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Tristyrylphenol ethoxylates (TSPEOn) are widely used as inert ingredients

in pesticide formulations in the world. However, the information on the

dissipation behavior of different homologs TSPEOn in agro-products is

lacking. To investigate the dissipation behavior of TSPEOn, a cowpea field

experiment treated with TSPEOn at different doses was carried out in

Guangdong province, China. Different 24 TSPEO homologs were all detected

in cowpea from the field terminal residue experiments, and the total

concentrations of TSPEO homologs in cowpea were 40.0–1,374 µg/kg.

The dissipation half-lives of 24 TSPEO homologs in soil were 1.51–2.35

times longer than those in cowpea. The long-chain homologs TSPEOn

were dissipated faster than the short-chain homologs TSPEOn, suggesting

a homolog-specific degradation of the TSPEOn in the cowpea ecosystem.

The characteristic bimodal profiles of TSPEOn (n = 6–29) differing from

that of the commercial TSPEOn were observed in the cowpea terminal

residues experiment, indicating that the long-chain TSPEOn would degrade

to short-chain TSPEOn in cowpea and soil. The acute and chronic dietary

exposure risks of 6TSPEOn in cowpea are within acceptable margins for

human consumption across different ages and genders. But the health risks

to children should be noticed in future.
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Introduction

Tristyrylphenol ethoxylates (TSPEOn) are important nonionic surfactants which
are widely used in pesticide formulations to enhance the penetration and spread of the
active ingredient. As the nonionic surfactant, TSPEOn was second only to alkylphenol
ethoxylates (APEOn) in China (1). A typical TSPEOn surfactant formulation is
comprised of tristyrene with an average of 16 ethoxylate (EO) units, usually within the
range of 1 to 33 ethoxylate units as depicted in Figure 1 (2, 3). Studies have shown that
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FIGURE 1

Chemical structure of tristyrylphenol ethoxylates (TSPEOn)
(n = 1–33).

TSPEOn had moderate acute toxicity, subchronic toxicity,
thyroid, and liver toxicity in mammals (4, 5). Furthermore,
its degradation intermediates, styrenated phenols were
demonstrated to have acute toxicity or estrogenic activity
in Pseudokirchneriella subcapitata and Oryzias latipes (6–8).
Considering the toxicity and the large production volumes,
the United States Environmental Protection Agency has set a
TSPEOn limit of no more than 15% in pesticide formulations in
2010 (4). However, concern about its residue and environmental
behavior continue to this day, such information is currently
lacking.

Previous studies had shown that relatively high
concentrations of TSPEOn were detected in the agricultural
ecosystem, such as cherries, peaches, and kiwifruit (1).
Additionally, the dissipation behavior of TSPEOn was reported
in lettuce under greenhouse and field conditions with half-lives
of 2.18–5.36 and 1.82–5.52 days, respectively. TSPEOn were
relatively persistent in the field. It can be concluded that the
cultivation system and plant type jointly affect the absorption
and degradation of TSPEOn (9, 10). Cowpea [Vigna unguiculata
(L.) Walp.] is an ideal food for diabetic due to its phospholipid
can promote insulin secretion and participate in glucose
metabolism, which is widely cultivated in the tropical and
subtropical region of Asia. However, cowpea is susceptible to a
variety of diseases and insect infestations, such as aphids, thrips,
cowpea weevil, and liriomyza (11–15). Pesticide application
is a probable major source of TSPEO residues during cowpea
cultivation (11, 16–18). Further research is needed to study the
potential different dissipation behavior of TSPEOn by cowpea
growing in terms of public health and food safety.

In this study, a cowpea field experiment was carried out in
Guangdong province, the main region of cowpea production
in China, which was treated with TSPEOn at different doses.

Different 24 tristyrylphenol ethoxylate homologs were all
analyzed in cowpea from the field experiments to shed light
on the dissipation rates and distribution profiles of different
TSPEO homologs in cowpea. The acute and chronic dietary
exposure risks of TSPEOn in cowpea for different subgroups
(age and gender) based on supervised field trial data and relevant
toxicological parameters were also assessed. The results obtained
in this study have important implications in understanding the
residue fate of TSPEOn.

Materials and methods

Reagents and chemicals

The standard of Technical TSPEO16 (a mixture of
TSPEOn with an average of 16 EO units) was purchased from
Jiangsu Zhongshan Chemical Co., Ltd., (Nanjing, China)
and purified by using preparative liquid chromatography
(LC) as described in our earlier study (19). Ultrapure
water (18.2 M�·cm) was prepared by Milli-Q purification
system (Millipore, Bedford, MA, USA). Octadecyl (C18) and
primary secondary amine (PSA) sorbents were purchased
from Bonna-Agela Technologies, Ltd., (Tianjin, China).
Multiwalled carbon nanotubes (MWCNTs) were obtained
from Nanjing XFNANO Materials Technologies (Nanjing,
China). Acetonitrile (≥ 99.95%) was liquid chromatography-
mass spectrometry (LC-MS) grade (Thermo Fisher Scientific,
Waltham, MA, USA). Anhydrous magnesium sulfate and
sodium chloride were analytical grade (Sinopharm Chemical
Reagent Company, Beijing, China).

Field trails and sampling

Field trials of cowpea were designed under open conditions
according to the Guideline for testing pesticide residues in
crops (NY/T 788-2018) and the Standard operating procedures
on pesticide registration residue field trials (20). For the
field dissipation experiments, the emulsifier 601 (Technical
TSPEO16) was diluted with water (500-fold dilution) and
sprayed on the cowpea and bare soil at a dose of 2,250 g/ha
during the vegetative period. A separate plot with the no-
TSPEOn application was used as a control. Cowpea planting
density and fertilization management in the experimental field
were designed, according to the conditions of local planting. The
area of each plot was 15 m2. Representative 2 kg cowpea and soil
samples were collected randomly from each plot at 2 h, 1 d, 3 d,
5 d, 7 d, 10 d, 14 d, and 21 d after spraying. Both the cowpea and
soil samples were stored in plastic bags with proper labels before
being transferred to the laboratory.

For the terminal residue experiments, the emulsifier 601
was applied at dosage of 225 g/ha and 450 g/ha, respectively.
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Two and three applications were made with an interval of 5 d.
Representative 2 kg cowpea and soil samples were collected
separately from each plot at 5, 7, 10, 14, and 21 d after the last
application. The mature cowpea samples were collected from
the top, middle, and bottom of the shelf from each plot. All
cowpea samples were cut into small pieces, homogenized and
stored at −20◦C until analysis. All soil samples were collected
from 0 to 15 cm of the layer, dried at room temperature, ground
to a powder using an electric grinder and sifted through a 2-mm
sieve. All samples were packed in seal aluminum foil bags, and
then stored at –20◦C until analysis.

Instrument condition

Tristyrylphenol ethoxylates (TSPEOn) analysis was
performed by high performance liquid chromatography-
tandem mass spectrometry (HPLC-MS/MS) according to our
previous study (1). Shimadzu Triple Quadrupole LCMS-8050
system (Shimadzu, Kyoto, Japan) equipped with a Xbridge C18
(2.1 × 50 mm, 5 µm, Waters, Milford, MA, USA) precolumn

and a Nova-Pak Silica (2.1 × 150 mm, 4 µm, Waters, Milford,
MA, USA) column were used to separate the different homolog
TSPEOn. The flow was kept at 0.30 mL/min. The mobile phases
were 2 mM ammonium acetate water (A) and acetonitrile
(B), and the gradient elution program was as follows: mobile
phase B was ramped from 95 to 88% over 5 min, varied
from 88 to 80% over 5.5 min, held at 80% for 2.0 min, and
then increased to 95% over 0.5 min, thereby maintaining
initial chromatographic condition within 7 min. The column
temperature was maintained at 40◦C. The injection volume
was 2 µ L.

Mass spectrometry (MS/MS) analysis was accomplished
using a tandem quadrupole mass spectrometer (LCMS-8050,
Shimadzu, Kyoto, Japan) in time programmed multiple-reaction
monitoring mode in positive mode. The source parameters
were optimized and performed as follows: the ion source
temperature (TEM) was 450◦C. The base ions were the
ammonium adduct ions [(M + NH4)+ or (M + 2NH4)2+]. All
the MS parameters were listed in Supplementary Table 1 in
supporting information. The LabSolutions software was used to
acquire and analyze the data (version 5.82, Shimadzu).

FIGURE 2

Dissipation kinetics curves of different tristyrylphenol ethoxylates (TSPEOn) [n = 6–29, (A–X)] homologs and 6TSPEOn (Y) in cowpea in China.
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FIGURE 3

Dissipation kinetics curves of different tristyrylphenol ethoxylates (TSPEOn) [n = 6–29, (A–X)] homologs and 6TSPEOn (Y) in soil in China.

FIGURE 4

Relationship between dissipation half-lives and the different homolog tristyrylphenol ethoxylates (TSPEOn) (n = 6–29) in cowpea and soil.
(A) TSPEOn half-lives in cowpea, slope = –0.0632, r2 = 0.6247; (B) TSPEOn half-lives in soil, slope = –0.0644, r2 = 0.7937.
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Sample preparation

The 10 g homogenized samples (cowpea and soil) were
weighed into a 50-mL polypropylene centrifuge tube with a
screw cap. To this, 10 mL ultrapure water (only to soil) and
10 mL acetonitrile were subsequently added. The sample tubes
were vigorously vortexed for 1 min, and then ultrasound for
10 min. After that, 1 g sodium chloride and 4 g anhydrous
magnesium sulfate were added, and the tube was vortexed for
another 1 min and then centrifuged at 6,000 rpm for 5 min.
1 mL supernatant was transferred into a 10-mL centrifuge
tube containing different purifying agents (150 mg anhydrous
magnesium sulfate, and 5 mg MWCNTs for cowpea extraction
and 5 mg MWCNTs, 25 mg PSA, and 25 mg C18 for soil
extraction). After vertexing for 1 min, the tube was centrifuged

at 10,000 rpm for 5 min. Finally, the resulting supernatant was
filtered into an autosampler vial through a 0.22-µm membrane
(Bonna-Agela Technologies Inc., Tianjin, China) for HPLC-
MS/MS analysis.

Method validation

The method validation results for TSPEOn in cowpea are
shown in Supplementary Table 2. Recovery experiments were
performed to evaluate the accuracy and precision of the method.
Five replicates of spiked blank samples at three spiking levels
were prepared. The recoveries of all the TSPEO homologs
(n = 6–29) in cowpea ranged from 79.7 to 120%, with RSDs of
0.70–20.1%. The linearities of all the TSPEO homologs (n = 6–
29) were evaluated by analyzing matrix-matched standard

FIGURE 5

Concentration distribution of homolog tristyrylphenol ethoxylates (TSPEOn) (n = 6–29) under 450 g/ha after two applications at different
interval to harvest in cowpea in terminal residue experiments in China. Interval to harvest: (A) 5 d; (B) 7 d; (C) 10 d; (D) 14 d; (E) 21 d.
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solutions, and the correlation coefficients (R2) were higher
than 0.990. The limits of detection (LODs) and the limits of
quantification (LOQs) were determined based on the signal-to-
noise ratios of 3 and the lowest spiked concentration of each
analyte, respectively. The LODs and LOQs for the homologs
of TSPEOn were 0.001–0.14 and 0.06–5.13 µg/kg, respectively.
The method validation results for TSPEOn in soil were listed
in our previous research (19). The recoveries and RSDs ranged
from 64.2 to 113% and 1.30 to 17.3%, respectively.

Data processing and statistical analysis

The dissipation kinetics of all 24 TSPEO homologs in
cowpea and soil were estimated according to the pseudo first-
order dynamics equation:

Ct = C0 × exp−kt (1)

where C0 (µg/kg) and Ct (µg/kg) indicate the concentrations of
TSPEO homologs and 6TSPEOn at time 0 (d) and time t (d), k is
the dissipation rate constant. The half-life (T1/2) was calculated
from k by using the equation:

T1/2 = ln2/k (2)

The acute dietary intake risk (aHI) was estimated based on
the following equations (10, 21).

NESTI = HR × LP/bw (3)

aHI =
NESTI
ARfD

× 100% (4)

where NESTI is the national estimated short-term intake. HR
is the highest residue concentration (µg/kg), which is obtained
on the highest residue level of the terminal residue experiments.
LP is the large portion consumption of cowpea (dark-colored
vegetables instead) for the consumers (97.5th percentile of
eaters, g/day person), and bw is the mean body weight, which
is shown in Supplementary Table 3 (11). In this study, the
population was divided into eight groups according to age
and gender: child (≤ 11 years), youngster (12–18 years), adult
(18–60 years), and elder (> 60 years) for both male and
female. The consumption data of dark-colored vegetables was
used instead in the dietary risk assessment, when the cowpea
consumption data were unavailable. ARfD is the acute reference
dose (1.67 mg/kg/d), which was determined using the lowest
observed adverse effect level of 500 mg/kg/d and an uncertainty
factor of 300 (4, 22).

FIGURE 6

Typical liquid chromatography-tandem mass spectrometry (LC-MS/MS) chromatograms of (A) standard of commercial tristyrylphenol
ethoxylates (TSPEO) homologs spiked at 1.0 mg/kg; (B) TSPEO homologs in cowpea under 450 g/ha after three applications at the interval to
harvest of 10 d in terminal residues experiments; (C) TSPEO homologs in soil under 450 g/ha after three applications at the interval to harvest of
10 d in terminal residue experiments.

Frontiers in Nutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2022.1036025
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1036025 October 13, 2022 Time: 16:50 # 7

Li et al. 10.3389/fnut.2022.1036025

The chronic dietary intake risk (hazard quotient, HQ) was
estimated based on the following equations (10, 21).

NEDI = STMR × F/bw (5)

HQ =
NEDI
ADI

× 100% (6)

where NEDI is the national estimated daily intake. STMR is the
median residue in the terminal residue experiments (µg/kg). F is
the mean daily consumption of cowpea (dark-colored vegetables
instead, g/day person), as shown in Supplementary Table 3
(11), ADI is the acceptable daily intake (0.5 mg/kg/d) calculated
using the no observed adverse effect level of 50 mg/kg/d and an
uncertainty factor of 100 (4, 22).

Results and discussion

Dissipation of homolog tristyrylphenol
ethoxylates (n = 6–29) in cowpea
system

The dissipation kinetics curves of different homolog
TSPEOn (n = 6–29) and 6TSPEOn in cowpea were shown
in Figure 2. The initial concentrations of TSPEOn (n = 6–
29) and 6TSPEOn deposited on cowpea samples were 23.9–
2,316 µg/kg (Figures 2A–X) and 16,506 µg/kg (Figure 2Y) at
2 h after TSPEOn treatment, respectively. After 21 d, 96.1–99.8%
of the initial residues of TSPEOn (n = 6–29) were dissipated.
The dissipation half-lives of homolog TSPEOn (n = 6–29)
and 6TSPEOn were found to be slightly varied from 2.42 to
4.20 d, which were comparable to those in lettuce (1.82–4.34 d)
and cucumber (1.80–4.30 d) in the previous studies (9, 10),
indicating that all the homolog TSPEOn (n = 6–29) could be
dissipated fast in these vegetables.

Similar results were observed in the soil as shown in
Figure 3. The dissipation trends of all TSPEOn (n = 6–29)
and 6TSPEOn followed pseudo first-order kinetics. After 21 d,
the dissipation rates of homolog TSPEOn (n = 6–29) and
6TSPEOn can reach 85.3–93.9% in soil, which were slightly
lower than those in cowpea. The variety of dissipation rates
of homolog TSPEOn (n = 6–29) in cowpea and soil might be
related to several factors, including log Kow, climatic conditions,
photo-degradation, microorganism biodegradation, preferential
absorption, and character of soil (23–30). According to the
length of ethoxylate chain, the TSPEOn has been divided into
two groups, namely short-chain TSPEOn (n ≤ 16) and long-
chain TSPEOn (n > 16) in this study. From Figures 2, 3, it
was found that the dissipation half-lives of short-chain TSPEOn
(n ≤ 16) were a little bit higher than those of long-chain
TSPEOn (n > 16) in cowpea and soil. A regression analysis
between the dissipation half-lives and the different homolog
TSPEOn (n = 6–29) in cowpea and soil was conducted in

Figures 4A,B. It was found that the dissipation half-lives of the
homolog TSPEOn (n = 6–29) were significantly decreased with
the increasing EO unites in TSPEOn structure in cowpea and
soil, indicating that the length of EO chain would be an essential
factor influencing the dissipation half-lives of TSPEOn in the
cowpea ecosystem.

Distribution of tristyrylphenol
ethoxylates in cowpea ecosystem

The terminal residues of 6TSPEOn in cowpea are shown
in Supplementary Figure 1. The terminal concentrations of
6TSPEOn were detected and ranged from 40.0 to 1,374 µg/kg
in cowpea, which increased with the incremental application
frequency and dosage. The typical distributions of homolog
TSPEOn (n = 6–29) at 450 g/ha after two applications in cowpea
in terminal residue experiments were characterized in Figure 5,
and the distributions of other terminal residue experiments
were shown in Supplementary Figures 2–4. It was found that
a significant bimodal profile was observed in the homolog
TSPEOn (n = 6–29) distribution in cowpea. One concentration
peak-value was occurred at TSPEO12 (3.04–58.3 µg/kg), and the
other was observed at TSPEO22 (6.22–88.4 µg/kg).

As shown in Figure 6, a typical normal distribution
profile was presented in the commercial TSPEO mixture,
but bimodal profiles were observed for TSPEOn in cowpea
and soil samples. Compared with the commercial TSPEO
mixture, the contributions of TSPEO homologs with short EO
unites (n = 6–13) increased from 21.8 to 33.3% in cowpea
and soil. All these results implied that the biotransformation
would be taken place among the homologs TSPEOn (n = 6–
29) in the cowpea ecosystem. However, it has been reported
that the long-chain nonylphenol ethoxylate (NPEOn) can
biodegraded into more lipophilic shortened EO chain NPEOn
by attacking and shortening the hydrophilic part of the molecule
of NPEOn under anaerobic conditions (31–34). Short-chain
NPEOn presented more toxicity and persistence than long-
chain nonylphenol ethoxylate (NPEOn).

Risk assessment of tristyrylphenol
ethoxylates in cowpea

Assessments of acute and chronic dietary intake risk for
cowpea consumption are shown in Table 1. For the acute dietary
intake risk, the HRs of 6TSPEOn in cowpea samples were 1,374,
957, 560, 200, and 301 µg/kg at the interval to harvest of 5, 7, 10,
14, and 21 d, respectively. Accordingly, the aHI values for child
(≤ 11 years), youngster (12–18 years), adult (18–60 years), and
elder (> 60 years) were 0.04–0.30%, 0.03–0.19%, 0.02–0.15%,
0.02–0.15% for males, and 0.05–0.32%, 0.03–0.18%, 0.02–0.16%,
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TABLE 1 The acute and chronic dietary risk assessment of tristyrylphenol ethoxylates (TSPEOn) in cowpea.

Subgroup Sex Interval to
harvest (days)

HR (µ g/kg) NESTI (mg/kg
bw/d)

aHI (%) STMR (µ g/kg) NEDI (mg/kg
bw/d)

HQ (%)

Child M 5 1,374 0.0050 0.30 770 0.0020 0.40

7 957 0.0035 0.21 639 0.0017 0.33

10 560 0.0020 0.12 320 0.0008 0.17

14 200 0.0007 0.04 144 0.0004 0.08

21 301 0.0011 0.07 103 0.0003 0.05

F 5 1,374 0.0053 0.32 770 0.0020 0.40

7 957 0.0037 0.22 639 0.0017 0.33

10 560 0.0022 0.13 320 0.0008 0.17

14 200 0.0008 0.05 144 0.0004 0.08

21 301 0.0012 0.07 103 0.0003 0.05

Youngster M 5 1,374 0.0031 0.19 770 0.0014 0.28

7 957 0.0022 0.13 639 0.0012 0.23

10 560 0.0013 0.08 320 0.0006 0.12

14 200 0.0005 0.03 144 0.0003 0.05

21 301 0.0007 0.04 103 0.0002 0.04

F 5 1,374 0.0030 0.18 770 0.0014 0.27

7 957 0.0021 0.13 639 0.0011 0.22

10 560 0.0012 0.07 320 0.0006 0.11

14 200 0.0004 0.03 144 0.0003 0.05

21 301 0.0007 0.04 103 0.0002 0.04

Adult M 5 1,374 0.0026 0.15 770 0.0012 0.24

7 957 0.0018 0.11 639 0.0010 0.20

10 560 0.0010 0.06 320 0.0005 0.10

14 200 0.0004 0.02 144 0.0002 0.04

21 301 0.0006 0.03 103 0.0002 0.03

F 5 1,374 0.0026 0.16 770 0.0013 0.25

7 957 0.0018 0.11 639 0.0010 0.21

10 560 0.0011 0.06 320 0.0005 0.10

14 200 0.0004 0.02 144 0.0002 0.05

21 301 0.0006 0.03 103 0.0002 0.03

Elder M 5 1,374 0.0024 0.15 770 0.0012 0.24

7 957 0.0017 0.10 639 0.0010 0.20

10 560 0.0010 0.06 320 0.0005 0.10

14 200 0.0004 0.02 144 0.0002 0.05

21 301 0.0005 0.03 103 0.0002 0.03

F 5 1,374 0.0027 0.16 770 0.0013 0.25

7 957 0.0019 0.11 639 0.0010 0.21

10 560 0.0011 0.07 320 0.0005 0.10

14 200 0.0004 0.02 144 0.0002 0.05

21 301 0.0006 0.04 103 0.0002 0.03

0.02–0.16% for females, respectively. These results indicate that
there is little or no acute risk to humans.

For the chronic dietary intake risk, the STMRs of 6TSPEOn
in cowpea were 770, 639, 320, 144, and 103 µg/kg at the interval
to harvest of 5, 7, 10, 14, and 21 d, respectively. Therefore, the
HQs for child (≤ 11 years), youngster (12–18 years), adult (18–
60 years), and elder (> 60 years) were 0.05–0.40%, 0.04–0.28%,

0.03–0.24%, and 0.03–0.24% for male, 0.05–0.40%, 0.04–0.27%,
0.03–0.25%, 0.03–0.25% for female, respectively, significantly
lower than the acceptable risk level (100%). These results suggest
that the risk of chronic dietary intake of 6TSPEOn based on the
terminal residues of different interval to harvest is acceptably
low. The assessment results were coincided with the study of
cucumber (10). Nevertheless, it should be noted that children
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are the most susceptible population to acute dietary intake risk
and chronic dietary intake risk, and the impact on the health of
children should be monitored in future.

Conclusion

In the present study, the dissipation and terminal residues
of TSPEO homologs in a cowpea ecosystem were studied.
The dissipation rates of all the homolog TSPEOn (n = 6–
29) in cowpea were higher than in soil. The long-chain
TSPEOn presented a higher dissipation rate than that of short-
chain TSPEOn in the cowpea ecosystem. The fact that the
typical bimodal profiles of TSPEO homologs and the noticeable
increase of short TSPEOn (n = 6–13) indicated that the long-
chain TSPEOn would be degraded to short-chain TSPEOn in the
cowpea ecosystem. The risks of acute and chronic dietary intake
of 6TSPEOn in cowpea for general consumers in China were
distinctly lower than the acceptable levels (100%). But children
were the most susceptible population to acute and chronic
dietary intake risks, which should be paid more attention to.
This study provides proper guidance and feasibility suggestions
for the TSPEOn application in pesticide formulations.
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