts its signal mainly through 
the receptor NPR2, which is also called guanylyl 
cyclase B (GC-B), and Npr2-null mice display 
a similar phenotype to CNP-knockout mice 
(46). Based on the mouse studies, it has been 
suggested that CNP promotes endochondral bone 
growth through several mechanisms, including 
the stimulation of chondrocyte proliferation and 
hypertrophy and an increase in ECM production 
(44–46). In humans, loss-of-function mutations in 
the NPR2 gene cause acromesomelic dysplasia, 
type Maroteaux, characterized by severe 
dwarfism (47, 48), while a gain-of-function type 
mutation in the gene has been identified in a 
family with skeletal overgrowth (49), which 
indicates that the CNP/NPR2 signaling pathway 

plays a role in the development of growth plate 
cartilage both in humans and mice. The similarity 
in the skeletal phenotype between CNP-deficient 
mice and human achondroplasia has suggested 
that CNP/NPR2 signaling is promising as a new 
therapeutic target for the dwarfism associated 
with skeletal dysplasia (46). It has been shown 
that the signaling evoked by CNP inhibits the 
FGF-induced activation of the ERK pathway 
(46). The p38MAPK pathway and PI3K/Akt 
pathway are also suggested to be involved in 
the regulation of chondrocyte development by 
CNP (50).

Other soluble factors such as Wnts, bone 
morphogenic proteins (BMPs), transforming 
growth factor-beta (TGF-β), insulin-like growth 
factors (IGFs) and thyroid hormone are also 
involved in chondrogenesis (51–53) but are not 
further discussed here.

Regulation of Chondrogenesis by the ECM

The ECM provides a cell type-specific 
microenvironment. As chondrocytes mature, 
they produce abundant ECM proteins such 
as collagens and proteoglycans, and the 
cell-matrix interactions come to have more 
important roles than in the earlier stages of 
chondrogenesis, when the cell-cell interaction 
via adhesion molecules such as N-cadherin and 
N-CAM is involved in cellular condensation and 
subsequent chondrogenesis (54, 55). The ECM 
is recognized and bound by integrins and cell 
surface transmembrane receptors. Integrins 
occur as dimers of an α subunit and a β subunit, 
and the binding of ligands to integrins leads 
to transduction of signaling from the ECM to 
intracellular effectors (56). Chondrocytes express 
several integrin subunits, and it has been 
reported that chondrocyte-specific β1 integrin-
knockout mice exhibited a chondrodysplasia-like 
phenotype (57, 58). In these mice, growth plates 
exhibited unorganized proliferative columns and 
an abnormal cell shape due to the loss of adhesion 
to Col II, and the isolated chondrocytes displayed 
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reduced proliferation (58). Integrin-linked 
kinase is one of the components of the complex 
whose formation is triggered by the activation 
of integrin-mediated signaling, and knockout 
of its gene resulted in a chondrodysplasia-like 
phenotype similar to that of chondrocyte-specific 
β1 integrin-knockout mice (59). These results 
suggest the importance of integrin-mediated 
signaling from the ECM in chondrogenesis.

The SLC26A2 gene encodes a sulfate 
transporter responsible for sulfate uptake by 
chondrocytes. Mutations in this gene have been 
identified in a form of chondrodysplasia called 
diastrophic dysplasia, which is characterized by 
undersulfation of cartilaginous proteoglycans. 
Similar to patients with diastrophic 
dysplasia, dtd mice harboring a knock-in 
Slc26a2 mutation were reported to exhibit 
undersulfation of glycosaminoglycans such as 
chondroitin (60). It has been also reported that 
mice lacking the gene encoding chondroitin 
sulfate N-acetylgalactosaminyltransferase 
1 (CSGalNAcT-1), an enzyme involved in the 
initiation of the biosynthesis of chondroitin 
sulfate, have shorter, disorganized chondrocyte 
columns in the growth plates with a rapid 
catabolism of aggrecan (61).

Another function of the cartilaginous ECM 
is regulation of chondrogenesis through binding, 
storage, and release of soluble factors. For 
example, most of FGFs bind to heparan sulfate 
proteoglycans and bind to FGFRs in the context 
of heparan sulfate proteoglycans to trigger 
signal transduction. Analysis of mice lacking 
sulfate-modifying factor 1 (Sumf1) has suggested 
that desulfation of proteoglycans regulates 
chondrocyte proliferation and differentiation 
by limiting FGF signaling (62).

Vinculin is a major component of the focal 
adhesion complex and functions in adhesion 
and/or signaling between the extracellular 
microenvironment and the cell via integrins 
and cadherins. Although little is known about 
its tissue-specific functions, we have recently 
identified vinculin as having profound roles in 

chondrogenesis (63). Knockdown of vinculin 
in primary chondrocytes and organ cultures 
of metatarsal explants resulted in reduced 
expression of Col2a1, aggrecan, Col10a1, 
and Runx2. Moreover, knockdown of vinculin 
abrogated IGF-I-induced growth of metatarsal 
explants. The upregulation of Col2a1 and 
aggrecan expression by IGF-I was also cancelled 
by the knockdown. These results suggest that 
vinculin regulates the expression of chondrocyte-
specific genes by orchestrating the signaling from 
the ECM and soluble factors such as IGF- I (63).

Epigenetic Control of Chondrogenesis

Recent studies have uncovered the roles of 
epigenetic mechanism in chondrogenesis. Among 
the histone deacetylases (HDACs), HDAC4 
has been shown to prevent the premature 
chondrocyte hypertrophy by inhibiting the 
activity of Runx2/3 and Mef2c/d transcription 
factors (20, 21, 64). HDAC1 and HDAC2 mediate 
the repression of some cartilage-specific genes 
including Col2a1 (65). These findings suggest 
that histone modification influences the process 
of endochondral bone formation.

DNA methylation is also involved in the 
regulation of cartilage-specific genes. For 
example, it was reported that the demethylation 
of 2 CpG sites in the COL10A1 promoter was 
correlated with induction of the COL10A1 gene 
during the chondrogenic differentiation of human 
mesenchymal stem cells (66).

MicroRNAs as Novel Regulators of 
Chondrogenesis

MicroRNAs (miRNAs) are a class 
of ~22 nucleotide noncoding RNAs that 
regulate the expression of other genes at the 
posttranscriptional level. The critical roles of 
miRNAs in chondrogenesis were first indicated 
by the severe skeletal growth defects in mice 
lacking Dicer, an enzyme required for miRNA 
synthesis (67). In the growth plates of Dicer-
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knockout mice, proliferation of chondrocytes 
was decreased, while differentiation was 
accelerated (67). Since then, an increasing 
number of specific miRNAs has been identified 
to have roles in chondrocyte differentiation. Mice 
lacking miR-140 showed a mild short stature 
and age-related osteoarthritis-like changes, 
suggesting that miR-140 regulates both the 
development and homeostasis of cartilage (68). 
miR-145 was reported to directly target Sox9 
and regulate chondrogenic differentiation of 
mesenchymal stem cells (69), while miR-199a 
was shown to be responsive to BMP and to 
regulate chondrogenesis by targeting Smad1 
(70). These findings indicate the importance of 
miRNA-mediated regulation of chondrogenesis.

Conclusion

In this review, I have overviewed the 
current knowledge concerning the molecular 
mechanisms underlying the development 
of growth cartilage. The proliferation and 
differentiation of chondrocytes is elaborately 
controlled by various factors, and their defects 
are often associated with growth failure and 
skeletal dysplasias. Further clarification of the 
molecular basis of cartilage development may 
lead to the discovery of new therapeutic targets 
for these conditions.
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