

Received 8 September 2015 Accepted 7 October 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: Iridabenzene; metallabenzene; aromaticity; oxidation state; coordinatively unsaturated; crystal structure

CCDC references: 1430096; 1430095 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structures of two unusual, high oxidation state, 16-electron iridabenzenes

Daniel T. Chase,^a Lev N. Zakharov^b and Michael M. Haley^a*

^aDepartment of Chemistry & Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, USA, and ^bCAMCOR, University of Oregon, 1443 East 13th Avenue, Eugene, Oregon 97403, USA. *Correspondence e-mail: haley@uoregon.edu

Treatment of carbonyl(1,2-diphenylpenta-1,3-dien-1-yl-5-ylidene)bis(triphenylphosphane)iridium, [IrCO(-C(Ph)=C(Ph)-CH=CH-CH=)(PPh₃)₂], with either bromine or iodine produced dibromido(1,2-diphenylpenta-1,3-dien-1-yl-CH-CH=}(PPh₃)], (I), and (1,2-diphenylpenta-1,3-dien-1-yl-5-ylidene)di-CH={(PPh₃)], (II), respectively, which are two rare examples of 16-electron metallabenzenes. Structural elucidation of (I) and (II) reveals that these isotypic iridabenzenes are unusual, not only in their electron count, but also in their coordination sphere of the Ir^{III} atom where they contain an apparent open coordination site. The crystal structures of (I) and (II) confirm that the molecules are complexes containing five-coordinated Ir^{III} with only one triphenylphosphine group bound to the iridium atom, unambiguously proving that the molecules are indeed 16-electron, high-oxidation-state iridabenzenes. The coordination geometry of the Ir^{III} atom in both structures can be best described as a distorted square pyramid with the P, two Br (or I) and one C atom in the basal plane and another C atom in the apical position.

1. Chemical context

Metallabenzenes are a rare class of organometallic compounds in which a CH unit is isolobally substituted with a transition metal fragment (Bleeke, 2001; Wright, 2006). Postulated in a seminal paper in 1979 (Thorn & Hoffmann, 1979), metallabenzenes have been shown to be feasible through numerous synthetic methodologies and now claim residence in the third and second row transition metals. Our research has focused on the synthesis and properties of metallabenzenes and their valence isomers using 3-vinyl-1cyclopropenes as the source for the five-carbon backbone (Landorf & Haley, 2006). In certain instances, the metallabenzenes can undergo reductive elimination to afford η^5 -Cp complexes (Wu et al., 2007). Although such a pathway has potential synthetic utility, for our studies this represents a deleterious side reaction that hinders an effective, detailed examination of metallabenzenes. Computational work by van der Boom and coworkers suggests that metallabenzenes containing metal atoms with higher oxidation states may be resistant toward the reductive elimination pathway (Iron et al., 2003). This prediction interested us as prior studies have shown that Ir^I iridabenzenes can be readily oxidized with Ag^I salts or halogens to generate high oxidation state Ir^{III} iridabenzenes; hence, we sought to synthesize neutral iridabenzenes of higher oxidation state as initially demonstrated by Bleeke and coworkers (Bleeke et al., 1997). Herein we report the synthesis and structures of iridabenzenes (I) and (II), two

research communications

rare examples of high oxidation yet coordinatively unsaturated 16-electron Ir^{III} iridabenzenes.

2. Structural commentary

(I), $[IrBr_2(C_{17}H_{13})(C_{18}H_{15}P)]$, and Compounds (II), $[IrI_2(C_{17}H_{13})(C_{18}H_{15}P)]$, are isotypic. The molecular structures of (I) (Fig. 1) and (II) (Fig. 2) confirm that Ir^{III} is fivecoordinated in these complexes with only one triphenylphosphine group bound to the iridium atom, unambiguously proving that the molecules are indeed 16-electron, highoxidation-state iridabenzenes. The coordination geometry of the Ir^{III} atom in both structures can be best described as a distorted square pyramid with the P1, Br1(I1), Br2(I2) and C1 atoms in the basal plane and the C5 atom in the apical position. The Br1(I1), Br2(I2), P1, C1 fragments are planar within 0.17 Å (Br) and 0.21 Å (I) and the Ir atom is out on 0.22 Å (Br) and 0.24 Å (I) from the average planes of this fragment. The C-C bond lengths in the benzene rings in both structures range from 1.360 (15) to 1.402 (16) Å [average 1.387 and 1.382 Å in (I) and (II), respectively], indicative of bond

Figure 1 C14 The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

homogenization and electron delocalization. Both Ir – C bond lengths [1.958 (5), 1.903 (5) Å, and 1.963 (11), 1.913 (12) Å, respectively, for Ir – C1 and Ir – C5 in (I) and (II)] are shorter than typical Ir^I iridabenzenes (2.01–2.05 Å), reflecting the higher Ir^{III} oxidation state (Fernández & Frenking, 2007).

Additionally, the iridabenzene ring in both structures significantly deviates from planarity (Zhu et al., 2007); the dihedral angle between the C1-C5 fragments [which are planar within 0.03 and 0.04 Å, respectively, in (I) and (II)] and the C1-Ir1-C5 plane is 17.2 (3) $^{\circ}$ in (I) and 14.9 (7) $^{\circ}$ in (II). In both structures the open coordination site is located equatorially to the iridium atom, as manifested by the extremely large Br1(I1)-Ir-C1 bond angle of 158.5 (2) $[156.0(3)]^{\circ}$ {cf, Br1(I1)-Ir-C5, 110.5(2) [113.6(4)^{\circ}]}. This site is typically occupied by CO in all of our previous iridabenzene studies, such as (III) (Fig. 3). The steric bulk of the two halogen atoms, the triphenylphosphine group, and the phenyl moiety located on C1 all contribute to the presence of the apparent open coordination site. We did consider the possibility of an H atom or H₂ molecule occupying the open coordination site. The distance Ir1···H29A (one of the H atoms on the closest phenyl group) in (I) is ca 3.18 Å. This H29A atom is on the opposite side from the C5 atom (the C5-Ir1···H29A angle is 147°). If present, the Ir-H distance

Figure 3 Scheme of iridabenzene (III) employed as an educt

Figure 4

A fragment of the crystal structure of (I) in a view along [100], showing association of the molecules in the crystal packing by weak $C-H\cdots Br$ interactions (dashed lines). Atom labels are omitted for clarity. The crystal of (II) is isostructural with the crystal of (I).

would be around 1.5–1.6 Å. In such a case, the distance between this H atom and the H29A atom from the phenyl ring should be 1.6-1.7 Å. This distance is too short as a typical

Table 3Experimental details.

Table 1	
Hydrogen-bond geometry $(\text{\AA}, \circ)$ for (I).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3A\cdots Br1^{i}$ $C7-H7A\cdots Br2$	0.95 0.95	2.87 2.85	3.717 (5) 3.609 (7)	149 137
$C23-H23A\cdots Br1$	0.95	2.79	3.533 (7)	135

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$.

Table 2 Hydrogen-bond geometry (Å, °) for (II). $D - H \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ 3.707 (12) $C7-H7A\cdots I2$ 0.95 2.94 138 C23−H23A····I1 0.95 2.84 3.699 (17) 152

 $H \cdots H$ contact is 2.4 Å. It follows then that if one H atom does not fit, H_2 will not either. The displacement parameters of most C atoms in the phenyl rings are elongated perpendicular to the average plane of the Ph rings showing their flexibility or statistical disorder.

3. Supramolecular features

Compounds (I) and (II) are typical molecular crystals without specific supramolecular features. Additionally to van der Waals forces, in these structures there are some weak C– $H \cdots X$ (X = Br, I) interactions with C···X distances in the ranges of 3.533 (7)– 3.717 (5) and 3.699 (17)–3.707 (12) Å,

(11)

(1)	(11)
$[IrBr_2(C_{17}H_{13})(C_{18}H_{15}P)]$	$[Ir(C_{17}H_{13})I_2(C_{18}H_{15}P)]$
831.56	925.54
Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
173	173
10.6200 (8), 11.6901 (8), 23.8782 (17)	10.5973 (14), 11.9431 (16), 24.457 (3)
95.094 (2)	93.331 (3)
2952.7 (4)	3090.1 (7)
4	4
Μο Κα	Μο Κα
7.31	6.39
$0.09 \times 0.07 \times 0.04$	$0.07\times0.06\times0.05$
Bruker APEX CCD	Bruker APEX CCD
Multi-scan (SADABS; Bruker, 2008)	Multi-scan (SADABS; Bruker, 2008)
0.822, 1.000	0.844, 1.000
32559, 6439, 5040	29241, 5435, 3440
0.063	0.132
0.639	0.595
0.037, 0.079, 1.02	0.056, 0.115, 1.00
6439	5435
352	352
H-atom parameters constrained	H-atom parameters constrained
1.06, -0.65	1.16, -1.15
	[IrBr ₂ (C ₁₇ H ₁₃)(C ₁₈ H ₁₅ P)] 831.56 Monoclinic, $P2_1/c$ 173 10.6200 (8), 11.6901 (8), 23.8782 (17) 95.094 (2) 2952.7 (4) 4 Mo K α 7.31 0.09 × 0.07 × 0.04 Bruker <i>APEX</i> CCD Multi-scan (<i>SADABS</i> ; Bruker, 2008) 0.822, 1.000 32559, 6439, 5040 0.063 0.639 0.037, 0.079, 1.02 6439 352 H-atom parameters constrained 1.06, -0.65

 (\mathbf{I})

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008) and SHELXL2013 (Sheldrick, 2015).

research communications

respectively, for Br and I (Tables 1 and 2). A fragment of the crystal structure of (I) is given in Fig. 4, illustrating one such weak interaction.

4. Synthesis and crystallization

Reaction of iridabenzene (Gilbertson *et al.*, 1999), (III) (Fig. 3) with one equivalent of bromine at 195 K produced a darkbrown solution that was warmed to 273 K over a period of 30 min. Recrystallization from acetone at 243 K afforded bluish brown crystals of (I). Similarly, reaction of (III) with iodine at 195 K also produced a dark-brown solution containing (II) which was crystallized in similar conditions to give bluish brown crystals. While (I) and (II) were stable in the solid state for weeks at 243 K without noticeable decomposition, solutions of either of the iridabenzenes degraded rapidly and thus made their complete characterization extremely challenging.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and refined in a rigid-group model with C-H = 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$.

Acknowledgements

We thank the National Science Foundation (CHE-0647252) for support of this research.

References

- Bleeke, J. R. (2001). Chem. Rev. 101, 1205-1228.
- Bleeke, J. R., Behm, R., Xie, Y.-F., Chiang, M. Y., Robinson, K. D. & Beatty, A. M. (1997). Organometallics, 16, 606–623.
- Bruker (2008). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fernández, I. & Frenking, G. (2007). Chem. Eur. J. 13, 5873-5884.
- Gilbertson, R. D., Weakley, T. J. R. & Haley, M. M. (1999). J. Am. Chem. Soc. 121, 2597–2598.
- Iron, M. A., Martin, J. M. L. & van der Boom, M. E. (2003). J. Am. Chem. Soc. 125, 13020–13021.
- Landorf, C. W. & Haley, M. M. (2006). Angew. Chem. Int. Ed. 45, 3914–3936.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Thorn, D. L. & Hoffmann, R. (1979). Nouv. J. Chim. 3, 39-45.
- Wright, J. L. (2006). Dalton Trans. pp. 1821-1827.
- Wu, H.-P., Ess, D. H., Lanza, S., Weakley, T. J. R., Houk, K. N., Baldridge, K. K. & Haley, M. M. (2007). Organometallics, 26, 3957– 3968.
- Zhu, J., Jia, G. & Lin, Z. (2007). Organometallics, 26, 1986–1995.

Acta Cryst. (2015). E71, 1315-1318 [doi:10.1107/S2056989015018952]

Crystal structures of two unusual, high oxidation state, 16-electron iridabenzenes

Daniel T. Chase, Lev N. Zakharov and Michael M. Haley

Computing details

For both compounds, data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(I) Dibromido(1,2-diphenylpenta-1,3-dien-1-yl-5-ylidene)(triphenylphosphane)iridium(III)

Crystal data	
$[IrBr_{2}(C_{17}H_{13})(C_{18}H_{15}P)]$ $M_{r} = 831.56$ Monoclinic, $P2_{1}/c$ a = 10.6200 (8) Å b = 11.6901 (8) Å c = 23.8782 (17) Å $\beta = 95.094$ (2)° V = 2952.7 (4) Å ³ Z = 4	F(000) = 1600 $D_x = 1.871 \text{ Mg m}^{-3}$ Mo <i>Ka</i> radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3916 reflections $\theta = 2.4-22.0^{\circ}$ $\mu = 7.31 \text{ mm}^{-1}$ T = 173 K Cut-block, blue $0.09 \times 0.07 \times 0.04 \text{ mm}$
Data collection	
Bruker APEX CCD diffractometer Radiation source: sealed tube phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{\min} = 0.822, T_{\max} = 1.000$ 32559 measured reflections	6439 independent reflections 5040 reflections with $I > 2\sigma(I)$ $R_{int} = 0.063$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -13 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -30 \rightarrow 30$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.079$ S = 1.02 6439 reflections 352 parameters 0 restraints	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0341P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 1.06$ e Å ⁻³ $\Delta\rho_{min} = -0.65$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ir1	0.10176 (2)	0.13179 (2)	0.85083 (2)	0.02518 (7)	
Br1	0.22033 (5)	-0.05824 (5)	0.85942 (2)	0.03303 (14)	
Br2	-0.09573 (6)	0.01646 (5)	0.82570 (3)	0.04562 (17)	
P1	0.28971 (13)	0.22577 (11)	0.87771 (6)	0.0256 (3)	
C1	-0.0134 (5)	0.2540 (4)	0.8696 (2)	0.0263 (12)	
C2	-0.0869 (5)	0.3252 (5)	0.8329 (2)	0.0286 (12)	
C3	-0.0730 (5)	0.3229 (5)	0.7752 (2)	0.0342 (13)	
H3A	-0.1305	0.3675	0.7516	0.041*	
C4	0.0175 (5)	0.2611 (5)	0.7493 (2)	0.0355 (14)	
H4A	0.0171	0.2663	0.7096	0.043*	
C5	0.1068 (5)	0.1935 (4)	0.7773 (2)	0.0299 (13)	
H5A	0.1789	0.1754	0.7582	0.036*	
C6	-0.0148 (5)	0.2567 (5)	0.9317 (2)	0.0289 (12)	
C7	-0.0513 (5)	0.1597 (5)	0.9599 (3)	0.0378 (14)	
H7A	-0.0838	0.0953	0.9392	0.045*	
C8	-0.0404 (6)	0.1568 (6)	1.0184 (3)	0.0461 (17)	
H8A	-0.0658	0.0907	1.0376	0.055*	
C9	0.0069 (6)	0.2492 (6)	1.0481 (3)	0.0461 (17)	
H9A	0.0157	0.2463	1.0880	0.055*	
C10	0.0424 (6)	0.3469 (5)	1.0209 (2)	0.0400 (15)	
H10A	0.0762	0.4102	1.0422	0.048*	
C11	0.0287 (5)	0.3527 (4)	0.9628 (2)	0.0282 (12)	
H11A	0.0487	0.4212	0.9442	0.034*	
C12	-0.1768 (5)	0.4095 (5)	0.8531 (2)	0.0306 (13)	
C13	-0.2696 (6)	0.3785 (5)	0.8876 (3)	0.0470 (17)	
H13A	-0.2729	0.3018	0.9006	0.056*	
C14	-0.3575 (6)	0.4567 (6)	0.9036 (3)	0.0538 (19)	
H14A	-0.4215	0.4331	0.9265	0.065*	
C15	-0.3523 (6)	0.5686 (6)	0.8863 (3)	0.0522 (18)	
H15A	-0.4129	0.6223	0.8969	0.063*	
C16	-0.2586 (7)	0.6027 (6)	0.8534 (3)	0.0549 (19)	
H16A	-0.2535	0.6803	0.8421	0.066*	
C17	-0.1716 (6)	0.5231 (5)	0.8368 (3)	0.0436 (16)	
H17A	-0.1077	0.5471	0.8140	0.052*	
C18	0.4083 (5)	0.2172 (5)	0.8265 (2)	0.0317 (13)	
C19	0.4459 (7)	0.3103 (6)	0.7980 (3)	0.060 (2)	
H19A	0.4096	0.3828	0.8047	0.072*	
C20	0.5357 (7)	0.3019 (8)	0.7595 (3)	0.079 (3)	
H20A	0.5600	0.3680	0.7400	0.094*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C21	0.5881 (7)	0.2004 (7)	0.7499 (3)	0.070 (2)
H21A	0.6472	0.1937	0.7225	0.085*
C22	0.5567 (8)	0.1074 (7)	0.7793 (5)	0.109 (4)
H22A	0.5966	0.0362	0.7737	0.131*
C23	0.4670 (8)	0.1157 (6)	0.8173 (4)	0.093 (3)
H23A	0.4456	0.0497	0.8376	0.111*
C24	0.3671 (5)	0.1769 (4)	0.9445 (2)	0.0315 (13)
C25	0.4976 (6)	0.1792 (5)	0.9555 (3)	0.0409 (15)
H25A	0.5494	0.1978	0.9263	0.049*
C26	0.5528 (6)	0.1543 (5)	1.0092 (3)	0.0518 (19)
H26A	0.6421	0.1561	1.0169	0.062*
C27	0.4770 (8)	0.1269 (5)	1.0513 (3)	0.057 (2)
H27A	0.5147	0.1097	1.0879	0.068*
C28	0.3482 (7)	0.1243 (5)	1.0410 (3)	0.0508 (18)
H28A	0.2969	0.1064	1.0704	0.061*
C29	0.2929 (6)	0.1479 (5)	0.9874 (2)	0.0363 (14)
H29A	0.2036	0.1442	0.9801	0.044*
C30	0.2706 (5)	0.3799 (4)	0.8877 (2)	0.0246 (11)
C31	0.3186 (5)	0.4357 (5)	0.9360 (2)	0.0311 (13)
H31A	0.3602	0.3934	0.9662	0.037*
C32	0.3061 (5)	0.5530 (5)	0.9405 (3)	0.0389 (15)
H32A	0.3389	0.5908	0.9738	0.047*
C33	0.2464 (6)	0.6157 (5)	0.8970 (3)	0.0410 (15)
H33A	0.2399	0.6964	0.9002	0.049*
C34	0.1966 (5)	0.5618 (5)	0.8493 (3)	0.0369 (15)
H34A	0.1540	0.6047	0.8196	0.044*
C35	0.2082 (5)	0.4438 (4)	0.8444 (2)	0.0290 (12)
H35A	0.1734	0.4065	0.8113	0.035*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	<i>U</i> ³³	U^{12}	U^{13}	U ²³
Ir1	0.02630 (12)	0.02190 (11)	0.02676 (12)	0.00155 (9)	-0.00084 (8)	-0.00056 (9)
Br1	0.0366 (3)	0.0245 (3)	0.0364 (3)	0.0044 (2)	-0.0057 (3)	0.0009(2)
Br2	0.0350 (4)	0.0346 (3)	0.0655 (5)	-0.0047 (3)	-0.0057 (3)	-0.0103 (3)
P1	0.0256 (8)	0.0216 (7)	0.0292 (8)	0.0029 (6)	0.0012 (6)	-0.0005 (6)
C1	0.022 (3)	0.024 (3)	0.032 (3)	-0.002 (2)	0.003 (2)	-0.002 (2)
C2	0.020 (3)	0.030 (3)	0.035 (3)	0.002 (2)	-0.001 (2)	0.002 (3)
C3	0.034 (3)	0.037 (3)	0.031 (3)	0.002 (3)	-0.001 (3)	0.004 (3)
C4	0.045 (4)	0.035 (3)	0.025 (3)	-0.006 (3)	-0.002 (3)	0.001 (3)
C5	0.034 (3)	0.030 (3)	0.026 (3)	0.003 (2)	0.003 (2)	-0.005 (2)
C6	0.025 (3)	0.033 (3)	0.030 (3)	0.011 (2)	0.008 (2)	0.007 (3)
C7	0.037 (3)	0.031 (3)	0.046 (4)	0.010 (3)	0.010 (3)	0.006 (3)
C8	0.057 (4)	0.046 (4)	0.038 (4)	0.017 (3)	0.017 (3)	0.015 (3)
C9	0.059 (4)	0.053 (4)	0.028 (3)	0.023 (4)	0.015 (3)	0.007 (3)
C10	0.050 (4)	0.040 (4)	0.032 (3)	0.014 (3)	0.010 (3)	-0.002 (3)
C11	0.030 (3)	0.024 (3)	0.031 (3)	0.010 (2)	0.006 (2)	0.003 (2)
C12	0.022 (3)	0.035 (3)	0.033 (3)	0.007 (2)	-0.002 (2)	0.006 (3)

C13	0.030 (3)	0.038 (4)	0.074 (5)	0.004 (3)	0.010 (3)	0.013 (3)
C14	0.032 (4)	0.062 (5)	0.070 (5)	0.015 (3)	0.017 (3)	0.009 (4)
C15	0.045 (4)	0.063 (5)	0.049 (4)	0.026 (4)	0.004 (3)	-0.003 (4)
C16	0.074 (5)	0.038 (4)	0.054 (4)	0.022 (4)	0.012 (4)	0.013 (3)
C17	0.049 (4)	0.040 (4)	0.044 (4)	0.013 (3)	0.014 (3)	0.013 (3)
C18	0.024 (3)	0.031 (3)	0.040 (3)	0.002 (2)	0.006 (3)	-0.012 (3)
C19	0.076 (5)	0.049 (4)	0.060 (5)	0.021 (4)	0.039 (4)	0.017 (4)
C20	0.081 (6)	0.092 (7)	0.071 (6)	0.035 (5)	0.048 (5)	0.028 (5)
C21	0.053 (5)	0.084 (6)	0.080 (6)	-0.006 (5)	0.041 (4)	-0.035 (5)
C22	0.088 (7)	0.057 (6)	0.198 (11)	-0.014 (5)	0.099 (8)	-0.061 (6)
C23	0.089 (6)	0.033 (4)	0.169 (10)	-0.012 (4)	0.090 (7)	-0.022 (5)
C24	0.035 (3)	0.020 (3)	0.036 (3)	0.007 (2)	-0.012 (3)	-0.006 (2)
C25	0.038 (4)	0.024 (3)	0.058 (4)	-0.001 (3)	-0.012 (3)	0.001 (3)
C26	0.043 (4)	0.033 (4)	0.072 (5)	0.005 (3)	-0.034 (4)	-0.011 (3)
C27	0.079 (6)	0.036 (4)	0.048 (4)	0.020 (4)	-0.037 (4)	-0.008 (3)
C28	0.070 (5)	0.045 (4)	0.036 (4)	0.024 (4)	-0.006 (3)	-0.002 (3)
C29	0.037 (3)	0.040 (4)	0.030 (3)	0.012 (3)	-0.005 (3)	-0.003 (3)
C30	0.024 (3)	0.021 (3)	0.030 (3)	0.002 (2)	0.007 (2)	0.000 (2)
C31	0.036 (3)	0.025 (3)	0.032 (3)	0.004 (2)	0.001 (3)	-0.002 (2)
C32	0.043 (4)	0.031 (3)	0.043 (4)	-0.004 (3)	0.007 (3)	-0.012 (3)
C33	0.045 (4)	0.027 (3)	0.054 (4)	0.001 (3)	0.020 (3)	-0.004 (3)
C34	0.029 (3)	0.025 (3)	0.059 (4)	0.003 (3)	0.012 (3)	0.013 (3)
C35	0.027 (3)	0.025 (3)	0.034 (3)	0.000(2)	0.001 (2)	0.003 (2)

Geometric parameters (Å, °)

Ir1—C5	1.903 (5)	C16—C17	1.393 (8)
Ir1—C1	1.958 (5)	C16—H16A	0.9500
Ir1—P1	2.3185 (14)	C17—H17A	0.9500
Ir1—Br2	2.5205 (6)	C18—C19	1.362 (8)
Ir1—Br1	2.5528 (6)	C18—C23	1.367 (8)
P1—C24	1.819 (5)	C19—C20	1.387 (9)
P1—C30	1.831 (5)	C19—H19A	0.9500
P1—C18	1.833 (5)	C20—C21	1.339 (10)
C1—C2	1.396 (7)	C20—H20A	0.9500
C1—C6	1.486 (7)	C21—C22	1.351 (12)
C2—C3	1.399 (7)	C21—H21A	0.9500
C2—C12	1.482 (7)	C22—C23	1.376 (10)
C3—C4	1.389 (8)	C22—H22A	0.9500
С3—НЗА	0.9500	C23—H23A	0.9500
C4—C5	1.363 (7)	C24—C25	1.388 (7)
C4—H4A	0.9500	C24—C29	1.390 (8)
С5—Н5А	0.9500	C25—C26	1.394 (8)
C6—C7	1.391 (7)	C25—H25A	0.9500
C6—C11	1.402 (7)	C26—C27	1.379 (10)
С7—С8	1.391 (8)	C26—H26A	0.9500
С7—Н7А	0.9500	C27—C28	1.368 (9)
C8—C9	1.363 (9)	C27—H27A	0.9500

C8—H8A	0.9500	C28—C29	1.387 (8)
C9—C10	1.382 (8)	C28—H28A	0.9500
С9—Н9А	0.9500	С29—Н29А	0.9500
C10—C11	1.384 (7)	C30—C31	1.383 (7)
C10—H10A	0.9500	C30—C35	1.395 (7)
C11—H11A	0.9500	$C_{31} - C_{32}$	1.383(7)
C12-C17	1 387 (8)	C31—H31A	0.9500
C12 - C13	1 388 (8)	C_{32} C_{33}	1 378 (8)
C12 - C13	1 384 (8)	C32—H32A	0.9500
C13 H13A	0.9500	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 366 (8)
C14 C15	1.374(0)	$C_{33} = H_{33} \Lambda$	0.0500
C14 = H14A	0.0500	C34 C35	1.300(7)
C_{14} C_{15} C_{16}	0.9300	C_{24} H_{24A}	0.0500
C15C16	0.0500	C25 H25A	0.9500
CI3—HI3A	0.9300	С55—п55А	0.9300
C5—Ir1—C1	90.2 (2)	C15—C16—C17	119.9 (6)
C5—Ir1—P1	88 94 (17)	C15—C16—H16A	120.0
C1— $Ir1$ — $P1$	97 51 (15)	C17 - C16 - H16A	120.0
C_5 —Ir1—Br2	94 26 (16)	C_{12} C_{17} C_{16}	120.0
C1—Ir1—Br2	85.49 (15)	C_{12} C_{17} H_{17A}	119.5
P1— $Ir1$ — $Br2$	175 61 (4)	$C_{12} = C_{17} = H_{17A}$	119.5
C_5 _Ir1_Br1	110 50 (16)	C19 - C18 - C23	117.1 (6)
$C1$ _Ir1_Br1	158 47 (15)	C19 - C18 - C25	117.1(0) 122.5(4)
P_1 Ir_1 Br_1	89.07 (1)	C_{13} C_{18} P_1	122.3(4) 120.3(5)
$\begin{array}{c} \mathbf{P}_{\mathbf{r}} \mathbf{P}_{\mathbf{r}}$	87.07 (4)	$C_{23} = C_{10} = C_{10}$	120.3(3) 121.6(7)
BI2 - III - BII	87.01(2)	$C_{10} = C_{10} = C_{20}$	121.0(7)
C_{24} P1 C_{30}	104.0(2)	С16—С19—П19А	119.2
C_{24} PI C_{18}	100.4(3)	C20—C19—H19A	119.2
C_{30} PI C_{18}	103.4(2)	$C_{21} = C_{20} = C_{19}$	119.8 (8)
C_{24} PI-III	113.86 (19)	$C_{21} = C_{20} = H_{20A}$	120.1
C_{30} PI-IrI	113.56 (17)	C19—C20—H20A	120.1
Cl8—Pl—lrl	114.52 (18)	C20—C21—C22	119.9 (7)
C2-C1-C6	124.0 (5)	C20—C21—H21A	120.1
C2—C1—Irl	128.2 (4)	С22—С21—Н21А	120.1
C6—C1—Irl	107.8 (3)	C21—C22—C23	120.2 (7)
C1—C2—C3	120.3 (5)	C21—C22—H22A	119.9
C1—C2—C12	122.2 (5)	C23—C22—H22A	119.9
C3—C2—C12	117.5 (5)	C18—C23—C22	121.3 (8)
C4—C3—C2	125.8 (5)	C18—C23—H23A	119.3
С4—С3—НЗА	117.1	С22—С23—Н23А	119.3
С2—С3—НЗА	117.1	C25—C24—C29	119.1 (5)
C5—C4—C3	124.2 (5)	C25—C24—P1	121.7 (5)
C5—C4—H4A	117.9	C29—C24—P1	118.8 (4)
C3—C4—H4A	117.9	C24—C25—C26	120.1 (6)
C4—C5—Ir1	126.6 (4)	C24—C25—H25A	119.9
C4—C5—H5A	116.7	С26—С25—Н25А	119.9
Ir1—C5—H5A	116.7	C27—C26—C25	119.6 (6)
C7—C6—C11	119.2 (5)	C27—C26—H26A	120.2
C7—C6—C1	119.6 (5)	C25—C26—H26A	120.2

C11—C6—C1	121.0 (5)	C28—C27—C26	120.9 (6)
C8—C7—C6	120.3 (6)	C28—C27—H27A	119.6
С8—С7—Н7А	119.9	С26—С27—Н27А	119.6
С6—С7—Н7А	119.9	C27—C28—C29	119.7 (7)
C9—C8—C7	119.8 (6)	C27—C28—H28A	120.2
С9—С8—Н8А	120.1	C29—C28—H28A	120.2
С7—С8—Н8А	120.1	C28—C29—C24	120.5 (6)
C8—C9—C10	121.0 (6)	C28—C29—H29A	119.7
С8—С9—Н9А	119.5	C24—C29—H29A	119.7
С10—С9—Н9А	119.5	C31—C30—C35	118.8 (5)
C9—C10—C11	120.1 (6)	C31—C30—P1	122.4 (4)
C9—C10—H10A	120.0	C35—C30—P1	118.8 (4)
C11—C10—H10A	120.0	C_{32} C_{31} C_{30}	1201(5)
C10-C11-C6	119.6 (5)	C_{32} C_{31} H_{31A}	120.0
C10-C11-H11A	120.2	C30-C31-H31A	120.0
C6-C11-H11A	120.2	C_{33} C_{32} C_{31}	120.0 120.7(6)
C17-C12-C13	117.7(5)	C_{33} C_{32} H_{32A}	119.6
C_{17} C_{12} C_{13} C_{13}	117.7(5) 120.2(5)	C31 - C32 - H32A	119.6
C13 - C12 - C2	120.2(5) 1221(5)	C_{34} C_{33} C_{32}	120.0 (6)
$C_{13} = C_{12} = C_{2}$	122.1(5) 121.5(6)	$C_{34} = C_{33} = C_{32}$	120.0 (0)
C14 - C13 - C12	121.3 (0)	$C_{34} = C_{33} = H_{33} A$	120.0
$C_{12} = C_{13} = H_{13A}$	119.2	$C_{32} = C_{33} = M_{33} = M_{33}$	120.0
$C_{12} = C_{13} = III_{3} + II_{3}$	119.2	$C_{33} = C_{34} = C_{35}$	119.8 (0)
$C_{15} = C_{14} = C_{15}$	119.9 (0)	C_{35} C_{34} H_{24A}	120.1
C13 - C14 - H14A	120.0	$C_{33} = C_{34} = C_{34}$	120.1
C13 - C14 - H14A	120.0	$C_{34} = C_{35} = C_{30}$	120.6 (5)
C14 - C15 - C16	119.8 (0)	C34 - C35 - H35A	119.7
CI4—CI5—HI5A	120.1	C30—C35—H35A	119.7
C16—C15—H15A	120.1		
C6—C1—C2—C3	175.3 (5)	Ir1—P1—C18—C23	-69.8 (7)
Ir1—C1—C2—C3	-7.5 (8)	C23-C18-C19-C20	2.8 (12)
C6-C1-C2-C12	-1.5 (8)	P1-C18-C19-C20	-180.0 (6)
Ir1—C1—C2—C12	175.8 (4)	C18-C19-C20-C21	-0.4 (13)
C1—C2—C3—C4	-5.7 (9)	C19—C20—C21—C22	-2.5 (14)
C12—C2—C3—C4	171.1 (5)	C20—C21—C22—C23	2.8 (16)
C2—C3—C4—C5	-0.3 (10)	C19—C18—C23—C22	-2.4(13)
C3—C4—C5—Ir1	19.7 (9)	P1-C18-C23-C22	-179.7 (8)
C2—C1—C6—C7	119.0 (6)	C21—C22—C23—C18	-0.3 (17)
Ir1—C1—C6—C7	-58.8 (6)	C30—P1—C24—C25	-86.5 (5)
C2—C1—C6—C11	-65.7 (7)	C18—P1—C24—C25	22.3 (5)
Ir1—C1—C6—C11	116.5 (4)	Ir1—P1—C24—C25	149.4 (4)
C11—C6—C7—C8	-2.2 (8)	C30—P1—C24—C29	86.7 (5)
C1—C6—C7—C8	173.1 (5)	C18—P1—C24—C29	-164.5 (4)
C6—C7—C8—C9	-0.4 (9)	Ir1—P1—C24—C29	-37.4 (5)
C7—C8—C9—C10	1.1 (10)	C29—C24—C25—C26	-0.9 (8)
C8—C9—C10—C11	0.8 (9)	P1—C24—C25—C26	172.3 (4)
C9—C10—C11—C6	-3.4(8)	C24—C25—C26—C27	0.2 (9)
C7—C6—C11—C10	4.1 (8)	C25—C26—C27—C28	-0.2 (10)
	X - /		

C1C6C11C10	-171.2 (5)	C26—C27—C28—C29	0.9 (10)
C1—C2—C12—C17	127.5 (6)	C27—C28—C29—C24	-1.6 (9)
C3—C2—C12—C17	-49.3 (8)	C25—C24—C29—C28	1.6 (8)
C1—C2—C12—C13	-53.7 (8)	P1-C24-C29-C28	-171.8 (4)
C3—C2—C12—C13	129.5 (6)	C24—P1—C30—C31	4.5 (5)
C17—C12—C13—C14	2.5 (10)	C18—P1—C30—C31	-106.5 (5)
C2-C12-C13-C14	-176.3 (6)	Ir1—P1—C30—C31	128.8 (4)
C12-C13-C14-C15	-1.5 (11)	C24—P1—C30—C35	-177.2 (4)
C13—C14—C15—C16	-0.5 (11)	C18—P1—C30—C35	71.8 (5)
C14—C15—C16—C17	1.4 (11)	Ir1—P1—C30—C35	-52.9 (4)
C13—C12—C17—C16	-1.6 (10)	C35—C30—C31—C32	-1.0 (8)
C2-C12-C17-C16	177.2 (6)	P1-C30-C31-C32	177.3 (4)
C15—C16—C17—C12	-0.4 (11)	C30—C31—C32—C33	-0.3 (9)
C24—P1—C18—C19	-120.2 (6)	C31—C32—C33—C34	1.4 (9)
C30—P1—C18—C19	-11.0 (6)	C32—C33—C34—C35	-1.2 (8)
Ir1—P1—C18—C19	113.1 (5)	C33—C34—C35—C30	-0.1 (8)
C24—P1—C18—C23	56.9 (7)	C31—C30—C35—C34	1.2 (8)
C30—P1—C18—C23	166.1 (6)	P1-C30-C35-C34	-177.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
C3—H3A···Br1 ⁱ	0.95	2.87	3.717 (5)	149
C7—H7A····Br2	0.95	2.85	3.609 (7)	137
C23—H23A····Br1	0.95	2.79	3.533 (7)	135

Symmetry code: (i) -x, y+1/2, -z+3/2.

(II) (1,2-Diphenylpenta-1,3-dien-1-yl-5-ylidene)diiodido(triphenylphosphane)iridium(III)

Crystal	data
---------	------

$[Ir(C_{17}H_{13})I_2(C_{18}H_{15}P)]$ $M_r = 925.54$ Monoclinic, $P2_1/c$ a = 10.5973 (14) Å b = 11.9431 (16) Å c = 24.457 (3) Å $\beta = 93.331 (3)^{\circ}$ $V = 3090.1 (7) Å^3$ Z = 4	F(000) = 1744 $D_x = 1.989 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1109 reflections $\theta = 2.4-15.6^{\circ}$ $\mu = 6.39 \text{ mm}^{-1}$ T = 173 K Cut-block, dark-blue $0.07 \times 0.06 \times 0.05 \text{ mm}$
Data collection Bruker APEX CCD	5435 independent reflections
diffractometer Radiation source: sealed tube phi and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{\min} = 0.844, T_{\max} = 1.000$ 29241 measured reflections	3440 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.132$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -29 \rightarrow 29$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.115$	$w = 1/[\sigma^2(F_o^2) + (0.0386P)^2]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
5435 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
352 parameters	$\Delta \rho_{\rm max} = 1.16 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.15 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

			_	IT */IT
	<i>x</i>	У	Ζ	$U_{\rm iso} - U_{\rm eq}$
Ir1	-0.40123 (5)	-0.36174 (4)	0.34947 (2)	0.03406 (16)
I1	-0.28307 (8)	-0.56344 (7)	0.36052 (3)	0.0458 (3)
I2	-0.61957 (8)	-0.47400 (8)	0.32615 (4)	0.0570 (3)
P1	-0.2104 (3)	-0.2721 (3)	0.37148 (13)	0.0336 (8)
C11	-0.4688 (10)	-0.1454 (11)	0.4604 (5)	0.041 (3)
H11A	-0.4502	-0.0779	0.4419	0.050*
C1	-0.5134 (10)	-0.2398 (10)	0.3700 (5)	0.033 (3)
C10	-0.4524 (11)	-0.1491 (10)	0.5169 (5)	0.041 (3)
H10A	-0.4200	-0.0858	0.5366	0.049*
C30	-0.2297 (10)	-0.1210 (9)	0.3839 (5)	0.029 (3)
C34	-0.3021 (11)	0.0577 (10)	0.3495 (6)	0.044 (4)
H34A	-0.3430	0.1017	0.3213	0.053*
C6	-0.5110 (11)	-0.2361 (10)	0.4302 (5)	0.034 (3)
C35	-0.2876 (11)	-0.0583 (10)	0.3421 (5)	0.041 (3)
H35A	-0.3171	-0.0931	0.3088	0.049*
C18	-0.0961 (10)	-0.2767 (10)	0.3184 (5)	0.033 (3)
C2	-0.5829 (10)	-0.1661 (10)	0.3362 (5)	0.034 (3)
C8	-0.5280 (12)	-0.3357 (11)	0.5153 (5)	0.045 (4)
H8A	-0.5506	-0.4013	0.5345	0.055*
C7	-0.5417 (10)	-0.3354 (10)	0.4595 (5)	0.040 (3)
H7A	-0.5713	-0.4003	0.4403	0.048*
C3	-0.5726 (11)	-0.1673 (10)	0.2803 (5)	0.042 (3)
H3A	-0.6288	-0.1204	0.2591	0.050*
C4	-0.4867 (12)	-0.2312 (12)	0.2520 (5)	0.048 (4)
H4A	-0.4892	-0.2256	0.2132	0.058*
C12	-0.6710 (11)	-0.0827 (11)	0.3586 (5)	0.037 (3)
C24	-0.1286 (11)	-0.3182 (9)	0.4345 (5)	0.035 (3)
C29	-0.1961 (12)	-0.3438 (10)	0.4792 (5)	0.045 (3)
H29A	-0.2858	-0.3450	0.4751	0.054*
C32	-0.1985 (11)	0.0448 (10)	0.4383 (6)	0.043 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Ш22 Л	-0 1688	0.0704	0.4716	0.051*
1132A C33	-0.2572(12)	0.0794 0.1074 (11)	0.4710 0.3072 (6)	0.051
	-0.2668	0.1074 (11)	0.3972 (0)	0.050 (4)
II33A C0	-0.4831(12)	-0.2454(12)	0.4019	0.000°
	-0.4631(12) -0.4731	-0.2434(13)	0.5447 (5)	0.033 (4)
П9А С21	-0.4/31	-0.2483	0.3630	0.000°
	-0.1832 (11)	-0.0687 (10)	0.4310 (5)	0.040 (3)
HJIA	-0.1397	-0.1115	0.4590	0.048*
	-0.7630 (12)	-0.1105 (11)	0.3941 (5)	0.047(4)
HI3A	-0.7677	-0.1851	0.4074	0.057*
C5	-0.4000 (11)	-0.3009 (10)	0.2771 (5)	0.043 (3)
H5A	-0.3308	-0.3219	0.2564	0.051*
C27	-0.0060 (15)	-0.3660 (11)	0.5353 (7)	0.065 (5)
H27A	0.0361	-0.3795	0.5700	0.078*
C17	-0.6678 (13)	0.0281 (11)	0.3407 (5)	0.052 (4)
H17A	-0.6064	0.0505	0.3161	0.062*
C25	0.0029 (12)	-0.3220 (10)	0.4405 (6)	0.054 (4)
H25A	0.0513	-0.3090	0.4096	0.064*
C28	-0.1381 (15)	-0.3680 (12)	0.5297 (5)	0.061 (4)
H28A	-0.1867	-0.3857	0.5600	0.073*
C19	-0.0389 (15)	-0.1850 (13)	0.3015 (7)	0.085 (6)
H19A	-0.0582	-0.1153	0.3178	0.102*
C26	0.0632 (14)	-0.3444 (12)	0.4903 (7)	0.068 (5)
H26A	0.1529	-0.3451	0.4940	0.082*
C14	-0.8483 (12)	-0.0316 (14)	0.4106 (6)	0.064 (5)
H14A	-0.9106	-0.0532	0.4349	0.077*
C21	0.0780 (14)	-0.2803 (14)	0.2371 (7)	0.072 (5)
H21A	0.1339	-0.2816	0.2081	0.087*
C15	-0.8452 (14)	0.0770 (14)	0.3927 (6)	0.061 (4)
H15A	-0.9050	0.1305	0.4038	0.073*
C16	-0.7538(15)	0.1058 (13)	0.3586 (6)	0.066 (4)
H16A	-0.7486	0.1813	0.3466	0.079*
C20	0.0480 (19)	-0.1864(14)	0 2609 (7)	0 120 (9)
H20A	0.0862	-0.1183	0.2504	0.144*
C23	-0.0627(17)	-0.3737(13)	0 2939 (8)	0.118(8)
H23A	-0.1018	-0.4418	0.3037	0.142*
C22	0.0258 (17)	-0.3751(14)	0.2555 (9)	0.172 (0)
H22A	0.0230 (17)	-0.4451	0.2333 (7)	0.123 (9)
11227	0.0010	0.77.01	0.2717	0.1-0

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ir1	0.0342 (3)	0.0343 (3)	0.0334 (3)	-0.0003 (3)	-0.0009 (2)	0.0000 (3)
I1	0.0508 (6)	0.0394 (5)	0.0467 (6)	0.0009 (4)	-0.0024 (4)	0.0016 (4)
I2	0.0433 (6)	0.0551 (6)	0.0717 (7)	-0.0108 (5)	-0.0057 (5)	-0.0114 (5)
P1	0.0322 (19)	0.0320 (19)	0.0368 (19)	0.0022 (15)	0.0017 (15)	0.0011 (16)
C11	0.028 (7)	0.057 (9)	0.040 (8)	0.013 (7)	0.015 (6)	0.008 (7)
C1	0.023 (6)	0.041 (8)	0.031 (7)	-0.003 (6)	-0.013 (5)	0.001 (6)
C10	0.053 (8)	0.034 (8)	0.036 (8)	0.017 (7)	0.008 (6)	0.005 (7)

C30	0.020 (6)	0.030 (7)	0.038 (7)	0.001 (5)	0.003 (5)	0.004 (6)
C34	0.041 (8)	0.038 (8)	0.056 (9)	0.014 (7)	0.028 (7)	0.013 (7)
C6	0.036 (7)	0.034 (8)	0.034 (7)	-0.003 (6)	0.008 (6)	0.014 (6)
C35	0.046 (8)	0.041 (8)	0.036 (8)	-0.003 (7)	-0.002 (6)	0.003 (6)
C18	0.027 (7)	0.033 (7)	0.041 (8)	-0.004 (6)	0.004 (6)	-0.006 (6)
C2	0.030 (7)	0.037 (8)	0.033 (7)	-0.010 (6)	-0.003 (6)	-0.005 (6)
C8	0.052 (9)	0.039 (9)	0.047 (9)	0.019 (7)	0.013 (7)	0.022 (7)
C7	0.031 (7)	0.046 (9)	0.044 (8)	0.009 (6)	0.003 (6)	-0.006 (7)
C3	0.045 (8)	0.040 (8)	0.038 (8)	0.009 (6)	-0.008 (7)	0.004 (6)
C4	0.049 (9)	0.079 (11)	0.016 (7)	-0.004 (8)	0.002 (6)	0.007 (7)
C12	0.039 (8)	0.045 (8)	0.027 (7)	0.013 (7)	-0.005 (6)	0.005 (6)
C24	0.040 (8)	0.019 (6)	0.044 (8)	0.014 (6)	-0.015 (6)	-0.002 (6)
C29	0.045 (8)	0.042 (9)	0.049 (9)	0.006 (7)	-0.002 (7)	0.002 (7)
C32	0.043 (8)	0.032 (8)	0.054 (9)	0.001 (6)	0.006 (7)	-0.007 (7)
C33	0.059 (10)	0.034 (8)	0.061 (10)	0.001 (7)	0.033 (8)	-0.003 (8)
C9	0.053 (9)	0.079 (12)	0.035 (8)	0.011 (9)	0.012 (7)	-0.005 (9)
C31	0.037 (8)	0.040 (8)	0.045 (8)	0.005 (6)	0.004 (6)	-0.005 (7)
C13	0.047 (8)	0.049 (9)	0.046 (9)	0.003 (7)	0.003 (7)	0.007 (7)
C5	0.040 (8)	0.053 (9)	0.035 (8)	0.003 (7)	-0.004 (6)	-0.011 (7)
C27	0.078 (12)	0.042 (9)	0.071 (12)	0.013 (9)	-0.042 (10)	0.001 (9)
C17	0.061 (10)	0.057 (10)	0.037 (8)	0.013 (8)	0.000 (7)	0.016 (7)
C25	0.039 (8)	0.039 (8)	0.080 (11)	0.017 (7)	-0.021 (8)	0.008 (8)
C28	0.084 (12)	0.070 (11)	0.027 (8)	0.017 (9)	-0.012 (8)	-0.007 (8)
C19	0.114 (14)	0.050 (10)	0.099 (13)	0.000 (10)	0.084 (12)	0.005 (9)
C26	0.046 (9)	0.064 (11)	0.091 (13)	0.001 (8)	-0.032 (9)	0.003 (10)
C14	0.023 (8)	0.092 (13)	0.077 (12)	0.022 (9)	0.002 (7)	0.016 (10)
C21	0.051 (10)	0.073 (12)	0.095 (13)	0.008 (9)	0.029 (9)	-0.003 (11)
C15	0.057 (10)	0.083 (12)	0.043 (9)	0.027 (9)	0.001 (8)	-0.012 (9)
C16	0.082 (12)	0.062 (11)	0.053 (10)	0.024 (9)	0.007 (9)	0.012 (8)
C20	0.20 (2)	0.055 (12)	0.123 (16)	0.059 (13)	0.114 (16)	0.036 (11)
C23	0.121 (15)	0.038 (10)	0.21 (2)	-0.015 (10)	0.127 (16)	-0.031 (12)
C22	0.108 (16)	0.054 (12)	0.22 (2)	-0.019 (11)	0.089 (17)	-0.064 (14)

Geometric parameters (Å, °)

Ir1—C5	1.913 (12)	C24—C29	1.375 (16)
Ir1—C1	1.963 (11)	C24—C25	1.393 (15)
Ir1—P1	2.324 (3)	C29—C28	1.378 (16)
Ir1—I2	2.7061 (10)	C29—H29A	0.9500
Ir1—I1	2.7211 (10)	C32—C33	1.373 (16)
P1-C18	1.826 (11)	C32—C31	1.377 (15)
P1-C30	1.843 (11)	C32—H32A	0.9500
P1-C24	1.810 (11)	С33—Н33А	0.9500
C11—C10	1.384 (15)	С9—Н9А	0.9500
C11—C6	1.370 (16)	C31—H31A	0.9500
C11—H11A	0.9500	C13—C14	1.381 (17)
C1—C2	1.389 (15)	C13—H13A	0.9500
C1—C6	1.473 (15)	С5—Н5А	0.9500

С10—С9	1.384 (17)	C27—C28	1.399 (19)
C10—H10A	0.9500	C27—C26	1.38 (2)
C30—C31	1.377 (15)	С27—Н27А	0.9500
C30—C35	1.383 (14)	C17—C16	1.389 (17)
C34—C33	1.370 (17)	C17—H17A	0.9500
C34—C35	1.408 (15)	C25—C26	1.370 (17)
C34—H34A	0.9500	C25—H25A	0.9500
C6—C7	1.434 (15)	C28—H28A	0.9500
C35—H35A	0.9500	C19—C20	1.392 (18)
C18—C19	1.330 (16)	C19—H19A	0.9500
C18—C23	1.361 (17)	C26—H26A	0.9500
C2—C3	1.376 (15)	C14—C15	1.370 (19)
C2—C12	1.493 (15)	C14—H14A	0.9500
C8—C7	1.364 (16)	C21—C20	1.313 (19)
C8—C9	1.367 (17)	C21—C22	1.35 (2)
C8—H8A	0.9500	C21—H21A	0.9500
C7—H7A	0.9500	C15—C16	1.358 (18)
C3—C4	1.402 (16)	С15—Н15А	0.9500
С3—НЗА	0.9500	C16—H16A	0.9500
C4—C5	1.360 (15)	С20—Н20А	0.9500
C4—H4A	0.9500	C23—C22	1.37 (2)
C12—C13	1.383 (16)	С23—Н23А	0.9500
C12—C17	1.394 (16)	С22—Н22А	0.9500
	()		
C5—Ir1—C1	89.5 (5)	C24—C29—C28	122.2 (13)
C5—Ir1—C1 C5—Ir1—P1	89.5 (5) 89.2 (4)	C24—C29—C28 C24—C29—H29A	122.2 (13) 118.9
C5—Ir1—C1 C5—Ir1—P1 C1—Ir1—P1	89.5 (5) 89.2 (4) 97.5 (3)	C24—C29—C28 C24—C29—H29A C28—C29—H29A	122.2 (13) 118.9 118.9
C5—Ir1—C1 C5—Ir1—P1 C1—Ir1—P1 C5—Ir1—I2	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3)	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31	122.2 (13) 118.9 118.9 119.6 (13)
C5—Ir1—C1 C5—Ir1—P1 C1—Ir1—P1 C5—Ir1—I2 C1—Ir1—I2	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3)	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A	122.2 (13) 118.9 118.9 119.6 (13) 120.2
C5—Ir1—C1 C5—Ir1—P1 C1—Ir1—P1 C5—Ir1—I2 C1—Ir1—I2 P1—Ir1—I2	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8)	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A	122.2 (13) 118.9 118.9 119.6 (13) 120.2 120.2
C5—Ir1—C1 C5—Ir1—P1 C1—Ir1—P1 C5—Ir1—I2 C1—Ir1—I2 P1—Ir1—I2 C5—Ir1—I1	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4)	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C32—C33—C34	122.2 (13) 118.9 118.9 119.6 (13) 120.2 120.2 120.5 (12)
C5—Ir1—C1 C5—Ir1—P1 C1—Ir1—P1 C5—Ir1—I2 C1—Ir1—I2 P1—Ir1—I2 C5—Ir1—I1 C1—Ir1—I1	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3)	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—H33A	122.2 (13) 118.9 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7
C5—Ir1—C1 C5—Ir1—P1 C1—Ir1—P1 C5—Ir1—I2 C1—Ir1—I2 P1—Ir1—I2 C5—Ir1—I1 C1—Ir1—I1 P1—Ir1—I1	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3) 89.75 (8)	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—H33A C34—C33—H33A	122.2 (13) 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7
C5-Ir1-C1 $C5-Ir1-P1$ $C1-Ir1-P1$ $C5-Ir1-I2$ $C1-Ir1-I2$ $P1-Ir1-I2$ $C5-Ir1-I1$ $C1-Ir1-I1$ $P1-Ir1-I1$ $I2-Ir1-I1$	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3) 89.75 (8) 88.01 (3)	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—H33A C34—C33—H33A C8—C9—C10	122.2 (13) 118.9 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 118.8 (12)
C5-Ir1-C1 $C5-Ir1-P1$ $C1-Ir1-P1$ $C5-Ir1-I2$ $C1-Ir1-I2$ $P1-Ir1-I2$ $C5-Ir1-I1$ $C1-Ir1-I1$ $P1-Ir1-I1$ $P1-Ir1-I1$ $I2-Ir1-I1$ $C18-P1-C30$	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3) 89.75 (8) 88.01 (3) 103.4 (5)	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—H33A C34—C33—H33A C8—C9—C10 C8—C9—H9A	122.2 (13) 118.9 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 119.7 118.8 (12) 120.6
C5-Ir1-C1 $C5-Ir1-P1$ $C1-Ir1-P1$ $C5-Ir1-I2$ $C1-Ir1-I2$ $P1-Ir1-I2$ $C5-Ir1-I1$ $C1-Ir1-I1$ $P1-Ir1-I1$ $P1-Ir1-I1$ $I2-Ir1-I1$ $C18-P1-C30$ $C18-P1-C24$	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3) 89.75 (8) 88.01 (3) 103.4 (5) 106.9 (6)	C24—C29—C28 C24—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—H33A C34—C33—H33A C8—C9—C10 C8—C9—H9A C10—C9—H9A	122.2 (13) 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 118.8 (12) 120.6 120.6
C5-Ir1-C1 $C5-Ir1-P1$ $C1-Ir1-P1$ $C5-Ir1-I2$ $C1-Ir1-I2$ $P1-Ir1-I2$ $C5-Ir1-I1$ $C1-Ir1-I1$ $P1-Ir1-I1$ $P1-Ir1-I1$ $I2-Ir1-I1$ $C18-P1-C30$ $C18-P1-C24$ $C30-P1-C24$	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3) 89.75 (8) 88.01 (3) 103.4 (5) 106.9 (6) 102.1 (5)	C24—C29—C28 C24—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—H33A C34—C33—H33A C8—C9—C10 C8—C9—H9A C10—C9—H9A C30—C31—C32	122.2 (13) 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 119.7 118.8 (12) 120.6 120.6 121.0 (12)
C5-Ir1-C1 $C5-Ir1-P1$ $C1-Ir1-P1$ $C5-Ir1-I2$ $C1-Ir1-I2$ $P1-Ir1-I2$ $C5-Ir1-I1$ $C1-Ir1-I1$ $P1-Ir1-I1$ $I2-Ir1-I1$ $I2-Ir1-I1$ $C18-P1-C30$ $C18-P1-C24$ $C30-P1-C24$ $C18-P1-Ir1$	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3) 89.75 (8) 88.01 (3) 103.4 (5) 106.9 (6) 102.1 (5) 115.2 (4)	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—H33A C34—C33—H33A C34—C33—H33A C8—C9—C10 C8—C9—H9A C10—C9—H9A C30—C31—C32 C30—C31—H31A	122.2 (13) 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 119.7 118.8 (12) 120.6 120.6 121.0 (12) 119.5
C5-Ir1-C1 $C5-Ir1-P1$ $C1-Ir1-P1$ $C5-Ir1-I2$ $C1-Ir1-I2$ $P1-Ir1-I2$ $C5-Ir1-I1$ $C1-Ir1-I1$ $P1-Ir1-I1$ $I2-Ir1-I1$ $C18-P1-C30$ $C18-P1-C24$ $C30-P1-C24$ $C18-P1-Ir1$ $C30-P1-Ir1$	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3) 89.75 (8) 88.01 (3) 103.4 (5) 106.9 (6) 102.1 (5) 115.2 (4) 112.7 (4)	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—H33A C34—C33—H33A C34—C33—H33A C8—C9—C10 C8—C9—H9A C10—C9—H9A C30—C31—C32 C30—C31—H31A C32—C31—H31A	122.2 (13) 118.9 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 119.7 118.8 (12) 120.6 120.6 121.0 (12) 119.5 119.5
C5-Ir1-C1 $C5-Ir1-P1$ $C1-Ir1-P1$ $C5-Ir1-I2$ $C1-Ir1-I2$ $P1-Ir1-I2$ $C5-Ir1-I1$ $C1-Ir1-I1$ $P1-Ir1-I1$ $P1-Ir1-I1$ $C18-P1-C30$ $C18-P1-C24$ $C30-P1-C24$ $C18-P1-Ir1$ $C30-P1-Ir1$ $C24-P1-Ir1$	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3) 89.75 (8) 88.01 (3) 103.4 (5) 106.9 (6) 102.1 (5) 115.2 (4) 112.7 (4) 115.1 (4)	C24—C29—C28 C24—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—H33A C34—C33—H33A C34—C33—H33A C8—C9—C10 C8—C9—H9A C10—C9—H9A C30—C31—C32 C30—C31—H31A C32—C31—H31A C14—C13—C12	122.2 (13) 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 119.7 119.7 118.8 (12) 120.6 120.6 120.6 121.0 (12) 119.5 119.5 121.0 (13)
C5-Ir1-C1 $C5-Ir1-P1$ $C1-Ir1-P1$ $C5-Ir1-I2$ $C1-Ir1-I2$ $P1-Ir1-I2$ $C5-Ir1-I1$ $C5-Ir1-I1$ $P1-Ir1-I1$ $P1-Ir1-I1$ $P1-Ir1-I1$ $I2-Ir1-I1$ $C18-P1-C24$ $C30-P1-C24$ $C18-P1-C24$ $C18-P1-Ir1$ $C30-P1-Ir1$ $C24-P1-Ir1$ $C24-P1-Ir1$ $C10-C11-C6$	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3) 89.75 (8) 88.01 (3) 103.4 (5) 106.9 (6) 102.1 (5) 115.2 (4) 112.7 (4) 115.1 (4) 122.0 (12)	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—H33A C34—C33—H33A C8—C9—C10 C8—C9—H9A C10—C9—H9A C30—C31—C32 C30—C31—H31A C32—C31—H31A C14—C13—C12 C14—C13—H13A	122.2 (13) 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 118.8 (12) 120.6 120.6 121.0 (12) 119.5 119.5 121.0 (13) 119.5
C5-Ir1-C1 $C5-Ir1-P1$ $C1-Ir1-P1$ $C5-Ir1-I2$ $C1-Ir1-I2$ $P1-Ir1-I2$ $C5-Ir1-I1$ $C5-Ir1-I1$ $C1-Ir1-I1$ $P1-Ir1-I1$ $I2-Ir1-I1$ $I2-Ir1-I1$ $C18-P1-C30$ $C18-P1-C24$ $C30-P1-C24$ $C18-P1-Ir1$ $C30-P1-Ir1$ $C30-P1-Ir1$ $C24-P1-Ir1$ $C10-C11-C6$ $C10-C11-H11A$	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3) 89.75 (8) 88.01 (3) 103.4 (5) 106.9 (6) 102.1 (5) 115.2 (4) 112.7 (4) 115.1 (4) 122.0 (12) 119.0	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—C34 C32—C33—H33A C34—C33—H33A C8—C9—C10 C8—C9—H9A C10—C9—H9A C30—C31—C32 C30—C31—H31A C32—C31—H31A C14—C13—C12 C14—C13—H13A	122.2 (13) 118.9 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 119.7 119.7 118.8 (12) 120.6 120.6 121.0 (12) 119.5 119.5 121.0 (13) 119.5 119.5
$\begin{array}{c} C5-Ir1-C1\\ C5-Ir1-P1\\ C1-Ir1-P1\\ C5-Ir1-I2\\ C5-Ir1-I2\\ P1-Ir1-I2\\ C5-Ir1-I1\\ C5-Ir1-I1\\ C1-Ir1-I1\\ P1-Ir1-I1\\ P1-Ir1-I1\\ P1-Ir1-I1\\ C18-P1-C30\\ C18-P1-C24\\ C30-P1-C24\\ C30-P1-C24\\ C18-P1-Ir1\\ C30-P1-Ir1\\ C30-P1-Ir1\\ C24-P1-Ir1\\ C10-C11-C6\\ C10-C11-H11A\\ C6-C11-H11A \end{array}$	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3) 89.75 (8) 88.01 (3) 103.4 (5) 106.9 (6) 102.1 (5) 115.2 (4) 112.7 (4) 115.1 (4) 122.0 (12) 119.0 119.0	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—C34 C32—C33—H33A C34—C33—H33A C8—C9—C10 C8—C9—H9A C10—C9—H9A C10—C9—H9A C30—C31—C32 C30—C31—H31A C32—C31—H31A C14—C13—H13A C12—C13—H13A C4—C5—Ir1	122.2 (13) 118.9 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 119.7 119.7 119.7 120.6 120.6 120.6 121.0 (12) 119.5 121.0 (13) 119.5 119.5 127.6 (10)
C5-Ir1-C1 $C5-Ir1-P1$ $C1-Ir1-P1$ $C5-Ir1-I2$ $C1-Ir1-I2$ $P1-Ir1-I2$ $C5-Ir1-I1$ $C5-Ir1-I1$ $C1-Ir1-I1$ $P1-Ir1-I1$ $I2-Ir1-I1$ $C18-P1-C30$ $C18-P1-C24$ $C30-P1-C24$ $C18-P1-Ir1$ $C30-P1-Ir1$ $C24-P1-Ir1$ $C24-P1-Ir1$ $C10-C11-C6$ $C10-C11-H11A$ $C6-C11-H11A$ $C2-C1-C6$	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3) 89.75 (8) 88.01 (3) 103.4 (5) 106.9 (6) 102.1 (5) 115.2 (4) 112.7 (4) 115.1 (4) 122.0 (12) 119.0 119.0 123.6 (11)	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—H33A C34—C33—H33A C34—C33—H33A C8—C9—C10 C8—C9—H9A C10—C9—H9A C30—C31—C32 C30—C31—H31A C32—C31—H31A C14—C13—C12 C14—C13—H13A C12—C13—H13A C4—C5—Ir1 C4—C5—H5A	122.2 (13) 118.9 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 119.7 118.8 (12) 120.6 120.6 121.0 (12) 119.5 119.5 121.0 (13) 119.5 119.5 127.6 (10) 116.2
C5-Ir1-C1 $C5-Ir1-P1$ $C1-Ir1-P1$ $C5-Ir1-I2$ $C1-Ir1-I2$ $P1-Ir1-I2$ $C5-Ir1-I1$ $C5-Ir1-I1$ $C1-Ir1-I1$ $P1-Ir1-I1$ $P1-Ir1-I1$ $I2-Ir1-I1$ $C18-P1-C30$ $C18-P1-C24$ $C30-P1-C24$ $C18-P1-Ir1$ $C30-P1-Ir1$ $C24-P1-Ir1$ $C24-P1-Ir1$ $C10-C11-C6$ $C10-C11-H11A$ $C6-C11-H11A$ $C2-C1-C6$ $C2-C1-Ir1$	89.5 (5) 89.2 (4) 97.5 (3) 92.6 (3) 84.2 (3) 177.54 (8) 113.6 (4) 156.0 (3) 89.75 (8) 88.01 (3) 103.4 (5) 106.9 (6) 102.1 (5) 115.2 (4) 115.2 (4) 115.1 (4) 122.0 (12) 119.0 119.0 123.6 (11) 128.7 (9)	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—H33A C34—C33—H33A C34—C33—H33A C8—C9—C10 C8—C9—H9A C10—C9—H9A C30—C31—C32 C30—C31—H31A C32—C31—H31A C14—C13—C12 C14—C13—H13A C12—C13—H13A C4—C5—Ir1 C4—C5—Ir1 C4—C5—H5A	122.2 (13) 118.9 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 119.7 118.8 (12) 120.6 120.6 121.0 (12) 119.5 119.5 121.0 (13) 119.5 127.6 (10) 116.2 116.2
C5-Ir1-C1 $C5-Ir1-P1$ $C1-Ir1-P1$ $C5-Ir1-I2$ $C1-Ir1-I2$ $P1-Ir1-I2$ $C5-Ir1-I1$ $C5-Ir1-I1$ $C1-Ir1-I1$ $P1-Ir1-I1$ $I2-Ir1-I1$ $I2-Ir1-I1$ $C18-P1-C30$ $C18-P1-C24$ $C30-P1-C24$ $C18-P1-Ir1$ $C30-P1-Ir1$ $C24-P1-Ir1$ $C10-C11-C6$ $C10-C11-H11A$ $C6-C11-H11A$ $C2-C1-C6$ $C2-C1-Ir1$ $C6-C1-Ir1$	$\begin{array}{l} 89.5 (5) \\ 89.2 (4) \\ 97.5 (3) \\ 92.6 (3) \\ 84.2 (3) \\ 177.54 (8) \\ 113.6 (4) \\ 156.0 (3) \\ 89.75 (8) \\ 88.01 (3) \\ 103.4 (5) \\ 106.9 (6) \\ 102.1 (5) \\ 115.2 (4) \\ 115.2 (4) \\ 115.1 (4) \\ 122.0 (12) \\ 119.0 \\ 119.0 \\ 119.0 \\ 119.0 \\ 123.6 (11) \\ 128.7 (9) \\ 107.6 (8) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122.2 (13) 118.9 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 119.7 119.7 119.7 120.6 120.6 120.6 121.0 (12) 119.5 119.5 121.0 (13) 119.5 127.6 (10) 116.2 120.0 (13)
C5-Ir1-C1 $C5-Ir1-P1$ $C1-Ir1-P1$ $C5-Ir1-I2$ $C1-Ir1-I2$ $P1-Ir1-I2$ $C5-Ir1-I1$ $C5-Ir1-I1$ $C1-Ir1-I1$ $P1-Ir1-I1$ $I2-Ir1-I1$ $I2-Ir1-I1$ $C18-P1-C30$ $C18-P1-C24$ $C30-P1-C24$ $C18-P1-Ir1$ $C30-P1-Ir1$ $C24-P1-Ir1$ $C10-C11-C6$ $C10-C11-H11A$ $C2-C1-C6$ $C2-C1-Ir1$ $C6-C1-Ir1$ $C10-C9$	$\begin{array}{l} 89.5 (5) \\ 89.2 (4) \\ 97.5 (3) \\ 92.6 (3) \\ 84.2 (3) \\ 177.54 (8) \\ 113.6 (4) \\ 156.0 (3) \\ 89.75 (8) \\ 88.01 (3) \\ 103.4 (5) \\ 106.9 (6) \\ 102.1 (5) \\ 115.2 (4) \\ 112.7 (4) \\ 115.1 (4) \\ 122.0 (12) \\ 119.0 \\ 119.0 \\ 119.0 \\ 119.0 \\ 123.6 (11) \\ 128.7 (9) \\ 107.6 (8) \\ 119.9 (13) \end{array}$	C24—C29—C28 C24—C29—H29A C28—C29—H29A C33—C32—C31 C33—C32—H32A C31—C32—H32A C32—C33—C34 C32—C33—C34 C32—C33—H33A C34—C33—H33A C8—C9—C10 C8—C9—H9A C10—C9—H9A C10—C9—H9A C30—C31—C32 C30—C31—H31A C14—C13—H13A C14—C13—H13A C14—C13—H13A C12—C13—H13A C4—C5—Ir1 C4—C5—Ir1 C4—C5—H5A Ir1—C5—H5A C28—C27—C26 C28—C27—C26	122.2 (13) 118.9 118.9 119.6 (13) 120.2 120.2 120.5 (12) 119.7 119.7 119.7 119.7 119.7 120.6 120.6 121.0 (12) 119.5 121.0 (13) 119.5 127.6 (10) 116.2 120.0 (13) 120.0 (13) 120.0

C9—C10—H10A	120.0	C16—C17—C12	120.4 (13)
C31—C30—C35	119.7 (11)	C16—C17—H17A	119.8
C31—C30—P1	123.0 (9)	С12—С17—Н17А	119.8
C35—C30—P1	117.2 (9)	C26—C25—C24	120.8 (14)
C33—C34—C35	120.1 (12)	C26—C25—H25A	119.6
C33—C34—H34A	120.0	C24—C25—H25A	119.6
С35—С34—Н34А	120.0	C27—C28—C29	118.5 (14)
C11—C6—C1	123.3 (11)	C27—C28—H28A	120.8
C11—C6—C7	117.5 (11)	C29—C28—H28A	120.8
C1—C6—C7	118.9 (11)	C18—C19—C20	123.0 (15)
C30—C35—C34	119.0 (12)	C18—C19—H19A	118.5
С30—С35—Н35А	120.5	С20—С19—Н19А	118.5
С34—С35—Н35А	120.5	C25—C26—C27	120.3 (14)
C19—C18—C23	115.4 (12)	С25—С26—Н26А	119.9
C19—C18—P1	122.0 (10)	С27—С26—Н26А	119.9
C23—C18—P1	122.6 (10)	C13—C14—C15	121.6 (14)
C3—C2—C1	121.0 (11)	C13—C14—H14A	119.2
C3—C2—C12	117.4 (11)	C15—C14—H14A	119.2
C1—C2—C12	121.7 (11)	C20—C21—C22	117.0 (16)
C7—C8—C9	122.5 (12)	C20—C21—H21A	121.5
С7—С8—Н8А	118.7	С22—С21—Н21А	121.5
С9—С8—Н8А	118.7	C14—C15—C16	117.8 (14)
C8—C7—C6	119.2 (12)	C14—C15—H15A	121.1
С8—С7—Н7А	120.4	C16—C15—H15A	121.1
С6—С7—Н7А	120.4	C17—C16—C15	121.9 (15)
C2—C3—C4	126.0 (11)	C17—C16—H16A	119.1
С2—С3—НЗА	117.0	C15—C16—H16A	119.1
С4—С3—НЗА	117.0	C21—C20—C19	121.0 (17)
C5—C4—C3	123.4 (11)	C21—C20—H20A	119.5
C5—C4—H4A	118.3	C19—C20—H20A	119.5
C3—C4—H4A	118.3	C18—C23—C22	121.4 (14)
C13—C12—C17	117.1 (12)	C18—C23—H23A	119.3
C13—C12—C2	123.4 (12)	С22—С23—Н23А	119.3
C17—C12—C2	119.4 (12)	C21—C22—C23	122.1 (15)
C29—C24—C25	118.3 (12)	C21—C22—H22A	119.0
C29—C24—P1	119.9 (9)	C23—C22—H22A	119.0
C25—C24—P1	121.7 (11)		
C6-C11-C10-C9	-2.3 (18)	C30—P1—C24—C29	84.2 (10)
C18—P1—C30—C31	-108.7 (10)	Ir1—P1—C24—C29	-38.2 (11)
C24—P1—C30—C31	2.2 (11)	C18—P1—C24—C25	16.5 (12)
Ir1—P1—C30—C31	126.3 (9)	C30—P1—C24—C25	-91.7 (11)
C18—P1—C30—C35	67.5 (10)	Ir1—P1—C24—C25	145.9 (9)
C24—P1—C30—C35	178.4 (9)	C25—C24—C29—C28	3.0 (19)
Ir1—P1—C30—C35	-57.5 (9)	P1—C24—C29—C28	-173.1 (10)
C10-C11-C6-C1	-171.6 (11)	C31—C32—C33—C34	1.0 (19)
C10-C11-C6-C7	1.9 (17)	C35—C34—C33—C32	-0.4 (19)
C2—C1—C6—C11	-60.9 (17)	C7—C8—C9—C10	1 (2)

Ir1—C1—C6—C11	118.0 (11)	C11—C10—C9—C8	0.7 (19)
C2-C1-C6-C7	125.8 (12)	C35—C30—C31—C32	3.1 (18)
Ir1—C1—C6—C7	-55.4 (12)	P1-C30-C31-C32	179.2 (9)
C31—C30—C35—C34	-2.5 (17)	C33—C32—C31—C30	-2.4 (18)
P1-C30-C35-C34	-178.8 (9)	C17—C12—C13—C14	0.5 (19)
C33—C34—C35—C30	1.2 (18)	C2-C12-C13-C14	-175.2 (12)
C30—P1—C18—C19	6.2 (14)	C3—C4—C5—Ir1	18.9 (19)
C24—P1—C18—C19	-101.1 (13)	C13—C12—C17—C16	0.4 (19)
Ir1—P1—C18—C19	129.5 (12)	C2-C12-C17-C16	176.3 (12)
C30—P1—C18—C23	-174.5 (14)	C29—C24—C25—C26	-3.8 (19)
C24—P1—C18—C23	78.2 (15)	P1-C24-C25-C26	172.3 (10)
Ir1—P1—C18—C23	-51.1 (15)	C26—C27—C28—C29	-2 (2)
C6—C1—C2—C3	174.1 (11)	C24—C29—C28—C27	0 (2)
Ir1—C1—C2—C3	-4.5 (17)	C23—C18—C19—C20	1 (3)
C6-C1-C2-C12	-5.7 (17)	P1-C18-C19-C20	-179.7 (15)
Ir1—C1—C2—C12	175.6 (8)	C24—C25—C26—C27	1 (2)
C9—C8—C7—C6	-1.5 (19)	C28—C27—C26—C25	2 (2)
C11—C6—C7—C8	0.0 (17)	C12—C13—C14—C15	0 (2)
C1—C6—C7—C8	173.8 (11)	C13—C14—C15—C16	-1 (2)
C1—C2—C3—C4	-6.4 (19)	C12—C17—C16—C15	-2 (2)
C12—C2—C3—C4	173.5 (12)	C14—C15—C16—C17	2 (2)
C2—C3—C4—C5	-1 (2)	C22—C21—C20—C19	-3 (3)
C3—C2—C12—C13	129.0 (13)	C18—C19—C20—C21	0 (3)
C1—C2—C12—C13	-51.1 (17)	C19—C18—C23—C22	1 (3)
C3—C2—C12—C17	-46.6 (16)	P1-C18-C23-C22	-178.0 (17)
C1—C2—C12—C17	133.3 (12)	C20—C21—C22—C23	6 (3)
C18—P1—C24—C29	-167.6 (9)	C18—C23—C22—C21	-5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C7—H7 <i>A</i> …I2	0.95	2.94	3.707 (12)	138
C23—H23A…I1	0.95	2.84	3.699 (17)	152