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Review

25 Years Responding to Respiratory and Other 
Viruses with Mass Spectrometry‡

Kevin M. Downard*

Infectious Disease Responses Laboratory, Prince of Wales Clinical Research Sciences, Sydney, NSW, Australia

This review article presents the development and application of mass spectrometry (MS) approaches, devel-
oped in the author’s laboratory over the past 25 years, to detect; characterise, type and subtype; and distinguish 
major variants and subvariants of respiratory viruses such as influenza and severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). All features make use of matrix-assisted laser desorption ionisation (MALDI) 
mass maps, recorded for individual viral proteins or whole virus digests. A MALDI-based immunoassay in 
which antibody–peptide complexes were preserved on conventional MALDI targets without their immobilisa-
tion led to an approach that enabled their indirect detection. The site of binding, and thus the molecular anti-
genicity of viruses, could be determined. The same approach was employed to study antivirals bound to their 
target viral protein, the nature of the binding residues, and relative binding affinities. The benefits of high- 
resolution MS were exploited to detect sequence-conserved signature peptides of unique mass within whole 
virus and single protein digests. These enabled viruses to be typed, subtyped, their lineage determined, and 
variants and subvariants to be distinguished. Their detection using selected ion monitoring improved analytical 
sensitivity limits to aid the identification of viruses in clinical specimens. The same high-resolution mass map 
data, for a wide range of viral strains, were input into a purpose-built algorithm (MassTree) in order to both 
chart and interrogate viral evolution. Without the need for gene or protein sequences, or any sequence align-
ment, this phylonumerics approach also determines and displays single-point mutations associated with viral 
protein evolution in a single-tree building step.
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1.  THE IMPACT AND TRANSMISSIBILITY 
OF RESPIRATORY VIRUSES IN HIGH 
POPULATION CENTRES

Respiratory viruses have had a significant impact on 
human health over the centuries, as exemplified by the 
recent severe acute respiratory syndrome coronavirus 2 
(SARS-CoV2) (COVID-19) pandemic.1) Easily transmissible 
among humans and animals, such viruses evolve in a rela-
tively haphazard manner where the most transmissible and 
virulent strains survive.2) Their rapid mutation rates enable 
them to evade natural immune responses and quickly spread 
throughout a population.3) Human respiratory viruses cause 
a spectrum of symptoms and disease, contributing to signif-
icant morbidity, mortality, and economic losses.2,4) This is 
particularly pronounced in high-density and large population 

centres as found in much of eastern Japan and coastal sec-
tions of eastern Australia.

The Japanese island of Honshu accommodates 80% of the 
population comprising over 100 million individuals, many 
concentrated in some of Japan’s largest cities of Tokyo, Yoko-
hama, Osaka, Nagoya, and Kyoto.5) Australia is a large island 
continent spanning 7.7 square kilometres, but most (near 
90%) of its 26.5 million population reside within 50 km of 
its coastline.6) Most of these live along the eastern perimeter 
in Australia’s largest cities of Sydney, Melbourne, Brisbane, 
which account for half of the total population alone (Fig. 1). 
Greater Sydney has a population density of over 2000 people 
per square kilometre, over 500 times that estimated based on 
a national, total land area basis.

Respiratory viruses are transmitted among the population 
via four major modes of transmission2): direct physical contact, 
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indirect contact with contaminated objects, or exposure to 
airborne virus-containing droplets and aerosols (Fig. 2). Little 
is known about the relative contribution of each mode to the 
total transmission of a particular virus, but high population 
densities are known to exacerbate transmission rates.

Prior to the development and deployment of any treat-
ment regime, there is a need to rapidly detect viruses in the 
population and combine such evidence with epidemiolog-
ical data,7,8) in order to manage and plan effective response 
strategies.

Fig. 2.  Schematic of virus transmission and detection by traditional methods. Adapted from Ref. 2 with permission. qPCR, quantitative polymerase 
chain reaction. 

Fig. 1.  Outlines of Japan and Australia highlighting populations and densities. Australia’s most populous cities and towns are numbered 1–30 on the 
map. The graphic was constructed and adapted from those in the public web domain at Wikimedia Commons (Japan population density map) 
and mccrindle.com (Australia’s Population Map). 
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2.  COMMON VIRUS DETECTION 
AND ANALYSIS OF MOLECULAR 
APPROACHES. A ROLE FOR MASS 
SPECTROMETRY

The detection and analysis of virus particles collected in 
human clinical specimens, swabs of surfaces, or air sampling 
provides the first frontline defence against a virus.9) A com-
bination of non-molecular and molecular approaches can be 
employed,10) each aimed at determining some aspect of the 
virus’ character and transmissibility.

Currently, nucleic acid (DNA or RNA) detection and 
immunoassay methods are among the most popular means to 
quickly identify viral infection at the molecular level, regard-
less of the source.11–13) Polymerase chain reaction (PCR) 
methods remain the “gold standard” for virus detection, 
particularly following the development of diagnostic assays 
employing real-time quantitative PCR (RT-qPCR).14) Here 
fluorescently labelled DNA probes bind to target amplicons 
specific to a particular virus. The level of fluorescence mea-
sured is directly related to the initial concentration of virus 
in the sample (Fig. 2). While affording high specificity, an 
assay that produces quantitative results can take many hours 
and sample preparation is a delaying factor. Commercially 
available kits facilitate the isolation of viral DNA or RNA,15) 
although they add an associated cost to analysis that, together 
with the initial cost of the qPCR equipment itself, can impact 
their use and deployment in remote geographical regions and 
developing countries.

Immunoassays employ antibodies to detect viruses within 
a sample.12,13) Monoclonal antibodies, and certain recombi-
nant forms of antibodies, provide singular-epitope specificity 
that is valued in diagnostics for the targeted detection of 
virus proteins. In virus identification, this is useful for the dif-
ferentiation of viral types and subtypes. Immunoassays, such 

as the enzyme-linked immunosorbent assay (ELISA), are 
employed to measure an antibody response against a given 
antigen (Fig. 2). Both direct and indirect ELISA assays can 
confirm whether patients have antivirus antibodies in their 
sera following an immune response to viral infection.

Mass spectrometry (MS) represents an alternative to 
PCR-based approaches for the sensitive detection of virus 
levels in clinical and cell-cultured specimens.16) It offers 
the ability to detect and confidently assign microorgan-
isms down to the mid-low 103 copy range.16) It also offers 
the ability to perform molecular-based immunoassays17) 
by treating viral proteins with monoclonal antibodies and 
monitoring that binding during or after release of bound 
protein with MS.

For over 25 years, my laboratory has shown that MS 
approaches can have benefits for such molecular analyses, 
and that they complement gene- and genome-based PCR 
methods. Since the late 1990s, my laboratory has developed 
and applied MS approaches for the study of viruses17) that 
has resulted in some 60 published works. Beginning with the 
application of a new matrix-assisted laser desorption ionisa-
tion (MALDI)-MS immunoassay to study viral antigenicity,17) 
without the need to immobilize either antibody or antigen, 
or isolate the immune complex, we applied the same tech-
nique to study the binding of antiviral drugs.18,19) We subse-
quently developed a high-resolution proteotyping approach 
to type, subtype, and establish the lineage20) and nature of 
subvariants,21) and used the same mass map data to chart and 
study the evolution of viruses (using “phylonumerics”),22–24) 
without the need for gene or protein sequences, or sequence 
alignments.

This review briefly highlights each of these approaches, 
which when pieced together (Fig. 3) form a coordinated MS 
platform to characterise viruses at the molecular level.

Fig. 3.  Multifaceted approaches developed to characterise viruses with MS, showing the year of the author’s first publication in each area. MS, mass 
spectrometry. 
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3.  A CASE FOR MALDI-MS FOR VIRUS 
ANALYSIS

MALDI has been coupled to time-of-flight (ToF) mass 
analysers since the development of approach.25,26) Since then a 
large variety of compact commercial MALDI-ToF instruments 
have been produced, many deployed in laboratories dedi-
cated to microbial identification27) and screening in clinical 
settings.28–30) Apart from their relative ease of operation by 
nonexperts, MALDI-based instruments offer advantages in 
terms of the ease of sample preparation, high sample through-
put, short analysis times, and greater tolerance to salts than 
electrospray ionisation (ESI)-based approaches. ESI-LC-MS 
suffer from the often overlooked and underreported time to set 
up high pressure liquid chromatography (HPLC) conditions, 
and equilibrate and flush columns between runs. The use of 
reverse-phase columns in LC-MS experiments is also accom-
panied by some unavoidable sample loss to the column.

The incorporation of delayed ion extraction methods31,32) 
on MALDI-ToF instruments and the later coupling of MALDI 
sources to a wide range of scanning mass analysers33,34) have 
improved mass accuracy and resolution over single-pass ToF 
instruments. Kingdon or Orbitrap34) ion traps and ion cyclotron 
resonance (ICR) instruments35) confer the highest mass reso-
lution, which improves confidence in virus identification and 
assignment. This article presents the application of MALDI- 
ToF, MALDI hybrid (quadrupole) Q-ToF, and high-resolution 
MALDI Fourier transform ion cyclotron resonance (FT-ICR) 
instruments in the study of respiratory viruses, given these have 
posed the greatest risk to human health over the past century,1) 
as exemplified by the recent SARS-CoV2 pandemic.

4.  VIRAL ANTIGENICITY WITH MS
To characterise the antigenicity of a virus, a MALDI-

MS-based immunoassay was developed17) that avoided the 
need to immobilise or recover the antibody–antigen com-
plex ahead of analysis, which was a requirement of earlier 
approaches.36) While the MALDI mass map alone can be 
used to survey the virus at the protein level following proteo-
lytic digestion of whole virus or its component antigens, the 
addition of a step in which one half of the mixture (post or 
prior to digestion) is treated with a monoclonal antibody and 
the remainder is left untreated.

A comparison of MALDI mass maps for antibody-treated 
samples over untreated (no antibody) controls demonstrated 
the selective reduction of peptide ions spanning the epitopic 
regions (Fig. 4A, left side). This also demonstrated, for the 
first time, that specific noncovalent antibody–peptide com-
plexes could survive sample treatment, deposition, and the 
MALDI ionisation event.

A series of studies in which the epitopic sites, and thus 
the antigenicity, of viral hemagglutinin (HA) protein from 
common type A H1N1 and H3N2 subtypes of the influenza 
virus were subsequently reported.37–40) These studies utilised 
whole virus digests,37–40) as well as analyses of gel-recovered 
protein.41) Companion hemagglutination inhibition assays, in 
which the same antibodies were treated with red blood cells, 
were employed to validate the results.39)

The adoption of a time-course approach42) was also able 
to detect differences in the relative rates of binding of pep-
tides, both from within and across epitopic domains, in 
noncompetitive and competitive experiments. A monoclonal 

Fig. 4.  Schematic representation of an MALDI approach used to characterise the antigenicity of (A – left) and antiviral binding to (B – right) viral pro-
teins with MS. HA, hemagglutinin; MALDI, matrix-assisted laser desorption ionisation; MS, mass spectrometry; NA: neuraminidase. 
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antibody raised to target the HA1 subunit of the HA antigen 
of type A H3N2 influenza strains was found to recognize 
two epitopic peptides comprising HA residues 109–125 and 
158–166 that likely form part of an extended discontinuous 
domain.42) Time-course experiments show that the smaller 
peptide binds antibody at a rate that is 5-fold faster than 
that for the larger peptide, while a subsequent study of mod-
ified synthetic variants of the former peptide was able to 
identify important antibody contact residues using this MS 
strategy.42)

To aid the above studies, an algorithm was written and 
compiled to run on a Windows operating system using a 
simple graphical user interface.43) The algorithm43) compares 
peak areas in a pair of MALDI mass spectra recorded for the 
control and antibody-treated sample to identify binding epi-
topic peptides based on measure of its reduction in absolute 
area measured as a percentage. In this regard, some tolerance 
(default 10%) is input by the user to take experimental fluc-
tuations in mass spectrometric analysis into account. While 
developed for these specific purposes, the algorithm43) has 
general utility for the comparative analysis of differences 
within any two mass spectra.

5.  ANTIVIRAL SCREENING AND 
DEVELOPMENT WITH MS

The ability to preserve untethered or immobilised anti-
gen–antibody complexes on MALDI surfaces led to the tech-
nique’s deployment to the study of antivirals (Fig. 4B, right 
side). A range of neuraminic acid and natural product inhib-
itors to influenza neuraminidase (NA) were studied to estab-
lish binding efficiencies and substituent effects.18,19,44) Native 
gel electrophoresis was used to separate a specific protein fol-
lowing virus denaturation, and one-half was treated with an 
inhibitor and ran alongside.18) After extraction from the gel, 
using a stained reference (ref) band, each was digested with 
protease. The two samples were then subjected side by side 
to MALDI-MS and the bound peptides identified based on 
their reduced peak area, as in the case of the antibody-treated 
protein/virus.

A natural product anthocyanidin inhibitor was found to 
bind within the so-called 430-cavity of the active site in the 
vicinity of NA residues 356–364 and 395–432,19) shielding 
proteases from releasing these peptide segments and thus 
reducing their detection. Importantly, this cavity is adja-
cent from the 150-loop region targeted by the inhibitor 
zanamivir within which resistance mutations have taken 
hold.

A subsequent study of related anthocyanidins,45) which 
differed in the number and position of the hydroxyl substit-
uents on the phenyl group attached to the chromenylium 
ring, found subtle differences in their binding characteristics 
by MS that were in accord with their inhibitory properties 
assessed by neuraminidase inhibition assays. Companion 
molecular docking confirmed the results, while the differ-
ences in relative peak areas of the binding peptides across all 
compounds mirrored the half-maximal inhibitory concen-
tration (IC50) measured in in vitro neuraminidase inhibition 
assays for each of compounds.

The binding of fusion inhibitors, Arbidol46) and an entry-
blocker peptide,47) to influenza HA H1 and H5 subtypes was 
also investigated, together with parallel hemagglutination 

inhibition assays and molecular docking.46,47) The former 
inhibitor was found by MALDI-MS to bind to residues of 
104–120 of the HA2 subunit, a region known to confer Arbi-
dol resistance.46) Parallel molecular docking confirmed these 
results. The entry-blocker peptide was found by MS to bind 
in a reported sialic acid binding site surrounded by an α-helix 
(190-helix) and two-loop (130-loop and 220-loop) regions in 
the case of an H1 HA, and the second loop region in the case 
of an H5 HA.47) The peptide was shown to be able to maxi-
mally inhibit blood cell hemagglutination at a concentration 
of between 6.4 and 9.2 μM.

This strategy to detect and screen antiviral inhibitors, 
developed earlier for antigenicity studies, has broad applica-
bility for any protein or other macromolecular complex that 
survives MALDI sample preparation, deposition, and the 
ionisation event. Indeed, others have applied the approach 
under an “intensity-fading MALDI” vernacular to a range 
of complexes.48) Our own studies suggest that noncovalent 
interactions with binding affinities down to the micromolar 
range (KD) are detectable.48)

6.  TYPING AND SUBTYPING, AND LINEAGE 
DETERMINATION, BY PROTEOTYPING 
WITH HIGH-RESOLUTION MS

Mass maps provide a unique signature for proteins that can 
be used to confirm their identity or establish differences with 
known proteins through searches of protein databases. Pro-
tein segments that maintain sequence conservation within 
viral types and subtypes allow for virus samples to be charac-
terised accordingly. When high-resolution MS is employed, 
these peptides can be confidently and reliably identified by 
mass alone.

A proteotyping strategy20) was developed and applied 
to type and subtype influenza virus strains in whole virus 
and single viral protein digests through the detection of 
signature peptide biomarkers. These were first identified 
using specifically developed software,49) Translated gene 
sequences for each viral protein for a particular type, sub-
type and host were sourced from a sequence database. The 
sequences were aligned using the FluAlign algorithm49) 
and consensus sequences established to identify proteolytic 
peptides (produced from the digestion of a protein with a 
site-specific endoproteinase) that maintained high-sequence 
conservation. This was based on a measure of the frequency 
of occurrence (Po) of an amino acid at each residue within a 
peptide segment. The uniqueness of the theoretical monoiso-
topic masses of each signature peptide, against all proteolytic 
peptides across all known viral proteins, and possible con-
taminants such as albumins present in egg-grown viruses was 
then established using a second algorithm (FluGest), specifi-
cally designed for this purpose.49)

Signature peptides whose sequences were most conserved 
(Po≥0.95) and whose masses differed by greater than 5 ppm 
from all other proteolytic peptides enabled virus strains 
under analysis to be typed and subtyped with high con-
fidence where one or more signatures were detected in a 
high-resolution mass spectrum. This is illustrated in Fig. 5 
that shows an alignment of partial sequences for type A H1 
HA in which mutations are highlighted. Of the two tryptic 
peptides in the consensus sequence below, one (FEIFPK) 
is highly conserved across all aligned sequences (with a 
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Po=0.984) and is chosen as an H1 signature peptide. When 
detected in the spectrum of a whole virus or single protein 
digest (Fig. 5), the associated strain can be confidently identi-
fied to be of an H1 subtype (and thus type A H1N1 strain in 
humans).

The proteotyping strategy has been successfully imple-
mented to type and subtype a wide range of strains across 
common human subtypes (type A H1N1 and H3N2, and 
type B influenza and parainfluenza) based upon the detection 
of signatures specific to each of the four viral proteins.50–57) 
Lineage-specific signatures were also identified and shown 
to be able to differentiate Victoria-87 from Yamagata-88 like 
strains.53)

Subsequent studies applied the same strategy to identify 
reassortment events given their prevalence in pandemic 
strains.58) A high-resolution MS study demonstrated the abil-
ity to distinguish pandemic from seasonal strains of the virus 
following viral reassortment that resulted in the outbreak of 
the 2009 H1N1 pandemic.59) Signature peptides of N1 neur-
aminidase were obtained for all type A H1N1, human H5N1, 
and 2009 pandemic H1N1 strains. Three signature peptides 
at m/z values of 549.2991, 1380.6287, and 2543.1296, unique 
to pandemic 2009 H1N1 strains, enable these strains to be 

differentiated from all other H1N1 and H5N1 strains in cir-
culation at that time using high-resolution MS.

An alignment of translated HA gene sequences of all char-
acterised type A H5N1 strains, or subsets thereof, enabled 
signature peptides for these strains to be determined from 
the perspective of the period upon which strains were iso-
lated.60) Yet period-specific signature peptides were identified 
that enable strains associated with the 1997 H5N1 pandemic 
to be rapidly differentiated from those in circulation across 
the subsequent decade.

The proteotyping strategy has been applied to the SARS-
CoV2 virus detected in clinical specimens.21,61–63) In these 
studies, the SARS-CoV2 virus across the five major variants 
of concern,62,63) as well as subvariants of omicron virus,21) has 
also been differentiated. To illustrate, two signature peptides 
associated with a common BA.2.75 subvariant with theo-
retical mass values of 764.3608 and 893.4952 (m/z [M+H]+ 
monoisotopic), associated with spike protein S1 subunit 
residues 152–157 and 207–214 containing mutations F157 
and I210V, respectively, were detected in the spectrum of a 
recombinant form (labelled in bold in Fig. 6). These were 
subsequently in digested clinical specimens so as to enable 
strains of this subvariant to be identified.21)

Fig. 5.  Schematic showing an alignment of partial sequences of H1 HA of type A human influenza virus strains, the uniqueness in mass of a conserved 
tryptic peptide segment, and the detection of this signature peptide in the spectrum of a viral protein digest. Residue numbering in the spec-
trum is based on the tagged-recombinant protein and differs from that derived for the consensus sequence. HA, hemagglutinin. 

Fig. 6.  Double (trypsin + Glu-C endoproteinase) digest of a recombinant spike protein for an SARS-CoV2 BA.2.75 strain, showing the detection of two 
signature peptides specific to this variant. This figure has been adapted from Fig. 1 in Ref. 21 with permission. SARS-CoV2: severe acute respira-
tory syndrome coronavirus 2. 
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The ability to measure peptide masses with accuracies of 
5 ppm or better with a high-resolution mass spectrometer 
enables strains to be typed and subtyped in this manner 
from such mass-only measurements. Given multiple unique 
peptide mass signatures exist for the respiratory viruses 
studied, the detection of any number of them can be used to 
assign a variant with increasing confidence as more peptide 
masses match these values. Selected ion monitoring has been 
applied in a series of studies directed to the SARS-CoV2 
virus to detect these signature peptides in clinical speci-
mens to improve the detection limits and thus sensitivity of 
analysis.21,61–64)

No tandem mass spectrometric (MS/MS) sequencing is 
required, thus conferring both a sensitivity and time-saving 
benefit. While the sensitivity of low-resolution MALDI ToF 
instruments is superior by an order of magnitude or so with 
viruses identified at the 103 copies/mL level,65,66) the confi-
dence in the peptide assignment is lower than for high-res-
olution mass spectrometers. This demonstrates the need for 
high mass resolution and accuracies to better discriminate 
SARS-CoV-2-positive and -negative samples.

7.  CHARTING AND STUDYING 
VIRAL EVOLUTION WITH HIGH-
RESOLUTION MS

The same high mass accuracy peptide mass maps can 
further be used to both chart and interrogate viral evolu-
tion.22–24) The masses of peptides produced after the proteoly-
sis of a protein reflect the sequence of that protein. The more 
peptide masses that match from one protein to the next, the 
more homologous are the two proteins. Proteins containing 
the highest number of common masses within a specified 
mass error are grouped onto the same clade of a phyloge-
netic tree. The branch lengths reflect the ratio of number 

of common masses of the total in such sets.22) Neither the 
protein sequences themselves nor their alignment is required 
to build the tree, thus offering a truly “sequence-free” phylo-
genetic method.23)

Over the past decade, we have developed and applied this 
protein mass-based approach to both chart and study the 
evolution of viruses.22–24,58,67–74) Referred to as phylonumerics, 
it has also been shown that it can reliably identify and track 
single-point mutations68) in relation to that evolution to allow 
for the study of compensatory and resistance mutations69–71) 
by identifying single-point mutations from the difference in 
the masses of peptides derived from two homologous pro-
teins. Such mutations are calculated during tree (“mass tree”) 
construction and displayed at various branch node posi-
tions.68) Beyond the study of viruses, the approach has been 
demonstrated to have universal versatility to resolve a wide 
range of organisms across the biological kingdoms of life75) 
and among animal species.76)

A mass tree produced from the peptide masses derived 
from the double digestion (trypsin+GluC) of the surface 
S-protein of the SARS-CoV2 virus for five major variants is 
shown in Fig. 7.24) The tree clearly resolves the variants based 
on peptide masses, which differ among each due to spike pro-
tein mutations within them. This tree and a much larger one 
(Fig. 8) built from mass data for some 3175 spike proteins 
display the same tree topology to those built from alignment 
of the protein sequence data through a visual comparison 
and the use of tree comparison algorithms.23)

A segment of large mass tree spanning strains for the 
B.1.617.2 delta lineage (at branch node 1777) shows sin-
gle-point mutations calculated by the mass tree algorithm 
that distinguishes the proteins labelled at the branch 
tips.23) The mass tree resolves the spike protein (acces-
sion UHT20210.1) of one strain from another (accession 
UID24501.1) based on the presence of a PS mutation. A 

Fig. 7.  Mass tree showing the resolution of five major variants of the SARS-CoV2 constructed from the masses (m) of the peptides derived from the 
digest of their respective spike proteins (M). This figure has been adapted from Fig. 3 in Ref. 24 with permission. SARS-CoV2: severe acute 
respiratory syndrome coronavirus 2. 
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comparison of the protein sequences of each reveals a sin-
gle P to S mutation at position 249. These two proteins are 
diverged from protein UHA13762.1 at branch 1808 due to a 
TI mutation associated with a single TI mutation at position 
1025. The three proteins are diverged based on the mass data 
alone from two other proteins at node 1777 due to a GV 
mutation. A comparison of the protein sequences with acces-
sions UHA13762.1 and UHQ01568.1 reveals that they differ 
by the TI mutation and a GV mutation at position 1165.

Thus the mass trees22–24,58,67–76) not only correctly resolve 
and display different virus strains of different variants from 
one another, they also correctly identify (in some 80% of 
cases) mutations associated with viral evolution without the 
need for, or alignment of, the protein sequences themselves. 
This affords time saving and removes a computationally com-
plex step associated with traditional gene or protein-based 
phylogenetic methods.77) Being protein focussed, it is more 
transferable to proteomics and structural biology methods, 
including those associated with drug design78) where an 
understanding of mutations that may hinder or benefit drug 
action is of interest.

8.  CONCLUSIONS
The power of MS to both detect and identify, and dis-

tinguish major virus variants, as applied more recently 
to the SARS-CoV2 virus, is demonstrated. MALDI-MS, 
in particular, given its sensitivity, speed, and high sam-
ple throughput, should play a greater role in the frontline 

molecular detection of respiratory viruses such as influenza 
and the SARS-CoV2 virus in the near future, and represents 
an important and viable alternative to PCR-based detection 
methods.79,80) Although RT-PCR can achieve virus detection 
with few copies (~100 copies/mL), it requires at least 103 
copies/mL for sequencing purposes. Total analysis times 
take at least 24–48 h due to the many biochemical steps 
involved and suffer from a relatively low-throughput capac-
ity. Furthermore, due to the continual evolution of a virus, 
primers need to be continuously monitored for their effec-
tiveness. If a probe or primer fails to bind, a PCR approach 
is rendered ineffective.

A high-resolution MALDI-MS approach offers benefits in 
terms of mass accuracy and confidence in virus identifica-
tion and assignment, as reviewed in our own studies,81) and 
those using alternate instrument configurations.82) Indeed, 
the work conducted in Japan to build high-resolution com-
pact mass spectrometers, employing extended flight tube 
and multi-pass time-of-flight configurations,83–85) has con-
siderable merit and applicability to such studies.82) High- 
resolution instruments easily resolve peptides in whole virus 
digests, which feature multiple viral proteins and contam-
inants. Proteotyping viruses, using mass signatures alone, 
offers a considerable time saving over MS/MS strategies that 
consume more time and require at least an order of mag-
nitude more sample. The use of high-resolution mass maps 
to build phylogenetic-like trees, and chart and study viral 
evolution affords an additional analytical benefit from such 
datasets.

Fig. 8.  Large mass tree constructed from the masses (theoretical) of the peptides derived from the digestion of 3175 spike proteins showing the resolu-
tion of major variants, and the identification and display of single point mutations on one segment of the tree (at branch node 1777). This figure 
has been adapted from Figs. 4 and 6 in Ref. 24 with permission. 
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