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ABSTRACT

Objective: Estrogen protects animals from obesity through estrogen receptor o (ERa), partially by inhibiting overeating in animals fed ad libitum.
However, the effects of estrogen on feeding behavior in hungry animals remain unclear. In this study, we examined the roles of 173-estradiol (E2)
and ERa in the regulation of feeding in hungry female animals and explored the underlying mechanisms.

Methods: Wild-type female mice with surgical depletion of endogenous estrogens were used to examine the effects of E2 supplementation on
acute refeeding behavior after starvation. ERai-C451A mutant mice deficient in membrane-bound ERa. activity and ERai-AF2° mutant mice lacking
ERa. transcriptional activity were used to further examine mechanisms underlying acute feeding triggered by either fasting or central glucopenia
(induced by intracerebroventricular injections of 2-deoxy-D-glucose). We also used electrophysiology to explore the impact of these ERo. mu-
tations on the neural activities of ERo neurons in the hypothalamus.

Results: In the wild-type female mice, ovariectomy reduced fasting-induced refeeding, which was restored by E2 supplementation. The ERa-
C451A mutation, but not the ERa-AF2° mutation, attenuated acute feeding induced by either fasting or central glucopenia. The ERo-C451A
mutation consistently impaired the neural responses of hypothalamic ERo. neurons to hypoglycemia.

Conclusion: In addition to previous evidence that estrogen reduces deviations in energy balance by inhibiting eating at a satiated state, our
findings demonstrate the unexpected role of E2 that promotes eating in hungry mice, also contributing to the stability of energy homeostasis. This

latter effect specifically requires membrane-bound ERa. activity.
© 2020 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION Notably, the ARH and vIVMH are also enriched with glucose-sensing

neurons [20—25], which play important roles in energy homeostasis

17B-estradiol (E2) plays an essential role in the regulation of energy
homeostasis in females. Depletion of endogenous estrogen by ovari-
ectomy (OVX) in female animals leads to increased food intake and
body weight gain, which can be prevented by E2 treatment [1—6]. The
anti-obesity effect of E2 is largely mediated by ERal [7—9], as mice
with whole-body ERa. knockout develop obesity [3,10—15]. We and
others demonstrated that ERa expressed by hypothalamic neurons,
including in the arcuate nucleus (ARH) and ventrolateral subdivision of
the ventromedial hypothalamic nucleus (vIVMH), is essential to mediate
estrogenic actions to prevent body weight gain in females [16—19].

[20,21,25—28]. In particular, we recently found that ERa. neurons in
the VIVMH (ERo""™" neurons) have strong glucose-sensing capability
and can maintain normal glucose balance in female mice [29].

As a classic nuclear receptor, ERa can function in the nucleus to
regulate gene transcription. ERa. regulates gene transcription through
two activation functions (ERa-AF1 and ERa-AF2). AF-1 is located in the
N-terminal and AF-2 in the C-terminal portion of ERa.. Both ERa.-AF1°
mutant mice [30,31] and ERo-AF2° mutant mice [32—34] were
generated to ablate the transcriptional activity of ERa., but only the
ERa-AF2° mutant mice recaptured the obese phenotype of whole-body
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ERa knockout mice [35]. In addition to the transcriptional activity, a
sub-population of ERat molecules was reported to be extra-nuclear,
essentially bound to the cytomembrane in several types of cultured
cells, and is able to initiate rapid actions within seconds or minutes
[36]. More recently, we and others [37,38] reported that the point
mutation at the palmitoylation site of ERa. (C451A-ERa) in mice spe-
cifically abolished membrane-bound ERc. activity, while the tran-
scriptional activity of ERo. was preserved.

Most previous studies focused on the role of E2 in regulating feeding
behavior in animals under ad libitum feeding conditions. However, the
role of E2 in hungry animals is not well understood. In this study, we
first used OVX female mice with or without E2 supplement to examine
the effects of endogenous E2 on feeding behavior in hungry female
mice. Furthermore, mice carrying ERa-C451A or ERa.-AF2° mutations
were used to examine the roles of membrane-bound ERa vs the
transcriptional activity of ERe in feeding control in hungry mice. We
also explored the impact of these mutations on neural activity of ERa.
neurons in the ARH and vIVMH.

2. METHODS

2.1. Mice

ERo.-C451A or ERa-AF2° heterozygous mice [38] were crossed with
ERa-C451A or ERa-AF2° heterozygous mice, respectively, to
generate ERa-C451A homozygous or ERa-AF2° homozygous mice
as mutant groups. Mice heterozygous for ERa-C451A or ERo.-AF2°
showed comparable phenotypes as their respective wild-type lit-
termates and therefore were pooled as control groups. The mouse
ERa-ZsGreen transgene [39] was introduced to these crosses to
label ERa neurons with ZsGreen. C57BL/6J female mice were
purchased from the local mouse facility at Baylor College of Med-
icine. Female mice were used throughout this study.

Care of all of the animals and the procedures were approved by Baylor
College of Medicine’s Institutional Animal Care and Use Committees.
The mice were housed in a temperature-controlled environment in
groups of two to four at 22—24 °C using a 12-h light and 12-h dark
cycle. The mice were fed a standard chow diet (Cat# 2920, Harlan
Teklad) and water was provided ad libitum.

2.2. OVX surgery

C57BL/6J female mice (16 weeks of age) were anesthetized with
inhaled isoflurane. As previously described, bilateral OVX or sham
surgeries were performed [17,40,41]. One group of these OVX mice
received subcutaneous (s.c.) injections of E2 (E8875, Sigma; 2 pg in
50 uL of sesame oil, OVX-E) every 4 days; the other group of OVX and
sham mice received vehicle (50 pL of sesame oil, OVX-V, or sham)
every 4 days for 80 days.

2.3. Ad libitum feeding and fasting-induced refeeding

The sham, OVX-V, and OVX-E mice were fed ad libitum for 10
weeks after surgery. After a scheduled s. c. injection of vehicle or
E2, the body weight and food intake were measured daily for
continuous 3 days. The mice were then fasted from the night before
their next scheduled s. c. injection. The next morning, the mice
received s. c. injection of sesame oil (sham and OVX-V) or E2 (OVX-
E) at 9:30 am. Food was provided at 11:30 am and food intake was
measured after 2 h and again at 24 h time points. Similarly, ERot-
C451A mutant mice, ERo-AF2° mutant mice, and their respective
littermate controls (16 weeks of age) were fasted overnight. Food
was provided at 11:30 am the next morning, and food intake was
measured for 2 h.

2.4. Intracerebroventricular injections

Female ERo-C451A mutant mice, ERa-AF2° mutant mice, and their
respective littermate controls (16 weeks of age) were anesthetized
with inhaled isoflurane, and stainless steel cannulas (Plastics One)
were inserted into the lateral ventricles (0.34 mm caudal and 1 mm
lateral from the bregma; 2.3 mm depth) to establish intra-
cerebroventricular (ICV) cannulation [42,43]. One week after surgery,
ICV cannulation was confirmed by demonstration of increased drinking
and grooming behavior within 5 min after administration of 10 ng
angiotensin Il (A9525, Sigma). Four weeks after the surgeries, the mice
were briefly fasted for 2 h from 9:30 am in the morning to empty their
stomach. At 11:30 am, the mice received ICV injection of saline or 2-
DG (1 mg in 2 pL of saline), and food was provided. Food intake was
measured at 15, 30, 60, and 120 min after the injections.

2.5. Electrophysiological recordings

Female ERc-ZsGreen, ERo-ZsGreen/ERoi-C451A mutant, and ERo-
ZsGreen/ERo-AF2° mutant mice (12 weeks of age) were used for
electrophysiological recordings. The mice were deeply anesthetized
with isoflurane and transcardially perfused with a modified ice-cold
sucrose-based cutting solution (pH 7.3) containing 10 mM NaCl,
25 mM NaHCOs, 195 mM sucrose, 5 mM glucose, 2.5 mM KCl,
1.25 mM NaHoPQ4, 2 mM Na-pyruvate, 0.5 mM CaClo, and 7 mM
MgCl, bubbled continuously with 95% 02 and 5% CO, [29]. The mice
were then decapitated, and the entire brain was removed and
immediately submerged in cutting solution. Slices (250 um) were cut
with a Microm HM 650 V vibratome (Thermo Fisher Scientific). Three
brain slices containing the ARH and vIVMH were obtained from each
animal (bregma —2.06 mm to —1.46 mm; interaural 1.74 mm—
2.34 mm). The slices were recovered for 1 h at 34 °C and then
maintained at room temperature in artificial cerebrospinal fluid (aCSF,
pH 7.3) containing 126 mM NaCl, 2.5 mM KCl, 2.4 mM CaCl,, 1.2 mM
NaH,PO4, 1.2 mM MgCly, 5.0 mM glucose, and 21.4 mM NaHCOs
saturated with 95% 0, and 5% CO, before recording.

The slices were transferred to a recording chamber and allowed to
equilibrate for at least 10 min before recording. The slices were
superfused at 34 °C in oxygenated aCSF at a flow rate of 1.8—2 mL/
min. ZsGreen-labeled neurons in the ARH and vIVMH were visualized
using epifluorescence and IR-DIC imaging on an upright microscope
(Eclipse FN-1, Nikon) equipped with a movable stage (MP-285, Sutter
Instruments). Patch pipettes with resistances of 3—5 MQ were filled
with intracellular solution (pH 7.3) containing 128 mM K-gluconate,
10 mM KCI, 10 mM HEPES, 0.1 mM EGTA, 2 mM MgCl,, 0.05 mM Na-
GTP, and 0.05 mM Mg-ATP. Recordings were produced using a
MultiClamp 700B amplifier (Axon Instruments), sampled using Digidata
1440A, and analyzed offline with pClamp 10.3 software (Axon In-
struments). Series resistance was monitored during the recording, and
the values were generally <10 MQ and were not compensated. Data
were excluded if the series resistance increased dramatically during
the experiment or without overshoot for action potential. Currents were
amplified, filtered at 1 kHz, and digitized at 20 kHz. To examine the
acute neural responses to propyl pyrazole triol (PPT), a selective ERa.
agonist [44], the current clamp was engaged to measure the neural
firing rate before and after a 500 ms puff of 100 nM PPT.

To examine the glucose-sensing functions, the neurons were recorded
under the current clamp mode in responsetoa5 — 1 — 5 mM
extracellular glucose fluctuation protocol [45]. The firing rate values
were averaged within a 2-min bin in the 5 mM glucose or 1 mM
glucose aCSF condition. Neurons that were inhibited (>10% decrease
of firing rate) in response to hypoglycemia (5 — 1 mM glucose) were
identified as glucose-excited (GE) neurons. Neurons that were

2 MOLECULAR METABOLISM 42 (2020) 101053 © 2020 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

www.molecularmetabolism.com


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com

activated (>10% increase in the firing rate) in response to hypogly-
cemia were identified as glucose-inhibited (GI) neurons. Neurons that
showed responses at a less than 10% change in the firing rate were
identified as non-glucose-sensing neurons.

2.6. Statistical analyses

The data are presented as mean + SEM (standard error of the mean).
Statistical analyses were conducted using GraphPad Prism 7.0 to
evaluate the normal distribution and variations within and among
groups. The methods of statistical analyses were chosen based on the
design of each experiment and are indicated in the figure legends or
main text. P < 0.05 was considered statistically significant.

2.7. Study approval
Care of all of the animals and the procedures were approved by the Baylor
College of Medicine’s Institutional Animal Care and Use Committee.

3. RESULTS

3.1. E2 promotes acute adaptive refeeding after starvation

Consistent with previous reports [3,5,6,41], we demonstrated that the
OVX-V mice, when fed ad libitum, displayed higher body weight and
daily food intake compared to the sham mice, and these increases
were rescued by the E2 supplement in the OVX-E mice (Figure 1A—B).
However, after overnight fasting, the OVX-V mice showed significantly
lower 2-hour food intake than the sham mice, while the OVX-E mice
demonstrated a 2-hour refeeding response comparable to the sham
mice (Figure 1C). Notably, there was no significant difference in 24-
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hour food intake after fasting among the three groups (Supplemental
Figure 1). The heavier OVX-V mice may have lost relatively less en-
ergy storage after the same overnight fasting, which may have
contributed to the reduced 2-hour refeeding response. Thus, we
analyzed the correlation between the relative body weight loss and the
2-hour refeeding response in all 3 groups of mice. We found no sig-
nificant correlation (Figure 1D; p = 0.9120 and = 0.00098), sug-
gesting that altered 2-hour refeeding behavior was not likely due to
different weight loss. Thus, these results indicated that endogenous E2
is required to maintain acute fasting-induced refeeding, an important
adaptive behavior in response to the shortage of energy storage.

3.2. Membrane-bound ERa activity is required for acute adaptive
refeeding after starvation

To determine if the effect of E2 on acute refeeding was mediated by
membrane-bound ERa functions or transcriptional activity of ERa., we
used ERa-C451A mutant mice that lacked membrane-bound ERa
activity and ERo-AF2° mutant mice that were deficient in ERo. tran-
scriptional activity. The ERa-C451A mutant mice showed similar body
weight compared to the control mice (Figure 2A). However, after
overnight fasting, the ERca-C451A mutant mice showed decreased
food intake during the acute 2-hour refeeding period, recapitulating the
phenotype of the OVX-V mice (Figure 2B). Importantly, there was no
significant correlation between the relative body weight loss and 2-
hour refeeding response in these 2 groups of mice (Figure 2C;
p=0.0773 and = 0.3392). These results indicated that membrane-
bound ERa activity was required to maintain acute adaptive refeeding
after starvation in the female mice.
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Figure 1: E2 promotes acute adaptive refeeding after starvation. Body weight (A), daily ad libitum food intake (B), and 2-hour fasting-induced refeeding (C) in the sham, OVX-
V, and OVX-E mice measured 10 weeks after surgery. Data are presented as mean 4= SEM. N = 5 mice per group. *p < 0.05 and **p < 0.01 in one-way ANOVA followed by post
hoc Tukey’s multiple comparisons; #p < 0.05 in the two-sided t-test. (D) Correlation of the relative body weight loss and 2-hour fasting-induced refeeding in the sham, OVX-V, and

OVX-E mice.
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Figure 2: Membrane-bound ERa activity is required for acute adaptive refeeding after starvation. (A) Body weight of the control and ERx-C541A mice before fasting. (B)
Two-hour fasting-induced refeeding of the control and ERa-C541A mice. N = 4 or 6 mice per group. (C) Correlation of the relative body weight loss and 2-hour fasting-induced
refeeding in the control and ERa-C451A mice. (D) Body weight of the control and ERe.-AF20 and mice. (E) Two-hour fasting-induced refeeding of the control and ERa.-AF2° mice.
N = 6 or 7 mice per group. Data are presented as mean 4 SEM. *p < 0.05 and **p < 0.01 in the two-sided t-tests. (F) Correlation of the relative body weight loss and 2-hour

fasting-induced refeeding in the control and ERa-AF2° mice.

The ERa-AF2° mutant mice were significantly heavier than their age-
matched controls (Figure 2D). After overnight fasting, these ERo-AF2°
mutant mice showed significantly reduced 2-hour refeeding compared
to the control mice (Figure 2E). However, we found that the fasting-
induced relative body weight loss was positively correlated with the
2-hour refeeding response in these mice (Figure 2F; p = 0.0003 and
P = 0.7116). These data implied the possibility that the reduced
refeeding response in the heavier ERa-AF2° mutant mice might have
been secondary to the relatively smaller body weight loss after over-
night fasting, but not caused by the ERa-AF2° mutation per se.

A 2-DG-Induced Food Intake

To further ascertain the potential confounding effects of different
fasting-induced weight loss, we tested the effects of ICV injection of 2-
DG in satiated mice, which induced a transient central glucopenia and
mimicked fasting without actual weight loss. As expected, ICV 2-DG
induced a significant increase in 2-hour food intake in the female
control mice compared to the saline group (Figure 3A). Interestingly,
this 2-DG-induced feeding was significantly attenuated in the ERa-
C451A mutant mice (Figure 3A). Importantly, 2-DG evoked comparable
feeding behavior in the ERa-AF2° mutant mice and their control lit-
termates (Figure 3B), although the ERa-AF2° mutant mice were
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Figure 3: Membrane-bound ERa activity is required for feeding induced by central glucopenia. (A) Food intake in the satiated control and ERa-C541A mice after ICV
injection of saline or 2-DG. Data are presented as mean + SEM. N = 4 or 6 mice per group. *p < 0.05 between the control 2-DG and ERa.-C451A 2-DG groups; $p < 0.05
between the control saline and control 2-DG groups; #p < 0.05 between the ERx-C451A saline and ERa.-C451A 2-DG groups in two-way ANOVA followed by post hoc Tukey’s
multiple comparisons. (B) Food intake in the satiated control and ERa-AF2° mice after ICV injection of saline or 2-DG. Data are presented as mean + SEM. N = 6 or 7 mice per

group. $, p < 0.05 between the control saline and control 2-DG groups; #p < 0.05 between the ERo.-AF2° saline and ERa-AF2° 2-DG groups in two-way ANOVA followed by post
hoc Tukey’s multiple comparisons.
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significantly heavier than the controls (Figure 2D). Collectively, these
results further support that the effect of E2 on acute refeeding was
mediated by membrane-bound ERa activity.

3.3. Membrane-bound ERa is required for neuronal

responsiveness to an ERa. agonist

Our previous study showed that ERa in the ARH and vIVMH is important
for body weight balance in female mice fed ad libitum [17]. In the
present study, we tested whether ERa-C451A and/or ERa-AF2° mu-
tations affected the neural activity of these ERo™"" and ERe/VMH
neurons (labeled by the ZsGreen fluorescence protein) from the female
control, ERa-C451A, and ERa-AF2° mutant mice (Figure 4A—B). First,
we found that the ERa-C451A mutation caused a significant reduction
in the baseline firing rate of the ERe*™ neurons without changing the
same parameter in the ERo"™"M" neurons, while the ERa-AF2° mu-
tation did not affect the baseline firing rate of either neuron types
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(Supplemental Figure 2A—B). Then we examined the effects of a se-
lective ERa agonist, propyl pyrazole triol (PPT) [44], on the neural
activities of the ERo™™ and ERa""MM neurons. In the female control
mice, PPT puff rapidly increased the firing rate of the ERa*™ neurons,
but these PPT-induced responses were significantly blunted in the
ERo™™ neurons from the female ERa-C451A mice (Figure 4C,D, and
4F and Supplemental Figure 2C). Interestingly, the ERa-AF2° mutation
did not affect the PPT-induced activation in the ERo™™ neurons
(Figure 4E—F and Supplemental Figure 2C). Similarly, the ERo VMM
neurons from the female control mice were rapidly activated by PPT
puff, but these effects were significantly attenuated by the ERa-C451A
mutation (Figure 4G and Supplemental Figure 2D). Notably, the ERa-
AF2° mutation modestly but significantly attenuated the PPT-induced
increases in the firing rate in the ERa"YM" neurons (Figure 4G and
Supplemental Figure 2D). Thus, these results validated that the ERal-
C451A mutation impaired the membrane-bound ERa activity and
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Figure 4: Membrane-bound ERa is required for the neuronal responsiveness to PPT. ZsGreen fluorescent (A) and brightfield illumination (B) of a recorded ERa-positive
neuron. Scale bar = 10 um. The shadow in (B) corresponding to the dashed lines in (A) is the recording pipette. (C) Representative traces of an ERa*™! neuron from a control

mouse that was activated by PPT. (D) Representative traces of an ERa*™!

ERo*™ neuron from an ERa-AF2° mouse that was activated by PPT. (F) PPT-induced increases in the firing rate of the ERo.

neuron from an ERa-C451A mouse that was not responsive to PPT. (E) Representative traces of an

AR neurons. Data are presented as mean + SEM with

individual data points. N = 20—48 neurons per group. (G) PPT-induced increases in the firing rate of the ERe"™" neurons. Data are presented as mean & SEM with individual
data points. N = 18—50 neurons per group. *p < 0.05, ***p < 0.001, and ****p < 0.0001 in one-way ANOVA followed by post hoc Tukey’s multiple comparisons.
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rendered the attenuated acute responsiveness to the ERal agonist in
the ERo™™ and ER""™M neurons. However, compared to the ERa-
C451A mutation, the deficiency in ERo transcriptional activity
(rendered by the ERa-AF2° mutation) only marginally affected the rapid
responsiveness of the hypothalamic ERa neurons to the ERa agonist.

3.4. Membrane-bound ERa activity is required for glucose-sensing
functions

Acute refeeding is partially evoked by hypoglycemia during starvation,
which regulates activities of the glucose-sensing neurons in the brain to
stimulate appetite [21,25—27]. Both the ARH and vIVMH contain
abundant glucose-sensing neurons and are implicated in the regulation
of food intake and glucose balance [20,22—25,28]. In this study, we
further examined the glucose-sensing functions of the ERe*™ and
ERo""™" neurons in response to hypoglycemia. In the female control
mice, the ERe*™ neurons were composed of approximately 40.28% GE
neurons, 37.5% Gl neurons, and 22.22% non-glucose-sensing neurons
(Figure 5A-D and Supplemental Figure 3A). This composition was not
significantly altered in either the ERo.-C451A mutant mice or ERo-AF2°
mutant mice (Figure 5D, p = 0.6462 between the control vs ERa-C451A
and p = 0.1710 between the control vs ERa-AF2° in 72 tests), indi-
cating that neither of these mutations altered the glucose-sensing nature
of the ER*™ neurons. We further analyzed the magnitudes of glucose-
sensing responses and found that the GE-ER*™ neurons from the
controls, ERa-C451A, and ERa-AF2° mice showed comparable changes
in the firing rate in response to hypoglycemia (Figure 5E and
Supplemental Figure 3A). Interestingly, the GI-ERo*™ neurons from the
ERa-C451A mutant mice demonstrated significantly attenuated re-
sponses in the firing rate compared to the responses in the controls
(Figure 5F and Supplemental Figure 3A). Importantly, there was no
significant difference in the responses of the GI-ERa™™ neurons be-
tween the control and ERa-AF2° mice (Figure 5F).

Consistent with our previous report [29], all of the tested ERa
neurons from the female control mice were glucose-sensing, with
57.6% being GE neurons and 42.4% being Gl neurons (Figure 5G and
Supplemental Figure 3B). We further demonstrated that all of the tested
ERa""™" neurons from the ERo-C451A and ERa-AF2° mice were also
glucose-sensing with similar GE/GI compositions (Figure 5G). The
magnitudes of the glucose-sensing responses of both the GE- and Gl-
ERa""™" neurons were significantly attenuated in the ERo-C451A
mutant female mice compared to those from the controls (Figure 5H-I
and Supplemental Figure 3B). However, the magnitudes of the glucose-
sensing responses of both the GE- and GI-ERa""™" neurons in the ERo:-
AF2° mice were largely comparable to those from the controls
(Figure 5H-1 and Supplemental Figure 3B). Together, these results
suggested that membrane-bound ERq. activity was required to maintain
the glucose-sensing functions of the Gl-, GE-ERo™"M and GI-EReARH
neurons, while the transcriptional activity of ERa only had a minor role.

vIVMH

4. DISCUSSION

In the current study, we demonstrated an unexpected role of E2 in
maintaining acute adaptive refeeding behavior in hungry female ani-
mals. At the mechanistic level, these estrogenic effects on acute
refeeding required the membrane-bound ERa activity. We further
showed that two hypothalamic ERe. neural populations, ERo**! and
ERa""MH neurons, required membrane-bound ERe. activity to maintain
their acute responsiveness to either ERa. agonist or hypoglycemia.
However, the transcriptional activity of ERo. only played a minor role in
acute refeeding response and hypothalamic ERo neuron activities.
Together, our study indicates that endogenous E2 and membrane-

bound ERa activity in female animals are required to maintain acute
adaptive refeeding behavior in response to starvation.

A prior study reported that the administration of E2 at a high dose
(450 pg within 24 h) in gonad-intact female mice inhibited fasting-
induced refeeding [46]. The discrepancy between this finding and
our observations from ovariectomized mice receiving a much lower
dose of E2 (2 11 every 4 days) may likely result from different E2 levels
in these studies. In the present study, we first assessed the functions
of endogenous E2 by comparing gonad-intact vs ovariectomized mice
to reveal reduced fasting-induced refeeding caused by the depletion of
endogenous ovarian hormones (including E2), and we further
demonstrated that replacement of E2 in ovariectomized mice can
rescue this phenotype. Importantly, we observed that E2 supplement in
ovariectomized mice rescued the phenotypes to similar levels of
gonad-intact female mice, suggesting that our E2 treatment mimicked
the physiological effects of endogenous E2, but not the pharmaco-
logical effects of high E2. In addition, the physiological functions of
endogenous E2 are further supported by our observations in the ERa-
C451A mutant mice, in which we did not perform any pharmacological
manipulations of the E2 levels. Notably, the ERa-C451A mutation does
not significantly alter serum E2 levels [38]. Thus, the reduced fasting-
induced refeeding and 2-DG-induced feeding observed in the ERa-
C451A mice were likely attributed to impaired membrane-bound ERa
activity, but not to altered E2 levels.

We and others previously demonstrated that E2 inhibits overeating in
animals fed ad libitum with either regular chow or a high-fat diet [1,3—
5,47—49]. In this study, for the first time, we found that E2 and ERa
signals are required to maintain normal acute refeeding in hungry
female mice. These findings suggest that the role of E2 in feeding
regulation depends on the internal energy state of the animal and/or
environmental food availability. On the one hand, when animals have
unlimited access to food and never experience prolonged hunger, E2
functions to inhibit overeating and therefore prevents excess weight
gain. On the other hand, after prolonged food deprivation in animals,
E2 is required to trigger efficient and rapid refeeding when food be-
comes available again, which is a critical adaptation for animals to
survive in an environment with scarce food. While these estrogenic
effects on feeding appear to be paradoxical, they both reduce the
deviation of the energy balance by inhibiting eating in a satiated state
and promoting eating when hungry, and therefore contribute to the
stability of energy homeostasis. Interestingly, similar bidirectional ef-
fects of E2 also exist in the regulation of thermogenesis, another
important component of energy balance. We and others demonstrated
that E2 robustly enhances thermogenesis in female animals housed at
room temperature [17—19]. However, recent evidence indicates that in
female mice chronically exposed to cold (6 °C), the E2-ERq. signal
functions to inhibit thermogenic browning of white adipose tissue [50],
an adaptive response probably to better conserve energy storage and
enhance survival in cold environments. Thus, emerging evidence
suggests that estrogenic actions on energy homeostasis are more
complicated than originally thought and are likely dependent on the
internal energy state of animals as well as on external environmental
challenges. Future studies are warranted to further investigate estro-
genic actions on energy balance under various conditions (satiated or
fasted, and cold or warm). Of note, other estrogen receptors, ERp [51]
and GPR30 [52—54], are also implicated in the regulation of energy
balance at least in mice fed ad libitum. The roles of these estrogen
receptors in adaptive acute feeding after starvation remain to be
examined.

The function of E2 can be mediated by the transcriptional activity of
ERa to regulate gene expression [36]. ERa regulates gene
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Figure 5: Membrane-bound ERa activity is required for glucose-sensing functions. Representative traces of a GE neuron (A), Gl neuron (B), and non-glucose-sensing neuron

(C). (D) Percentage of GE, G, and non-glucose-sensing neurons within the ERaA""

neurons in each group. (E) Hypoglycemia-induced decreases in the firing rate of the GE-ERo:

neurons. (G) Percentage of GE and Gl neurons within the ERo."V™H
VIVMH

group. (H) Hypoglycemia-induced decreases in the firing rate in the GE-ERot

neurons. (l) Hypoglycemia-induced increases in the firing rate in the GI-ERo

populations among the control, ERo.-C451A, and ERa-AF2° mice, respectively. N = 35—49

ARH ARH

neurons. (F) Hypoglycemia-induced increases in the firing rate of the GI-ERa

populations among the control, ERa-C451A, and ERa-AF2° mice respectively. N = 44—62 neurons in each

VVMH heurons. Data are

presented as mean + SEM. N = 6—38 neurons per group. *p < 0.05 and **p < 0.01 in one-way ANOVA followed by post hoc Tukey’s multiple comparisons.

transcription through two activation functions, ERa-AF1 and ERa-AF2.
In particular, ERo-AF2° mutant mice display obesity when fed ad
libitum [35], indicating that the transcriptional activity of ERa. is
required to prevent body weight gain in animals with unlimited access
to food. We consistently showed that female ERo-AF2° mutant mice
were significantly heavier than their control littermates when fed ad
libitum. These heavier ERa-AF2° mutant mice also displayed impaired
refeeding response after overnight fasting. However, we noted that the
refeeding responses in these mice were positively correlated to the
relative weight loss induced by fasting, which may have confounded
the fasting-induced refeeding response. Indeed, acute feeding induced
by central glucopenia was intact in the ERa-AF2° mutant mice. Thus,
we suggest that the loss of ERa. transcriptional activity per se does not
directly affect the acute refeeding response in hungry mice. Of note,
the serum E2 levels were higher in the ERo-AF2° mice [35], and
therefore we could not fully exclude the possibility that reduced feeding
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observed in the ERa-AF2° mice may also have resulted, at least partly,
from the excess levels of E2.

In addition to regulating gene expression as a classic nuclear receptor,
a subset of intracellular ERa. molecules is concentrated on the cyto-
membrane and can initiate rapid signaling pathways [36]. The point
mutation ERa-C451A has been demonstrated to specifically disrupt
membrane-bound ERa. activity [37,38]. In this study, we found that this
mutation impaired acute feeding responses induced either by overnight
fasting or the central glucopenia. Thus, these results indicate that
membrane-bound ERa activity is required for acute adaptive refeeding
in response to starvation. The transgenic mouse models used in the
present study were useful to determine the respective roles of nuclear
vs extranuclear/membrane actions of ERo, especially in vascular
pathophysiology. Indeed, the key role of ERa. membrane-initiated
steroid signaling was demonstrated in two endothelial actions of es-
trogens (increase in nitric oxide production and acceleration of
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reendothelialization) [38], whereas other vascular effects were all
dependent on nuclear ERqa, including the prevention of atheroma,
angiotensin ll-induced hypertension [55], and neointimal hyperplasia
after artery injury [56].

Our findings demonstrated an additional important role of membrane
ERa in hypothalamic ERa neural populations, namely ERo*™* and
ERa""MH neurons, in maintaining their acute responsiveness to either
the ERa. agonist or hypoglycemia. The role of membrane-bound ERo
was also described to be important in the brain, especially for the
organization of the circuits underlying sexually differentiated responses
of the male brain [57]. In addition to the impaired fasting-induced
refeeding, the ERa-C451A mutation also causes severe deficits in
the glucose-sensing capability of EReA™ and ERo™M" neurons.
Because glucose-sensing neurons in the ARH and vIVMH are reported
to regulate eating in response to hypoglycemia [25,58], we suggest
that the reduced acute adaptive refeeding seen in the ERa-C451A
mutant mice was at least partly attributed to the impaired glucose-
sensing functions of the ERo*™ and ERe™"M" neurons. The neuro-
chemical identities of the ERo™™ and ERa""M" neurons were not
specifically investigated in the current study. Within the vIVMH, ERa-
expressing neurons partially overlap with those expressing steroido-
genic factor-1 [17] and/or vesicular glutamate transporter-2 [59]. We
recently identified a chloride ion channel, anoctamin 4, as a Gl-
ERa""MH marker, and Abcc8, a subunit of the ATP-sensitive potassium
channel, as a GE-ERa""M" marker [[29]]. These two ion channels are
important for mediating the glucose-sensing functions of GI- and GE-
ERa""™ neurons, respectively [[29]]. Within the ARH, ERc.-expressing
neurons partially overlap with those expressing pro-opiomelanocortin
[17,41], kisspeptin [60], or tyrosine hydroxylase [61]. A few neuro-
peptide Y (NPY) neurons in the ARH co-express ERa [62], which may
reduce the inhibitory synaptic inputs to these neurons [63], although
others failed to observe co-expression of ERa. and NPY within the ARH
[46]. The specific roles of ERa in these subsets of hypothalamic
neurons in adaptive acute feeding remained to be examined.
Another interesting question is how membrane-bound ERa. regulates
the glucose-sensing functions of hypothalamic neurons. ERa. is known
to activate a number of rapid signaling pathways in hypothalamic
neurons, namely mTOR [64] and PI3K [65—67]. E2 has also been
reported to inhibit hypothalamic AMPK, which mediates estrogenic
actions on energy balance [18,68], although others reported that E2
increases AMPK protein levels and phosphorylation in the vIVMH [69].
The effects of membrane-bound ERa on these rapid signals and their
functional relevance in hypothalamic glucose-sensing and adaptive
acute feeding in hungry animals warrant future investigations.

Of note, the ERai-C451A mutation exists in the whole body in these mice.
Thus, we could not exclude the possibility that the loss of membrane-
bound ERa activity in the peripheral tissues may also contribute to
reduced acute adaptive refeeding. Nevertheless, central glucopenia-
induced feeding is also impaired in ERa-C451A mutant mice, further
highlighting the roles of brain membrane-bound ERa: in the regulation of
feeding in hungry female animals. In addition to the ARH and vIVMH, ERo
is also abundantly expressed in multiple brain regions that are impli-
cated in the regulation of feeding behavior, including the lateral hypo-
thalamus, nucleus of the solitary tract, and dorsal Raphe nuclei [70]. The
ERo neurons in these brain regions may also contribute to acute
refeeding, which needs to be further investigated.

5. CONCLUSIONS

In conclusion, we found a new role of E2 in feeding control. In addition
to the anorexic actions in female animals fed ad libitum, E2 is also

required to maintain normal acute refeeding in response to starvation.
This estrogenic effect requires membrane-bound ERa. activity. We
further provided evidence that membrane-bound ERo activity is
required for ERo™* and ERa"YMH neurons to maintain their normal
glucose-sensing capability, which may play a key role in promoting
feeding in hungry mice. These results extend the understanding about
estrogenic actions on feeding regulations, which could be bidirectional
depending on the internal energy state and contribute to the mainte-
nance of energy homeostasis in face of various environmental chal-
lenges. Although E2 levels and the expression of ERo in the
hypothalamus may not undergo dynamic changes during the fasting—
feeding transition in normal females [71], our finding that E2 and ERa
signals are required for female animals to properly respond to hunger
provided new mechanistic insights on the association of abnormal
feeding behavior with irregular estrogen levels in certain medical
conditions that disproportionally affect women, such as anorexia
nervosa [72—74], and therefore may facilitate the development of
suitable therapeutic strategies for these conditions.
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