
REVIEW
published: 26 February 2020

doi: 10.3389/fimmu.2020.00341

Frontiers in Immunology | www.frontiersin.org 1 February 2020 | Volume 11 | Article 341

Edited by:

Katarzyna Bulek,

Jagiellonian University, Poland

Reviewed by:

Peter A. Ward,

University of Michigan, United States

Piergiuseppe De Berardinis,

Istituto di Biochimica delle Proteine

(IBP), Italy

*Correspondence:

Ulf Panzer

panzer@uke.de

Specialty section:

This article was submitted to

Cytokines and Soluble Mediators in

Immunity,

a section of the journal

Frontiers in Immunology

Received: 05 December 2019

Accepted: 12 February 2020

Published: 26 February 2020

Citation:

Nies JF and Panzer U (2020)

IL-17C/IL-17RE: Emergence of a

Unique Axis in TH17 Biology.

Front. Immunol. 11:341.

doi: 10.3389/fimmu.2020.00341

IL-17C/IL-17RE: Emergence of a
Unique Axis in TH17 Biology

Jasper F. Nies 1 and Ulf Panzer 1,2*

1 Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf Hamburg, Hamburg,

Germany, 2Hamburg Center of Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg,

Germany

Therapeutic targeting of IL-17A and its receptor IL-17RA with antibodies has turned

out to be a tremendous success in the treatment of several autoimmune conditions.

As the IL-17 cytokine family consists of six members (IL-17A to F), it is intriguing to

elucidate the biological function of these five other molecules to identify more potential

targets. In the past decade, IL-17C has emerged as quite a unique member of this

pro-inflammatory cytokine group. In contrast to the well-described IL-17A and IL-17F,

IL-17C is upregulated at very early timepoints of several disease settings. Also, the

cellular source of the homodimeric cytokine differs from the other members of the

family: Epithelial rather than hematopoietic cells were identified as the producers of

IL-17C, while its receptor IL-17RE is expressed on TH17 cells as well as the epithelial

cells themselves. Numerous investigations led to the current understanding that IL-17C

(a) maintains an autocrine loop in the epithelium reinforcing innate immune barriers

and (b) stimulates highly inflammatory TH17 cells. Functionally, the IL-17C/RE axis has

been described to be involved in the pathogenesis of several diseases ranging from

infectious and autoimmune conditions to cancer development and progression. This

body of evidence has paved the way for the first clinical trials attempting to neutralize

IL-17C in patients. Here, we review the latest knowledge about identification, regulation,

and function of the IL-17C/IL-17receptor E pathway in inflammation and immunity, with

a focus on the mechanisms underlying tissue injury. We also discuss the rationale

for the translation of these findings into new therapeutic approaches in patients with

immune-mediated disease.

Keywords: IL-17C, IL-17RE, immunity, inflammation, Th17

INTRODUCTION

The discovery of TH17 cells as a novel subset of CD4+ T cells in 2005 (1) lead to a paradigm
shift in the field of immunology. Our previously incomplete and inconsistent understanding of
many diseases’ pathogenesis was manifold enhanced thanks to rigorous examination of this new T
cell lineage. These discoveries are not only important for basic immunological research, but drugs
targeting TH17-related molecules have had a significant impact on the treatment of immunological
diseases (2–4).

As the name of the TH17 cells was coined by their characteristic production of the
highly inflammatory cytokine IL-17A upon activation, most scientific effort has been put into
understanding the biological activity of this protein. However, five more cytokines with structural
similarity to IL-17A have been identified (IL-17B-F). In this six-member cytokine family, IL-17A
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is best characterized, followed by the very closely related IL-
17F. Structurally, all members of the IL-17 cytokine family
are homodimers in their biologically active form, yet one
heterodimer consisting of IL-17A and IL-17F (IL-17A/F) is
described (5, 6). The proteins bind to heterodimeric receptor
complexes to induce signaling in their target cells. Most of those
complexes consist of the ubiquitously expressed subunit IL-17RA
and a second, ligand-specific subunit (IL-17RB-RE) (7–11). IL-
17D remains an orphan ligand in the cytokine family (Figure 1).

In line with the current understanding of TH17 cells
being a highly inflammatory lineage, IL-17A and F induce
several inflammatory pathways. Most markedly, their binding
to the receptor complex IL-17RA/RC, which is predominantly
expressed on epithelial cells, leads to upregulation of cytokines,
anti-bacterial peptides, and chemokines. The chemokines then
recruit innate immune cells like neutrophils which potently
enhance the inflammatory reaction. Thus, it is fair to say that by
now we have got a good grasp of how IL-17A and F unfold their
inflammatory effect.

The role of the remaining four IL-17 family members has long
been considered rather elusive. However, the last years have shed
a little more light on the IL-17C/RE axis, which unveiled some
unique features.

In this review, we provide an overview of expression patterns
and the functional importance of IL-17C and its receptor
IL-17RE in immunological diseases, present a hypothesis of
how the IL-17C/RE axis mediates its inflammatory effect,
summarize intracellular signaling pathways, and give an outlook
on translational approaches.

IDENTIFICATION OF THE IL-17C/RE AXIS

First Characterization of IL-17C
In 2000, the cytokine IL-17C has first been identified by a
homology-search for proteins similar to IL-17A (12). IL17C is

FIGURE 1 | The IL-17 family. Schematic overview of the IL-17 family members and their respective receptor complexes.

located on chromosome 16q24, is 1.1 kb long, and the protein
IL-17C shares roughly 27% amino acid identity with IL-17A.
Interestingly, after stimulation no induction of IL17CmRNAwas
observed in CD4+ cells, which are the main source of IL-17A
and F. This was the first evidence that IL-17C seems to assume a
unique role in the IL-17 family. In an initial functional analysis
of the protein, the authors showed that IL-17C stimulated the
monocytic cell line THP-1 to release TNF-α and IL-1β.

IL-17C Is Expressed by Epithelial Cells and
Not by Hematopoietic Cells
Unlike what is known about the other IL-17 family members,
many studies suggest that IL17C is not expressed by leukocytes,
but by non-hematopoietic cells.

The characteristic production of IL-17A by a subset of CD4+

cells has led to the name of TH17 cells, which emerged to be a
distinct lineage apart from the classical dichotomy of TH1 and
TH2 cells. However, not only CD4+ T cells produce IL-17A, but
also CD8+ T cells (13), γδ T cells (14, 15), invariant natural killer
T cells (iNKT) (16), group 3 innate lymphoid cells (ILCs) (17),
and even B cells (18).

In contrast, IL17C is expressed by epithelial cells. In a model
for psoriasis, keratinocytes are the main source of IL-17C (19).
Several groups confirmed this IL17C expression in keratinocytes
(20–23). Other epithelial cells producing the cytokine include
colonic epithelial cells (9), resident kidney cells (24, 25), and
respiratory epithelial cells (26–28).

Although this strong evidence points to epithelial cells as the
main source of IL17C, its expression has also been found in
leukocytes (29, 30) and smooth muscle cells (31).

IL-17C and the Microbiome
TH17 biology is closely linked to the microbiome as it influences
TH17 cell development: Experiments with antibiotic treatment or
germ-free mice drastically reduced intestinal TH17 cells (32, 33).
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However, specific bacteria are required for proper induction of
this cell type. Segmented filamentous bacteria (SFB) can potently
induce the TH17 cell development (34, 35), while Bacteroides
fragilis suppresses this differentiation (36). Thus, changes in
the gut flora influence the development of TH17 cells, which
can both aggravate or ameliorate extra-intestinal TH17-driven
autoimmunity (37).

Even though TH17 cells themselves are not the source of
IL-17C, intestinal bacteria still seem to play a role for IL17C
expression in the gut. Antibiotic treatment of mice blocked
the induction of Il17c. IL-23 and IL-22 were reported to be
dispensable, but TLR-MyD88 signaling in gut resident cells was
essential for the induction of Il17c expression. In the same
experiment, the authors identified MyD88 as being essential
for proper induction of Il17a, but not Il17c, in hematopoietic
cells (38). Co-culture of murine colonic epithelial cells with
Citrobacter rodentium induces IL-17C production in those
cells. Specifically, Lipopolysaccharide (LPS) and flagellin are
two pattern-associated molecular patterns (PAMPs) that can
be recognized by toll-like receptors (TLRs) and culturing the
cells with those components alone resulted in strong IL-17C
production (9). A change in Il17c expression was not observed
in any of the analyzed leukocyte populations (T lymphocytes,
B lymphocytes, intraepithelial lymphocytes, lamina propria
mononuclear cells). This finding was validated by the fact that
no difference in Il17c induction was seen between wildtype
and recombination-activating gene 1 (Rag1) deficient mice.
Within the non-leukocytic cell populations in the colon, Il17c
induction was indeed limited to only the colonic epithelial
cells since no mRNA upregulation Il17c was seen in colonic
stromal cells after infection (9). Those findings indicate that TLR
activation by microbiota in the gut is important for both IL-
17A and IL-17C, albeit the source of those cytokines is located
to different cell types: Hematopoietic cells and gut resident
epithelial cells, respectively.

Thus, epithelial cells are the main source of the cytokine in
different tissues. That stands in stark contrast to the cellular
source of other cytokines of the IL-17 family, which are mainly
expressed by leukocytes.

IL17C Is Upregulated Early in Disease
Regarding the temporal expression of IL17C, current data point
to an early upregulation during disease. Il17cmRNAwas strongly
upregulated after 4 days in the colons of bacterially infected mice,
while Il17a expression peaked at day 12 (9). Ramirez-Carrozzi
et al. analyzed the kinetics of Il17c expression in detail: in vitro
stimulation of HCT-15 cells with heat-killed E. coli lead to a rapid
expression of the cytokine after 1 h and murine skin challenged
with imiquimod showed strong Il17c expression after 2 days.
In the DSS-colitis model, the authors found induction of Il17c
expression after 2 days in colons and mesenteric lymph nodes,
but upregulation of I17a and Il17f mRNA transcripts was not
detected before day 6 (19). In the nephrotoxic nephritis (NTN)
mouse model for crescentic glomerulonephritis, we showed that
Il17c is upregulated as early as 12 h after induction of the
disease, while Il17a and Il17f expression starts after a couple of
days (24).

IL-17C Binds to the Receptor Complex
IL-17RA/RE
The group that first described IL-17C also suggested that IL-17C
does not bind to IL-17RA, but to another receptor. Expressing
a His-tagged and metabolically labeled form of the extracellular
domain of IL-17RA in 293T cells, precipitation with IL-17A was
observed as expected, but no precipitation could be detected
during incubationwith IL-17C (12). Six years later, another group
discovered this receptor, which has been named IL-17RE.Murine
IL-17RE shares 40% DNA and 18% amino acid sequence with IL-
17RC (39). However, the authors did not yet identify a ligand
binding to this receptor subunit. The receptor was found to be
expressed in lung, kidney, stomach, intestine, and testis of mice
and to have six different isoforms.

Several groups described that IL-17C is the specific ligand
for IL-17RE in 2011: Transfection of 293T cells with the
receptor subunits IL-17RA-RE revealed that IL-17C seems to
bind exclusively to IL-17RE (40). Another group used a similar
approach by analyzing the binding of Flag-tagged human IL-
17C to HEK293 cells overexpressing each of the five IL-
17 receptor subunits. In contrast to the findings of the first
characterization of IL-17C (no binding to IL-17RA) (12), flow
cytometer examination of the cells after incubation with IL-17C
showed binding to both IL-17RA and IL-17RE, but none of
the other receptor subunits. Also, no interactions were found
between IL-17RE and any of the other IL-17 cytokine family
members (19).

Song and colleagues used glutathione S-transferase
precipitation to demonstrate that IL-17C associates not
only with IL-17RE but with a heterodimeric receptor complex
consisting of IL-17RA and IL-17RE (9). Using a blocking
antibody against IL-17RA during stimulation of keratinocytes
with IL-17C, a dose-dependent inhibition of IL-17C-induced
G-CSF and β-defensin-2 expression was observed, underlining
the functional dependence on IL-17RA (19).

The IL-17RA/RE Receptor Complex Is
Expressed on Both Epithelial and TH17
Cells
Interestingly, epithelial cells—the main source of IL-17C—
express the specific receptor for the cytokine. Strong Il17re
expression has been detected in keratinocytes and colon epithelial
cells (19). Reynolds et al. report expression of the receptor
subunit in the colonic epithelial cell line YAMC (41). IL17RE
is also expressed in nerve fibers of human skin after HSV-2
reactivation (21).

Apart from epithelial cells, Chang et al. first described that
Il17re is expressed on TH17 cells. While numerous tissues express
an isoform of IL-17RE that lacks the transmembrane domain,
TH17 cells expressed high amounts of full-length IL17RE. This
expression is strongly enhanced when the cells are stimulated
with a cytokine cocktail of IL-6, TGF-β, IL-1, and IL-23 and
IL-17C also induced expression of the receptor on TH17 cells

(40). Validating this finding, our group found strong Il17re

expression IL-17A+ YFP+ cells from IL-17A YFP+ fate reporter

Frontiers in Immunology | www.frontiersin.org 3 February 2020 | Volume 11 | Article 341

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Nies and Panzer IL-17C/RE Axis in Inflammation

TABLE 1 | Sources of IL-17C and IL-17RE.

Protein Cell type References

IL-17C Keratinocytes (19–23)

Resident kidney cells (24, 25)

Colonic epithelial cells (9)

Respiratory epithelial cells (26–28)

Smooth muscle cells (31)

Leukocytes (29, 30)

IL-17RE TH17 cells (24, 40)

keratinocytes (19)

Colonic epithelial cells (19, 41)

Skin nerve fibers (21)

Overview of cell types producing IL-17C and IL-17RE.

mice and in TH17 polarized cells (compared to TH0, TH1, and

Treg cells) (24).
Similar to IL17C, we reported that Il17re was upregulated 24 h

after induction of NTN (24).
In summary, epithelial cells produce IL-17C at early

timepoints in disease. The cytokine signals through the
heterodimeric receptor complex IL-17RA/RE. This complex is
expressed by several epithelial cells themselves. Secondly, TH17

cells express IL17REwhich indicates that this T cell lineage is also

responsive to IL-17C (Table 1).

INFECTION AND AUTOIMMUNITY

Many studies report that IL17C expression is upregulated at an
early stage in both infectious and autoimmune diseases. This
suggests that it is involved in the innate first-line immunity in
the pathogenesis of those conditions. Intriguingly, IL-17C also
plays an important role in the initiation of the adaptive immune
response later. First, we will take a closer look at the role of the
IL-17C/RE immune axis in infectious diseases. Second, we will
zoom in on autoimmune conditions.

IL-17C/RE Signaling Induces Innate
Immune Functions in Bacterial, Fungal,
and Viral Infections
Signaling through the IL-17C/RE is involved in host defense
against foreign pathogenic microorganisms. In the following
paragraphs, we will summarize the role of the axis in bacterial,
fungal, and viral infections.

Bacterial Infections
The IL-17C/RE axis plays a significant role in several bacterial
infection models. Mice infected with the intestinal pathogen
Citrobacter rodentium showed upregulation of Il17c mRNA
in the colon (9). Ex vivo cultured murine colon tissue and
colonic epithelial cells showed marked mRNA expression of
antibacterial peptides, inflammatory cytokines, and chemokines
after stimulation with IL-17C. Clinically, lack of signaling
through the IL-17C/RE axis modeled with Il17re−/− mice lead

to decreased mRNA levels of said molecules and failure to
clear the infection. This resulted in loss of body weight, higher
intestinal and splenic weight, increased bacterial burden, and
death. Interestingly, there was no difference when the cells
were treated with IL-17A or F, which indicates that IL-17RE is
dispensable for these two cytokines.

In a model of acute colitis, I17c−/− mice challenged with
dextran sulfate sodium (DSS) had a significantly worse outcome
than mice with physiological IL-17C production, which is
reflected by earlier and more pronounced weight loss and
colonic shortening. The authors explain this observation with
the fact that IL-17C induced mRNA expression of tight-junction
molecules, which are essential for the integrity of the colonic
mucosal barrier (41).

Another group examined the role of IL-17RE in this model
confirming those findings of the IL-17C/RE axis assuming a
crucial role in protection against bacteria-driven DSS-induced
colitis (19).

The immune axis also plays a role in the defense against airway
infections with Pseudomonas aeruginosa and Haemophilus
influenza (26, 27).

Fungal Infections
The impact of IL-17C has also been examined in fungal
infections. Huang and colleagues reported that IL-17C is required
for a lethal course of systemic infection with Candida albicans
in mice since II17c−/− mice displayed increased survival
and less severe functional and morphological kidney damage
(25). This is in contrast to the function of IL-17A in this
model: While Il17a overexpression protects the mice, lack of
signaling through IL-17RA results in increased susceptibility
to this fungal infection (42). Similarly, patients with Job’s
syndrome, a condition with TH17 cell defects, are also at
great risk to suffer from such fungal infections (43, 44).
Another study reported that IL-17C is not involved in immunity
to systemic, oral and dermal candidiasis (45). Even though
Il17c mRNA expression was upregulated 2 days after exposure
to the fungus, the group did not observe a difference in
clearance of the infection or gene expression profiles between
mice lacking IL-17C or IL-17RE compared to a wildtype
control group.

Viral Infections
Two studies investigated the role of IL-17C/RE in viral infections.
Peng et al. showed that IL-17C was the only IL-17 family cytokine
that was induced in keratinocytes from human genital skin
biopsies during recurrent HSV-2 reactivation. Also, cultured
human keratinocytes produced IL-17C in response to infection
with HSV-2. Since cutaneous nerve fibers expressed IL17RE
and ex vivo application of IL-17C reduced apoptosis in the
nerve cells, the authors hypothesize that keratinocyte-derived IL-
17C serves as a protective agent for nerve fibers during HSV-2
reactivation in the skin (21). Another group recently analyzed
the effects of IL-17C in in vitro virus-bacteria coinfection of
human bronchial epithelial cells to assess the cytokine’s role in
COPD exacerbations. A challenge with both pathogens resulted
in a synergistic induction of IL-17C. Interestingly, tissue from
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healthy smokers released little IL-17C upon exposure to the
pathogens, but epithelial cells from COPD patients released
significantlymore. Thus, the IL-17C/RE axis might be involved in
the pathogenesis of COPD exacerbations of mixed upper airway
infections (46).

Several TH17-Driven Autoimmune
Diseases Are Exacerbated by IL-17C/RE
Inflammation orchestrated by TH17 cells is a hallmark of
various autoimmune conditions like rheumatoid arthritis,
psoriasis, multiple sclerosis, autoimmune kidney diseases, and
autoimmune hepatitis.

In 2007, Yamaguchi et al. attributed IL-17C a role in
the pathogenesis of collagen-induced arthritis (30). Mice
adoptively transferred with CD4+ T cells, which were retrovirally
transduced with either IL-17A, B, C, or F, had significantly higher
arthritis scores than those that got cells transduced with an
empty vector.

Several studies also evaluated the role of IL-17C in skin
inflammation complementing the picture of IL-17C-induced
auto-aggression. Johansen et al. first showed that IL17C mRNA
and protein levels were increased in the skin of patients with
psoriatic lesions compared to non-lesional skin (47). In fact, IL-
17C is by far the most abundant IL-17 cytokine found in the
skin of such skin lesions: Its protein levels were reported to be
roughly 125-fold higher than those of IL-17A in the lesions (48).
Transgenic mice lacking Il17c, Il17ra, or Il17re display a less
severe course of imiquimod-induced psoriasis (19, 49) while an
overexpression of Il17c in skin keratinocytes lead to spontaneous
development of psoriasiform skin lesions (48). IL-17C also drives
inflammation in atopic dermatitis as IL17C expression was
increased in lesional skin of patients and blocking IL-17C with
an antibody ameliorated skin inflammation in one mouse model
for psoriasis and two models for atopic dermatitis (50).

Also, IL-17C/RE signaling aggravates the course of
experimental autoimmune encephalitis (EAE) (40). Il17c−/−

mice were less prone to develop the disease and those that
did showed less pronounced clinical manifestations of the
inflammation. Vice versa, increased signaling through the axis
in transgenic mice overexpressing Il17re in CD4+ cells lead to a
worse clinical situation of the animals.

We have recently described that the serum levels of IL-
17C are significantly higher in patients with ANCA-associated
glomerulonephritis compared to a healthy control group, which
was not true for IL-17A, F, and B. We showed the pro-
inflammatory role of IL-17C in established mouse models for
lupus nephritis and crescentic glomerulonephritis. In accordance
with the mentioned previous studies, our experiments showed
expression of Il17re by TH17 cells and significantly less TH17 cells
in inflamed kidneys of both Il17c−/− and Il17re−/− mice (24).

Two studies investigated the involvement of the IL-17C/RE
axis in autoimmune hepatitis. One group found evidence that
IL-17C stimulates intrahepatic CD4+ T cells to release IL-2
with subsequent NK-cell mediated liver damage. In this study,
lesser levels of GOT and GPT in sera of Il17c−/− and Il17re−/−

mice were found compared to wildtype mice (51). However,

another group found no differences in GOT and GPT activities
and granulocyte infiltration into the liver between Il17c−/− and
wildtype mice in the same model (52).

Further diseases involving the IL-17C/RE axis include
psoriasiform skin lesions in inflammatory bowel disease (IBD)
patients under anti-TNF-α treatment (53), recurrent aphthous
ulcers (20), LPS-induced endotoxin shock (52), and different
forms of cancer (38, 54–56) (Tables 2, 3).

MECHANISMS OF IL-17C/RE DRIVEN
INFLAMMATION

Mechanistically, a body of evidence suggests that IL-17C exerts
two important immunological effects: (a) In an autocrine
feedback loop with epithelial cells, IL-17C strengthens innate
barriers against infectious agents. (b) Boosting TH17 cell
function, IL-17C also stimulates the adaptive immune system to
efficiently fight off infections. Yet, those pathways harbor the risk
of TH17-driven autoimmunity.

As IL-17A has been studied much more extensively as IL-17C
and acts on epithelial cells, it is worthwhile to recapitulate the
signaling of IL-17A through IL-17RA.

The similar expression of fibroblast growth factor and IL-17R
(SEFIR) domain is highly conserved within the IL-17 receptor
family and structurally similar to the Toll/IL-1R (TIR) domain
found in TLRs and the IL-1β receptor (57). Yet, IL-17 signaling
employs an adaptor protein unique to IL-17 signaling called
ACT1, which also carries the SEFIR domain. The adaptor protein
can then bind several intracellular signaling proteins to induce
several conserved signaling pathways. Pathways activated by IL-
17 receptor signaling include nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) (58), inhibitor of NF-κB
ζ (IκBζ) (59), mitogen-activated protein kinase (MAPK) (60–
62), and CCAAT/enhancer-binding protein (C/EBP) (63, 64).
Together, these pathways mediate mitogenic signals and induce
expression of pro-inflammatory cytokines and chemokines.

Another domain called TIR-like loop (TILL) domain is
crucial for IL-17 signaling but is only present in the IL-
17RA subunit (65). However, most of the other subunits
of this family heterodimerize with IL-17RA to form a
functional complex, which suggests that IL-17RA is the domain
necessary for intracellular signaling. Also, the C/EBPβ activation
domain (CBAD) on IL-17RA stimulates signaling through the
transcription factor C/EBPβ (65), initiating one of the few known
inhibitory mechanisms of IL-17 signaling (66).

A very important aspect of IL-17 signaling is synergism:
De novo gene expression by IL-17A in target cells does not
fully account for the observed strong inflammatory effect
of the cytokine. Signaling through IL-17RA stabilizes mRNA
transcripts of genes expressed by other strong inflammatory
stimuli like TNF-α (59, 67). Ligand binding to IL-17RA recruits
the kinase IKKi to phosphorylate ACT1. TRAF2 and 5 then bind
to form a complex that can inhibit cleavage of mRNA (61, 68).

Thus, the full biological activity of IL-17A becomes apparent
only in concert with other factors of the inflammatory milieu.
Such synergetic effects have also been described between IL-17C
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TABLE 2 | Main findings of experimental data on IL-17C and IL-17RE.

Disease model Mice used Main phenotype of investigated group References

Experimental autoimmune encephalitis (EAE) Il17c−/− Less clinical manifestation, lower mortality (40)

Il17re overexpressing CD4+ T cells

adoptively transferred to wildtype

C57Bl/6

Increase in EAE symptoms

Nephrotoxic Nephritis (NTN) Il17c−/−

Il17re−/−

Reduced functional and morphological kidney

damage, less renal Th17 infiltration

(24)

Pristane-induced lupus nephritis Il17c−/− Reduced functional and morphological kidney

damage

(24)

Psoriasis Imiquimod-

induced

Il17c−/−

Il17re−/−

Less severe course of the disease (19, 49)

Il-17c-

induced

Il17c overexpression in keratinocytes

of wildtype C57Bl/6

Spontaneous development of psoriasiform skin

lesions

(48)

IL-23-induced BALB/c Reduced ear swelling and acanthosis under

anti-IL-17C treatment

(50)

Con-A-induced autoimmune hepatitis Il17c−/−

Il17re−/−

Lesser levels of GOT and GPT, attributed to

inhibited NK-cell mediated liver damage

(51)

Il17c−/− No difference in GOT and GPT levels or hepatic

granulocyte infiltration

(52)

Collagen-induced Arthritis (CIA) Il17c overexpressing CD4+ T cells

adoptively transferred to DBA1 mice

Il17c BM chimeric mice

Higher arthritis scores than control (30)

Atopic

dermatitis

MC903-

induced

BALB/c Less severe ear swelling under anti-IL-17C

treatment

(50)

Flaky tail Flaky tail (Mattma/maFlgft/ft ) Less hair loss and excoriation and ameliorated

blepharitis under anti-IL-17C treatment

Dextrane sulfate sodium (DSS) induced colitis Il17c−/−

Il17re−/−

More pronounced body weight loss and colonic

shortening due to lesser expression of antibacterial,

inflammatory, and tight-junction molecules

(19, 41, 52)

Citrobacter rodentium infection Il17re−/− More body weight loss, higher intestinal and splenic

weight, higher bacterial burden, higher mortality

(9)

Pseudomonas aeruginosa airway infection Il17c−/− Increased survival (26)

Systemic Candida albicans infection Il17c−/− Increased survival and less severe kidney damage (25)

Systemic, oral and dermal Candidiasis Il17c−/−

Il17re−/−

No difference between knockout and wildtype

groups

(45)

LPS-induced endotoxin shock Il17c−/− Higher resistance to endotoxin-induced shock. (52)

Summary of current data on the IL-17C/RE axis in mouse models.

and three other cytokines: TNF-α (19, 24, 48), IL-22 (9, 24), and
IL-1β (19). However, the underlying molecular mechanisms have
not specifically been studied for IL-17C/RE signaling.

IL-17C and the Epithelial Cell
The first site of IL-17C immunity is the epithelial cell. Group-
specific innate signaling pathways like the activation of TLRs
in response to PAMPs induce expression of Il17c (9, 19,

38). Activation of TLR is one of the first responses of the

immune system after contact with pathogens, which explains
the early upregulation of IL17C in the various infectious

diseases. Intracellular MyD88 signaling induced by TLR2 and 5
agonists or IL-1β stimulated the expression of IL17C in mucosal
epithelial cells (19). Another intracellular mechanism for IL17C
expression in response to pathogens is activation of nucleotide-
binding oligomerization domain-containing protein 2 (NOD2)
by Staphylococcus aureus (69).

There is strong evidence for a synergistic effect between
TNF-α and IL-17A as IL-17A signaling stabilizes mRNA of
target genes of TNF-α. Interestingly, one target gene that is
synergistically induced by IL-17A and TNF-α is IL17C (70).
However, stimulation of murine and human epithelial cells with
TNF-α or IL-17A alone is also capable of upregulating IL17C
expression (9, 19).

These findings are underlined by the fact that IL17C
expression is decreased in skin biopsies of psoriasis patients
under anti-TNF-α therapy (22). Likewise, IL-17RA blockade with
Brodalumab lead to decreased levels of IL17C expression in
psoriatic skin (71).

In terms of signaling cascades, TNF-α signaling seems to
employ the p38 mitogen activated protein kinase (22) and the
NF-κB pathway to enhance IL17C expression. Direct evidence
of this are three bindings sites for NF-κB in the IL17C
promotor (23).
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TABLE 3 | IL-17C/RE data on human samples.

Disease Main finding References

Psoriasis Elevated levels of Il17c mRNA and IL-17C protein in lesional patient skin.

Impaired Il17re expression in those lesions.

(47)

IL-17C most abundant IL-17 cytokine in lesional skin (125-fold of IL-17A) (48)

ANCA-associated glomerulonephritis IL-17C as the only IL-17 cytokine with elevated serum protein levels (24)

Atopic dermatitis Increased Il17c expression and positive immunohistochemistry staining for

IL-17C in skin of atopic dermatitis patients

(50)

Recurrent aphthous ulcers (RAU) Human oral keratinocytes stained positive for IL-17C in RAU lesions of

patients and expressed TNF-α in response to IL-17C in vitro

(20)

Anti-TNF-α-induced psoriasiform skin

lesions in Crohn’s disease

High IL-17C protein concentrations in skin lesions (53)

HSV-2 reactivation in genital skin Protective effect of IL-17C on skin neurons (21)

Pseudomonas aeruginosa airway

infection

Enhanced inflammatory response to infection by human epithelial cell line (27)

Virus-bacteria coinfection in COPD Coinfection led to synergistic upregulation of Il17c in human bronchial

epithelial cells; stimulation with IL-17C upregulated chemokines.

(46)

Summary of current human data on the IL-17C/RE axis.

Thus, both PAMPs and pro-inflammatory cytokines can
induce IL17C expression. TNF-α and IL-17A are able to induce
IL17C individually and a strong synergistic effect between the two
cytokines drastically boosts the expression.

Binding of IL-17C to the IL-17RA/RE complex on the
epithelial IL-17C-source cells forms an autocrine loop in the
epithelium. Like IL-17A, IL-17C signaling through IL-17RA/RE
employs the adaptor molecule ACT1 (40). The signaling cascade
then activates the MAPK pathway by phosphorylation of p38,
ERK, and JNK as well as the NF-κB pathway by phosphorylation
of the p65 subunit and the NF-κB inhibitor IκBα (9). Also,
signaling through L-17RA/RE on epithelial cells reinforces the
mechanical epithelial barrier by expressing the tight-junction
proteins occludin, claudin-1, and claudin-4 (41). Host defense
mechanisms in epithelial cells induced by IL-17C include the
expression of hBD2, S100A7/8/9, CXCL1/2/3, CCL20, TNFAIP6,
and TNIP3 (19) as well as pro-inflammatory cytokines like IL-
1β, IL-17A/F, IL-22, IL-6, IL-8, VEGF, and TNF-α (48). This
expression profile is a potent response to actively fight off
invading pathogens.

Thus, the autocrine loop of IL-17C in the epithelium is an
early protective response against pathogenic alterations in the
microbiome and other epithelial tissues.

IL-17C and the TH17 Cell
The second site of action of IL-17C is the TH17 cell. We
have shown that the numbers of TH17 cells significantly
decrease in the absence of IL-17C or IL-17RE in a murine
models of autoimmune kidney diseases (24). This effect of IL-
17C on TH17 cells might be due to increased proliferation
or differentiation, inhibited apoptosis, or impeded exhaustion.
Other groups have investigated these intracellular effects in
more detail.

In the EAE model, TH17 differentiation was induced by IL-
17C/RE signaling via IκBζ (40). Signaling through IL-17RE lead
to increased production of IL-17A, IL-17F, and IL-22. Song et al.

showed that IL-17C induces the expression of anti-apoptotic
factors BCL2 and BCL2L1 in intestinal epithelial cells (38).
This anti-apoptotic effect of the IL-17C/RE axis was also seen
in nerve fibers during HSV-2 reactivation (21). As mentioned
before, signaling pathways of IL-17C in epithelial cells involve
NF-κB and MAPK (9), which might also be true for TH17
cells and would be indicative of an effect on proliferation of
target cells.

Many groups have shown the pro-inflammatory role of IL-
17C in disease settings that are known to be driven by a
strong TH17 cell activity. As IL-17C induces the expression
of IL-17A in TH17 cells (40), it may be that this effect of
IL-17C is dependent on IL-17A. Indeed, blockade of IL-17A
with an antibody abolished the difference in renal damage
between wildtype and Il17c−/− mice in a model for crescentic
glomerulonephritis (24). Thus, this stimulatory effect of IL-
17C/RE on TH17 cells leads to higher levels of TH17 signature
cytokines—above all IL-17A—which accounts for the strong
inflammatory effect of IL-17C. As excessive TH17 cell activity
is linked to many autoimmune diseases, IL-17C-mediated
stimulation of the TH17 cell represents a cause for TH17
autoimmunity upstream of main effector cytokines like IL-17A
and F.

In terms of regulating IL-17C signaling, Monin et al. identified
the endoribonuclease MCP-1 induced protein 1 (MCPIP1) as
a negative regulator of both IL-17A and C signaling: In a
model of imiquimod-induced skin inflammation, mice deficient
in MCPIP1 showed increased inflammation and upregulation of
IL-17A- and IL-17C-dependent genes, but unaltered levels of IL-
17A and C. This indicates that MCPIP1 influences intracellular
pathways downstream of IL-17 receptor signaling as opposed
to modulation of the expression of IL-17 cytokines (72). The
exact mechanism of this negative regulation on IL-17A and
C signaling has not been described. However, previous studies
have shown that MCPIP1 hampers TLR signaling in response
to LPS by degrading mRNA of Il6 (73) and interferes with
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FIGURE 2 | Intracellular pathways of IL-17C signaling. IL-17C signaling induces NF-κB and MAPK signaling pathways. This induction shows a synergistic effect with

TNF-α signaling, resulting in strong induction of a mitogenic and pro-inflammatory expression profile. In epithelial cells, target genes of IL-17C/RE signaling are

defensins, inflammatory cytokines, and tight junction molecules to reinforce innate host barriers in response to pathogens. Also, IL-17C expression is upregulated in

the epithelium and subject to a synergism of IL-17A- and TLR-signaling. IL-17C is then released from the epithelial cell and binds to the IL-17RA/RE receptor complex

expressed on the same cell, forming an autocrine loop. In TH17 cells, IL-17C induces expression of IL17A, IL17F, and IL22, boosting adaptive defense mechanisms.

IL-17C also activates anti-apoptotic pathways via Bcl-2 and Bcl-XL. MCPIP1 is a regulator of IL-17C/RE signaling, but the distinct mechanisms of this negative

regulation are not yet elucidated.

MAPK and NF-κB signaling by deubiquitination of signaling
molecules (74). Even more, MCPIP1 degrades Il17ra and Il17rc
mRNA (75) and MCPIP1 deficiency boosts TH17 effector
functions (76), which underlines its regulatory effect in IL-
17 signaling.

Figure 2 summarizes intracellular signaling pathways
of IL-17C.

Taken together, IL-17C assumes a position at the
interface of innate and adaptive immune system: It is
upregulated during early stages of disease and reinforces
innate defense lines in the epithelium via an autocrine
loop. Its stimulatory action on the TH17 cells induces the
adaptive immune response and can trigger autoimmune
disease (Figure 3).
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FIGURE 3 | Mode of action of IL-17C on epithelial and TH17 cells. Schematic hypothesis of the pro-inflammatory mode of action of the IL-17C/RE axis. IL-17C is

mainly expressed by epithelial cells. Expressing the IL-17RA/RE receptor complex, both the epithelial cell itself and TH17 cells are targets for IL-17C. Boosting

expression of IL17A in TH17 cells, IL-17C indirectly enhances epithelial expression of chemokines that attract neutrophils, which ultimately cause a strong

inflammatory reaction.

FIRST STEPS IN THERAPEUTIC
TARGETING OF THE IL-17C/RE AXIS

Antibodies targeting TH17 cell functions are already in clinical
use for a host of autoimmune disorders like psoriasis, psoriatic
arthritis, and IBD.

Ustekinumab is a monoclonal antibody directed against the
p40 subunit which is shared by the cytokines IL-12 and IL-
23. It has been shown to be very successful in the treatment
of psoriasis and psoriatic arthritis (77, 78) and is approved for
Crohn’s disease (79).

Other antibodies directly targeting IL-17A (Secukinumab,
Ixekizumab) or the receptor IL-17RA (Brodalumab) show
astonishing effects in psoriasis patients (4, 80, 81). Other
indications are psoriatic arthritis (2, 3, 82) and ankylosing
spondylitis (83).

Neutralizing IL-17C is an intriguing approach in the
treatment of autoimmune diseases as it might hamper
TH17 function in general and not only the impact
signaling of the signature cytokine IL-17A. Indeed, the first
clinical studies with an anti-IL-17C-neutralizing antibody
have been started in patients with atopic dermatitis
(84) after trials in murine models showed promising
results (50).

Interestingly, targeting the cytokine IL-17A or its receptor
IL-17RA aggravates symptoms in IBD patients (85, 86).
This shows that intervening in those signaling pathways
might not be as straightforward as initially thought. Thus, it
might be possible that the protective role that IL-17C plays
for the integrity of epithelial barrier function exceeds its
pathological effect for TH17 stimulation in autoimmunity.
Disrupting the autocrine loop of the epithelial cells with
an antibody might lead to unwanted adverse effects like

gastrointestinal or respiratory infections. Inhibiting the
TH17 cell function obviously harbors the risk of a general
susceptibility to infections with extracellular bacteria
and fungi.

DISCUSSION

In summary, IL-17C is a homodimeric cytokine that is
expressed by non-hematopoietic—mainly epithelial—cells. It
binds to its heterodimeric receptor complex IL-17RA/RE that
is expressed on both a variety of epithelial cells and TH17
cells. Compared to other IL-17 cytokine family members,
IL17C is upregulated at early stages of the diseases and
plays two roles. (a) In an autocrine manner it sustains
barrier integrity of epithelial cell layers and thus supports
the innate immune system to keep infections in check.
(b) By binding to IL-17RE on TH17 cells, IL-17C also
stimulates the adaptive immune response to potently fight
off invading pathogens. The downside of this mode of
action is the risk of immunological derailment, leading to
autoimmune conditions.

Intracellular signaling of IL-17C/RE involves anti-
apoptotic Bcl-2 and Bcl-XL as well as the NF-κB and
MAPK pathways to promote proliferation and host
defense. The induction of IL17C has been shown to
be dependent on TLR signaling and pro-inflammatory
cytokines. IL17C expression is subject to a synergism
between TNF-α and IL-17A, presumably due to mRNA
stabilization by IL-17A. To date, the molecular mechanisms
of described synergisms between IL-17C and other
cytokines (TNF-α, IL-22, and IL-1β) have not specifically
been investigated.
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Being an inflammatory mediator upstream of TH17
effector cytokines, IL-17C represents an interesting target
for pharmacological intervention. The first clinical trials have
been started for atopic dermatitis and data from human samples
suggest transferability of experimental data to the clinical setting
for some diseases (24, 48, 53).

The first translational approaches to pharmacologically
exploit the IL-17C/RE axis are on the way. We believe that
the main potential of such interventions lies in the treatment
of autoimmune disorders. Yet, a lot of experimental data
on more disease settings requires further analyses of human
samples to investigate potential patient populations for this kind
of treatment.
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