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Abstract: Cross-frequency phase–amplitude coupling (PAC) plays an important role in neuronal
oscillations network, reflecting the interaction between the phase of low-frequency oscillation (LFO)
and amplitude of the high-frequency oscillations (HFO). Thus, we applied four methods based
on permutation analysis to measure PAC, including multiscale permutation mutual information
(MPMI), permutation conditional mutual information (PCMI), symbolic joint entropy (SJE), and
weighted-permutation mutual information (WPMI). To verify the ability of these four algorithms, a
performance test including the effects of coupling strength, signal-to-noise ratios (SNRs), and data
length was evaluated by using simulation data. It was shown that the performance of SJE was similar
to that of other approaches when measuring PAC strength, but the computational efficiency of SJE
was the highest among all these four methods. Moreover, SJE can also accurately identify the PAC
frequency range under the interference of spike noise. All in all, the results demonstrate that SJE is
better for evaluating PAC between neural oscillations.

Keywords: neuronal oscillations; phase–amplitude coupling; permutation; mutual information;
entropy

1. Introduction

Neuronal oscillations play a significant role in memory and learning [1,2]. In the study
of cognitive processes, phase–amplitude coupling is a promising measurement [3]. Contin-
uous electrophysiological signals which are recorded at macroscopic and mesoscopic levels,
such as electroencephalogram (EEG) and local field potential (LFP), present rhythmical
characteristics called neuronal oscillations [4]. Generally, they can be divided into five fre-
quency bands, including delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz),
and gamma (above 30 Hz) oscillations [1,5,6]. The interaction between neuronal oscilla-
tions of different frequency bands is implemented by a communication mechanism, which
is known as cross-frequency coupling (CFC) [7]. In previous experiments and studies,
three types of CFC have been observed and reported, including PAC [8–11], phase–phase
coupling (PPC) [12,13], and amplitude–amplitude coupling (AAC) [14–16].

Particularly, more reports focused on PAC because of its ubiquity in electrophysiology
significance in brain functions. The PAC is generally defined as that the amplitude of a
higher-frequency oscillation is modulated by the phase of a lower-frequency oscillation [17].
Moreover, the PAC has been studied in many functions, such as memory, attention selec-
tion, and sensory information detection [18,19]. It is widely observed in the hippocampus;
neocortex; and basal ganglia from rats, mice, monkeys to humans [20–22]. Several quan-
titative measures have been proposed to characterize PAC, such as phase-locking value
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(PLV) [23], mean vector length (MVL) [24], Kullback–Liebler (KL) based modulation index
(KLmi) [9], and generalized linear modeling (GLM) [25]. Overall, these different methods
were proposed based on different principles and focused on different purposes, which can
be found in comparative studies [9,26–29]. Recently, based on permutation entropy [30]
and mutual information theory, a new method called permutation mutual information
(PMI) was applied to measure PAC [31]. Although the advantage of the PMI approach has
been described, it failed to account for the multiple time scales inherent in the physiological
systems. To solve this problem, Aziz et al. improved the permutation entropy (PE) and
called this modified procedure multiscale permutation entropy (MPE). By comparing the
analysis results of MPE and PE on physiological signals, it is proved that MPE is more
robust [32]. Therefore, in the present study, we proposed a novel approach named MPMI.
It measures the PAC by evaluating the mutual information of multiscale permutations
between two neural oscillations, which is developed from the MPE on the basis of mutual
information theory.

It is well known that the classical conditional mutual information (CMI) is initially
proposed to characterize the weak interaction between two phase signals with similar
rhythms [33]. Cheng et al. improved it and successfully applied it in measuring PAC [34].
Afterward, Li et al. presented a new method called PCMI for assessing the directionality
between two signals generated by different neuronal populations [35]. The simulations
show that this method is superior to the CMI method for identifying the coupling direction.
Therefore, we will use PCMI to estimate PAC. Joint entropy is a nonlinear measure used
to estimate the uncertainty between one time series and another [36]. In order to weaken
or eliminate the influence generated by the probability distribution of the original series,
we proposed a symbolized time series to replace the original time series to calculate the
probability distribution, called SJE; it can be used to measure PAC. Cui et al. proposed
a novel approach to quantify the synchronization strength of EEG, which was named as
normalized weighted-permutation mutual information (WPMI) [37]. It overcomes the
shortcomings of the PMI algorithm. Specifically, in the extraction of the ordinal patterns,
only the information of the order structure is reserved, and a large amount of amplitude
information is lost. The simulation model shows that WPMI can reflect the amplitude
characteristics of the time series while estimating the synchronization strength of the time
series. Therefore, we will use the WPMI method to measure PAC.

Finally, we will evaluate the performance of these four algorithms (MPMI, PCMI, SJE,
and WPMI) through simulation data and hope that these methods can help researchers
understand the characteristics of PAC in neural oscillations and further explore the structure
and function of the brain.

2. Materials and Methods
2.1. Multiscale Permutation Mutual Information

The MPMI is developed based on MPE [32] and mutual information theory. For a
time series {x(t); t = 1, 2, · · · , N}, we first average a successively increasing number of data
points in non-overlapping windows to construct a continuous coarse-grained time series [38].
The coarse-grained time series Xs

k is calculated according to the following formula:

Xs
k =

1
s

ks

∑
t=(k−1)s+1

x(t), (1)

where s denotes the scale factor and 1 ≤ k ≤ N/s. The length of each coarse-grained time
series is equal to the length of the original time series divided by the scale factor s. When
s = 1, the coarse-grained time series is the original time series, and the calculated entropy
value is the permutation entropy value. An example of a coarse-graining procedure is
presented in Figure 1.
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Secondly, when the scale factor is s, calculate the coarse-grained time series
{

Xs
k
}

em-

bedding delay expression Zm,τ,s
1,l =

{
Xs

l , Xs
l+τ , · · · , Xs

l+(d−1)τ

}
,l = 1, 2, 3, · · ·M− (m− 1)τ,

where m is the embedding dimension, and τ is the time delay. Then, Zm,τ,s
1,l is arranged in

increasing order of magnitudes. When the two values of Zm,τ,s
1,l are equal, they are sorted

according to the size of the subscript. Therefore, each of the sub-vectors in m dimensional
space is mapped into an ordinal pattern πm,τ

i , i = 1, 2, · · ·m!. Each of the T = M− (m− 1)τ
sub-vectors corresponds to one of m! possible arrangements. For instance, if the embedding
dimension is set as 3, it will take 6 motifs for each time series, which is illustrated in
Figure 2b. Figure 2a shows an example of some permutation patterns that may appear in
the signal. Then, we can calculate the number of occurrences of each ordinal pattern πm,τ

i
which is indicated by Ci. Consequently, the probability P(X = πm,τ

i ) of the occurrence of
each symbol is obtained from the reconstructed sequence:

P(X = πm,τ
i ) =

Ci
T

, i = 1, 2, · · · , m! (2)
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(m = 3, and τ = 1 or 2) (bottom). (b) All of the motifs are of the order of 3 (3!). M represents the motif
of the ordinal patterns.

Following, we define the probability distribution of {x(t)} as px, and then, the MPE
of {x(t)} is defined as

MPE(X) = −
m!

∑
l=1

px log(px) (3)

Consider two-time series {x(t)} and {y(t)}; let MPE(X) and MPE(Y) denote their
MPE. The joint probability pxy = p(πm,τ

i , πm,τ
j ) of each symbol occurrence in the signal
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be calculated [35]. Thus, the multiscale joint permutation entropy MPE(X, Y) can be
denoted by

MPE(X, Y) = −
m!

∑
i=1

m!

∑
j=1

pxylog(pxy) (4)

Afterwards, on the basis of MPE and mutual information theory, we can define MPMI
as follows:

MPMI(X; Y) = MPE(X) + MPE(Y)−MPE(X, Y) (5)

Finally, the normalized multiscale permutation mutual information (MPMINor) can be
defined as

MPMINor =
MPMI(X; Y)

min(MPE(X), MPE(Y))
(6)

where the MPMINor ranges from 0 to 1. The greater the value of MPMINor, the stronger
the relationship between X and Y.

2.2. Permutation Conditional Mutual Information

Presumably, two-time series X = (X1, X2, · · · , Xn)
T and Y = (Y1, Y2, · · · , Yn)

T , based
on the Shannon information theory and the permutation method introduced in Section 2.1,
the PE and the joint permutation entropy of the time series can be calculated by the
following formulas:

PE(X) = −
m!

∑
l=1

pxln(px) (7)

PE(Y) = −
m!

∑
l=1

pyln(py) (8)

PE(X, Y) = −
m!

∑
i=1

m!

∑
j=1

pxylog(pxy) (9)

Mathematically, the PCMI can be defined by

PCMIδ
X→Y = PCMI(X; Yδ

∣∣∣Y) = PE(X, Y) + PE(Yδ, Y)− PE(Y)− PE(X, Yδ, Y) (10)

where Yδ is an observable derived from the state of the process Y’s δ steps delay, i.e.,
Yδ : yt+δ = yt. In general, the value of δ ranges from 3 to 15 [39]. At some later time
points, the information that is transmitted from one process X to another process Y can be
defined as

PCMIX→Y =
1
N

N

∑
δ=1

PCMIδ
X→Y (11)

where the N is the maximal later points. PCMIX→Y means that the coupling strength of X
to Y.

2.3. Symbolic Joint Entropy

Given the time series as X = [x(1), x(2), . . . , x(N)], sequence reconstruction is to
convert X into non-overlapping sub-vectors Xk. The conversion of the new vector is
shown as 

X1= [x(1), x(2), · · · , x(m)]
X2= [x(m + 1), x(m + 2), · · · , x(2 ∗m)]

...
Xk= [x((k− 1) ∗m + 1), · · · , x(k ∗m)]

(12)

where m represents the embed dimension, k = 1, 2, · · · , M = [N/m]. After generating Xk,
we can symbolize Xk in accordance with certain rules to reduce the requirements for the
original sequence. The basic principle of the permutation is to replace the original value
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with anon-negative integer. For a given window, it can be denoted by a symbol according
to the permutation rule in the Table 1. We take m = 3 as an example, as demonstrated in
Table 1.

Table 1. The permutation rule in symbolic joint entropy.

Permutation Symbol

xi ≤ xi+1 ≤ xi+2 012
xi ≤ xi+2 ≤ xi+1 021
xi+1 ≤ xi ≤ xi+2 102
xi+1 ≤ xi+2 ≤ xi 120
xi+2 ≤ xi+1 ≤ xi 210
xi+2 ≤ xi ≤ xi+1 201

Therefore, we can get a symbolized time series {sx(t); t = 1, 2, · · · , M ∗m}. Simi-
larly, symbolized time series of the time series {y(t); t = 1, 2, · · · , N} can be expressed
as
{

sy(t); t = 1, 2, · · · , M ∗m
}

. After that, calculate the probability of occurrence of the
corresponding time πl in the two symbolized time series:

pl =
#πl

M ∗m
l = 1, 2, · · · , m2 (13)

where #πl denotes its frequency of occurrence in the time series. πl can be expressed as

πl =

{[
0
0

]
,
[

0
1

]
, · · · ,

[
0

m− 1

]
,
[

1
0

]
,
[

1
1

]
, · · · ,

[
1

m− 1

]
, · · · ,

[
m− 1

0

]
, · · ·

[
m− 1
m− 1

]}
(14)

Subsequently, the symbolic joint entropy is defined as

ESJ = −
m2

∑
l=1
pl 6=0

pllog2 pl (15)

For two series without correlation, after symbolizing, the occurrence probability of all
potential symbol vectors is approximately equal, i.e., 1

m2 . In this case, the symbolic entropy
achieves the theoretical maximum. It can be defined as

ESJ = −
m2

∑
l=1

(
1

m2 log2
1

m2 ) = log2m2 (16)

On the contrary, the minimum symbol joint entropy (log2m) is obtained when the series
are completely linearly correlated. In order to minimize the influence of the parameter m,
we further defined a normalized coupling coefficient (CSJ) as

CSJ = 1−
ESJ − log2m

log2m2 − log2m
= 2−

ESJ

log2m
(17)

The index of CSJ is positively correlated with the coupling strength between the two series.
The value 1 indicated the perfect inter-series coupling whereas the value 0 suggested no
inter-series correlation.
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2.4. Weighted-Permutation Mutual Information

Given two time series X and Y which are embedded into m dimensional space, each of
the sub-vectors is assigned to an ordinal pattern πi. Specifically, the weighted probability
pω for each ordinal pattern of X can be calculated as

pω(πi) =
∑ Iπi (Xi)ωi

∑ IΠ(Xi)ωi
(18)

where Π is a collection of ordinal patterns πi, i = 1, 2, · · · , m!. Iπi (Xi) = 1, if the sub-vector
Xi can be mapped to ordinal pattern πi, otherwise Iπi (Xi) = 0. ωi is a weight which
is determined by a specific feature of each sub-vector Xi. Different features are selected
according to the needs, but the relationship ∑i pw(πi) = 1 is always present. The weight
ωi is calculated by

ωi =
1
m

m

∑
k=1

(xi+(k−1)τ − Xi)
2 (19)

where Xi is mean of sub-vector Xi obtained by the following formula:

Xi =
1
m

m

∑
k=1

xi+(k−1)τ (20)

Therefore, the probability distribution pωx of weighted ordinal pattern in time series X is
obtained. pωy can be calculated in the same way.

For these two-time series, πi and πj are used to indicate the ordinal patterns of Xk
and Yk, respectively. Thus, m! ∗m! joint ordinal patterns are available. A new method for
calculating the probability of each joint ordinal pattern is proposed as follows:

pω(πij) =
∑ Iπij(Xi; Yj)ωij

∑ IΠ(Xi; Yj)ωij
(21)

where Π is a collection of ordinal patterns πij.Iπij(Xi; Yj) = 1, if the sub-vector Xi and Yj can
be mapped into ordinal pattern πij, otherwise Iπij(Xi; Yj) = 0. Weight ωij = ωiωj, ωi and ωj
denote the weight of the sub-vector Xi and Yj, respectively. Thus, the weighted probability
distribution of joint ordinal patterns pwxy is obtained. According to the information theory,
the WPE of the time series X and Y can be calculated as

WPE(X) = −
m!

∑
i=1

pωxlog(pωx) (22)

WPE(Y) = −
m!

∑
j=1

pωylog(pωy) (23)

WPE(X, Y) = −
m!

∑
i=1

m!

∑
j=1

pωxy log(pωxy) (24)

Then, WPMI is defined as

WPMI(X; Y) = WPE(X) + WPE(Y)−WPE(X, Y). (25)

Afterward, the WPMI can be normalized as

WPMINor =
WPMI(X; Y)

max{WPMI(X; X), WPMI(Y; Y)} , (26)
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where WPMINor varies from 0 to 1. If X and Y are two perfect synchronous time series,
WPMINor equals 1; if there is completely no synchronization between X and Y, WPMINor
is close to 0. The stronger the synchronization between X and Y, the higher the WPMINor.

2.5. Acquisition of Simulation Data

First, multiple sine waves with different frequencies, amplitudes, and phases are
added together to generate the simulation data [40,41]. The low-frequency oscillation (LFO)
and high-frequency oscillation (HFO) are denoted by low(t) and high(t), respectively.
The low(t) is a 4–8 Hz theta oscillation and the high(t) is a 60–70 Hz gamma oscillation,
and the sampling frequency is 1000 Hz. The amplitude of the components was inversely
proportional to their frequencies. Both oscillations are normalized to a range of −1 to 1;
the purpose is to eliminate the interference caused by amplitude fluctuation and maintain
the fluctuation of its instantaneous frequency. The phases were randomly selected from
[−π, π]. After that, the Von Mises coupling method is used to generate the amplitude
series of HFO [42]:

Ahigh(t) =
c

exp λ
exp[λ× low(t)]. (27)

The parameter c controls the maximum amplitude of HFO. λ is a concentration parameter.
The λ with bigger value generates the larger amplitude of HFO around the preferred phase.
Specifically, the λ with a zero value caused the equal amplitudes of the HFO at all phases.
In the following simulation analysis, parameters are c = 1, λ = 1. Consequently, the raw
data with PAC can be generated as below:

Raw = low(t) + Ahigh(t)× high(t). (28)

A construction example of the simulation data is shown in Figure 3.
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Figure 3. An example for generating the simulation data. (a) A nonstationary slow oscillation (4–8Hz,
red curve, left), normalized to−1 to 1 (right), aiming to remove amplitude fluctuations and retain the
fluctuation of its instantaneous frequency. (b) A nonstationary fast oscillation (60–70Hz, blue curve,
left), normalized to −1 to 1 (right). (c) The amplitude envelope of the fast oscillation (red, left). The
raw data (magenta, right) were the sum of the normalized slow oscillation and fast oscillation signal.

Afterward, to regulate the PAC strength, the raw data are combined with an interfer-
ential signal (IFS) and normalize in the same way. Therefore, the original signal can be
reconstructed as

Raw′ = k× low(t) + (1− k)× IFS(t) + Ahigh(t)× high(t), (29)
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The parameter k represents the coupling strength, ranging from 0 to 1. Figure 4 shows the
simulation results under different coupling strengths.
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2.6. Calculating Phase–Amplitude Coupling

The coupling strength between the amplitude Ahigh(t) of HFO and phase θlow(t) of
LFO can be measured by MPMI, PCMI, SJE, and WPMI methods. However, the phase
series θlow(t) of the low(t) is a periodic function with monotonically increase in each cy-
cle. Thus, the ordinal patterns of θlow(t) would be very simple, and it is inappropriate
for analyzing the coupling between θlow(t) and Ahigh(t).Conversely, if there is a promi-
nent PAC between them, the magnitude orders of cos(θlow(t)) will be similar to that of
Ahigh(t). Correspondingly, it would be beneficial for calculating PAC between cos(θlow(t))
and Ahigh(t).

First of all, by using Hilbert transformation:

low(t) = Re(Alow(t) ∗ eiθlow(t)), (30)

where θlow(t) and Alow(t) are the phase and amplitude series of the slow oscillation,
respectively. Thus, cos(θlow(t)) can be generated by dividing low(t) by its instantaneous
amplitude Alow(t):

low(t)
Alow(t)

= Re(eiθlow(t)) = cos(θlow(t)), (31)

Therefore, the amplitude of cos(θlow(t)) is only dependent on the phase time series of the
slow oscillation, which is more conducive to the measurement of PAC.

Finally, after generating the phase time series cos(θlow(t)), we further use the Hilbert
transform to produce the amplitude Ahigh(t) of the fast wave oscillation high(t). Then, the
PAC of two time series can be obtained by cos(θlow(t)) and Ahigh(t).

2.7. Parameter Choices in the Algorithm

In each algorithm, two key parameters embed dimension m and time lag τ are included.
The order m represents the number of data points involved in the motif. Bandt et al.
suggested that the value range of m is 3–7 [30], we set m = 3. The lag is referred to as the
number of sample points spanned by each motif. Regarding the choice of τ, we refer to the
mutual information method proposed by Li et al. [35]. In the simulation data, by comparing
the mutual information derived from the different τ values, the lag τ corresponding to the
maximal value of mutual information is an optimum parameter. As shown in Figure 5,
when τ = 10, the mutual information reaches the maximum value between cos(θlow(t))
and Ahigh(t) with coupling strength k = 0.3, k = 0.5, and k = 0.8.
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Figure 5. With the coupling strength k = 0.3, k = 0.5, k = 0.8, and τ ranging from 1 to 18, the curves of
mutual information are between the amplitude of the HFO and the phase of the LFO. There were
100 realizations for each coupling strength.

2.8. Parameter Choice in MPMI

When analyzing the MPE, the coarse-grained process is very important. The specific
operation is to truncate the raw time series into several small sequences with the same
length and average each segment to obtain a new time series. Therefore, the analysis of
signal complexity needs to consider the choice of the scale factor s in the coarse-graining
process. The adjacent elements of the original time series contain sequence information. If
the value of the scale factor s is too small, the information of the relevant fragments cannot
be extracted to the greatest extent, so the analysis effect is not obvious. However, when the
complexity difference between the signals is small, the scale factor s should not be selected
too large, otherwise, the difference between the signals may be eliminated in the averaging
process. In this study, the MPMI value varies with coupling strength under different scale
factors s is set. As shown in Figure 6, we can observe that MPMI is proportional to k.
When s increases, the MPMI curve moves upward as a whole, but the overall change trend
remains unchanged. When k = 0, to avoid a higher MPMI value, s = 3 is selected.
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2.9. Parameter Choice in PCMI

When applying the PCMI method, it is necessary to consider the selection of parameter
δ because of its influence on the PCMI estimation. The algorithm itself determines that the
value of δ cannot be less than the order m in PCMI [33]. In the simulation data, we plotted
the variation curve of PCMI with the coupling strength k when δ takes from 3 to 10. As
shown in Figure 7, we can see that with the increase of δ, the changing trend of the PCMI
curve remains constant, and increases with k. However, when δ = 10, k = 0.7 to 1, the PCMI
value dropped, causing inaccurate measurement results. That is, when δ takes from 3 to 9,
the PCMI estimation is stable. Therefore, in this paper, we suggest that the choice of δ = 5
is an appropriate option.
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3. Results
3.1. Dependence on Data Length

In order to analyze the influence of data length on four kinds of algorithms, simulated
time series with data length from 5 s to 30 s (5000 to 30,000 sample points) are generated
by using the simulation data. We conducted 100 experiments on each epoch set of data
length when k = 0.3, 0.5, 0.8. It can be seen from Figure 8a,c,d that MPMI, SJE, and WPMI
all present three small fluctuation horizontal curves, indicating that these three algorithms
are not sensitive to changes in the data length. In addition, it can also be explained that
when the PAC intensity is constant within a period, the data length has almost no effect
on the performance of these three algorithms. When k = 0.8, compared with MPMI and
SJE, the WPMI curve is more stable, and the performance is the best. As demonstrated in
Figure 8b, when k = 0.3, 0.5, 0.8, the three curves show small fluctuations, which can reflect
the PAC strength effectively. In short, these four algorithms can reflect the PAC value under
different k within 5 s to 30 s.
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for each strength). (a) MPMI. (b) PCMI. (c) SJE. (d) WPMI.

3.2. The Effects of Coupling Coefficient on Methods

To analyze MPMI, PCMI, SJE, and WPMI characteristics with the changing of coupling
strength, coupling coefficient k gradually increased from 0 to 1 with the step of 0.05.
Figure 9 plots the relationship between MPMI/PCMI/SJE/WPMI and coupling strength
k, where the PAC estimators all gradually increase as the k increases. However, when
0 ≤ k ≤ 0.2 or 0.8 ≤ k ≤ 1, the PAC estimators increased comparatively slowly. It shows
that when the coupling is weak or strong, it is difficult to distinguish any difference of
PAC intensities.
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Figure 9. Variation of the four methods with the coupling strength (100 realizations). (a) MPMI.
(b) PCMI. (c) SJE. (d) WPMI.

3.3. The Effects of Noise on Methods

To analyze the effects of noise on four methods, white Gaussian noise with an SNR
varying from −5 dB to 20 dB in steps of 1 dB is added to the coupled signal. The data
length is 10,000. In the case of k = 0.3, 0.5, 0.8, respectively, Figure 10 plots the variation
of PAC with white Gaussian noise and coupling strengths of k = 0.3, 0.5, 0.8. In order
to compare the four methods in the same coordinate system, the normalization curve is
realized by dividing the coupling value with noise by the coupling value without noise.
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It could be seen that in Figure 10a, when k = 0.3, SNR from −5 dB to 6 dB, compared 
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It could be seen that in Figure 10a, when k = 0.3, SNR from −5 dB to 6 dB, compared
with the other three methods, SJE method is closer to the coupling value when there is no
noise, and the ability to suppress noise better. When the value of SNR ranges from 10 dB to
20 dB, SJE, WPMI and MPMI are all close to the noise-free coupling value, while the PCMI
value increases with the increase of the SNR, until SNR = 20 dB, it still does not reach the
coupling value under noise-free conditions value. Figure 10b shows that when k = 0.5 and
SNR range from is −5 dB to 5 dB, the anti-noise performance of SJE is slightly better than
the other three methods. In Figure 10c, when k = 0.8, SNR ranges from −5 dB to 10 dB,
WPMI against noise is the best, exceeding SJE. This is because under the same data length,
the higher the coupling strength, the better the performance of the WPMI. Moreover, when
SNR is from 7 dB to 20 dB, SJE and MPMI have similar performance.

3.4. Detection of the Frequency Pairs with PAC

In the process of collecting EEG data, there will inevitably be some noise interference.
Therefore, in this paper, white Gaussian noise is used to simulate measurement noise [43].
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In addition, when analyzing EEG signals collected by humans or animals under different
behaviors and cognitive situations, we do not know the magnitude of the PAC strength
value and the coupling frequency range of each stage in advance. Therefore, it is necessary
to measure the PAC to obtain the best possible frequency estimation of the phase and
amplitude coupling components. The PAC value can also be used to evaluate the degree of
PAC affected under different behaviors or physiological and pathological mechanisms.

At present, several methods of exploring PAC have been adopted. Among them, the
most popular analysis is the comodulogram, in which a “coupling palette” is computed and
used to indicate the strength of the modulation of amplitude by phase within wide ranges
of phase-giving and amplitude-giving frequencies, [21,44,45]. Its advantage is that the
experimenter can directly observe the frequency range showing the phase and amplitude of
strong coupling. However, before the analysis, the possible coupling frequency range must
be chosen. We used a comodulogram to test whether these four algorithms can detect PAC
frequency pairs in a given frequency range. In order to verify the accuracy of the algorithm,
the frequency range of the simulation data was expanded to 1–100 Hz, and the actual
PAC coupling frequency range was 4–8 Hz and 60–70 Hz. Usually, the abscissa represents
the frequencies analyzed as phase-modulating fP, whereas amplitude-modulated fA is
represented in the ordinate axis; that is, jet colors in a given coordinated (x, y) of the
bi-dimensional map indicate that the phase of the x frequency modulates the amplitude of
the y frequency.

In Figure 11, we show an example of applying a comodulogram to simulate data.
The comodulograms were constructed by using fP calculated in 0.5 Hz steps with 4 Hz
bandwidths and fA calculated in 2 Hz steps with 10 Hz bandwidths. Next, in order to
simulate the measurement noise in the EEG signal more realistically, white Gaussian noise
with SNR = 5 dB was added to the original data, and the PAC comodulogram of the four
methods at k = 0.8 was obtained as shown below. The comodulograms of MPMI and
WPMI are relatively clustered and can correctly show the phase–amplitude frequency
range. Although SJE is more concentrated than the MPMI and WPMI, white Gaussian
noise has an impact on it. The comodulogram obtained by PCMI is relatively scattered, the
frequency range of the HFO becomes wider, and white Gaussian noise has a greater impact
on it. Furthermore, the running time of the four algorithms was also compared. The SJE
algorithm has the fastest running time, WPMI takes the longest time, and MPMI is slightly
faster than PCMI.
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Figure 11. The phase–amplitude comodulograms of the four methods when white Gaussian noise is
added to the simulated data (50 realizations). The abscissa represents the frequency for the modulated
phase, and the ordinate represents the frequency for the modulated amplitude. The center frequencies
(LFO: 3–10 Hz with a step of 0.5 Hz; HFO: 30–100 Hz with a step of 2 Hz) of the bandpass filter
corresponding to the coordinates in each comodulogram. (a) MPMI. (b) PCMI. (c) SJE. (d) WPMI.
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3.5. Sensibility to Spurious Coupling

The instantaneous sharp edges in the time domain correspond to the broadband
harmonic components in the frequency domain. They affect the phase of low-frequency
components and the amplitude of high-frequency components. Therefore, even if there is
no real physiological interaction, spurious CFC may be generated [46–48]. In the previous
simulation analysis, we only considered the interference caused by measurement noise. In
fact, in real EEG recordings, noise components may be more complex and intense, such
as sharp waveforms and large artifacts. Using simulated data, Kramer and colleagues
believe that in some cases, sharp edges in the data may result in coupling in a wide
range of frequencies-for-amplitude [49]. However, this type of coupling has not been
confirmed in real the scalp or intracranial EEG data until recently, and it is unclear under
what circumstances, if at all, such a situation may arise [47,50]. In this study, the Hilbert
transform is used to extract the analytic signal with the instantaneous amplitude and phase
components. Therefore, it inevitably leads to non-meaningful amplitude estimates for
PAC computation.

Currently, existing papers have studied the detection of spurious coupling phenom-
ena in signals without interaction [49]. Thus, we studied the impact of spike noise on
the detection of PAC frequency bands by these four algorithms in the case of strong cou-
pling. In the simulation data, set k = 0.8, the data length is 10 s, and a train of a spike
(3 standard deviations height, 20 ms width at half-maximum, 100 ms inter-peak interval)
are superimposed on the background signal. In the presence of spurious coupling, the
phase–amplitude comodulograms of the four methods are obtained, as shown in Figure 12.
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Figure 12. The phase–amplitude comodulograms of four methods when a train of spikes are su-
perimposed on the background signal (50 realizations). The abscissa represents the frequency for
the modulated phase, and the ordinate represents the frequency for the modulated amplitude. The
center frequencies (LFO: 3–10 Hz with a step of 0.5 Hz; HFO: 30–100 Hz with a step of 2 Hz) of the
bandpass filter corresponding to the coordinates in each comodulogram. (a) MPMI. (b) PCMI. (c) SJE.
(d) WPMI.

We can observe that compared with other methods, the SJE has a higher degree of
aggregation and can better reflect the true coupling frequency range, and spurious coupling
has less influence on it. In the MPMI and WPMI methods, the range of high-frequency
rhythms in their comodulograms becomes wider due to the influence of spurious coupling.
PCMI loses the ability to detect the coupling frequency range in the presence of spike noise.
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4. Conclusions

In this study, the methods based on permutation analysis were applied to measure
the PAC strength. The comparison was carefully performed between the performances of
SJE and that of MPMI, PCMI, and WPMI. The results demonstrated that compared with
other methods, the SJE algorithm exhibited superior performance, including the lower
complexity and the highest computational efficiency. Furthermore, the results also show
that SJE can better resist additive white Gaussian noise except for high coupling strengths
where WPMI is more effective. In addition, we also found that the SJE has the ability to
detect the pairs of coupling frequency in a wide frequency range when the signal is mixed
with noise of low signal-to-noise ratio. moreover, it is capable to depict the comodulogram
of a signal containing spike noise. In conclusion, it suggests that SJE is possibly a better
choice to evaluate the PAC under certain conditions.
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