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Therapeutic host-directed strategies to improve outcome
in tuberculosis
C. Young1, G. Walzl1 and N. Du Plessis1

Bacille Calmette-Guérin (BCG) is the only licenced tuberculosis (TB) vaccine, but has limited efficacy against pulmonary TB disease
development and modest protection against extrapulmonary TB. Preventative antibiotic treatment for Mycobacterium tuberculosis
(Mtb) infections in high-prevalence settings is unfeasible due to unclear treatment durability, drug toxicity, logistical constraints
related to directly observed treatment strategy (DOTS) and the lengthy treatment protocols. Together, these factors promote non-
adherence, contributing to relapse and establishment of drug-resistant Mtb strains. Although antibiotic treatment of drug-
susceptible Mtb is generally effective, drug-resistant TB has a treatment efficacy below 50% and can, in a proportion, develop into
progressive, untreatable disease. Other immune compromising co-infections and/or co-morbidities require more complex
prevention/treatment approaches, posing huge financial burdens to national health services. Novel TB treatment strategies, such as
host-directed therapeutics, are required to complement pathogen-targeted approaches. Pre-clinical studies have highlighted
promising candidates that enhance endogenous pathways and/or limit destructive host responses. This review discusses promising
pre-clinical candidates and forerunning compounds at advanced stages of clinical investigation in TB host-directed therapeutic
(HDT) efficacy trials. Such approaches are rationalized to improve outcome in TB and shorten treatment strategies.

Mucosal Immunology (2020) 13:190–204; https://doi.org/10.1038/s41385-019-0226-5

INTRODUCTION
Tuberculosis (TB) remains the leading cause of death by
infection worldwide.1 Despite introduction of directly observed
treatment short-course (DOTS), the reduction in the global TB
burden has been modest. The crisis is exacerbated by co-
infections and co-morbidities, drug-resistant (DR) Mycobacter-
ium tuberculosis (Mtb) strains and a rise in the reservoir of latent
infection. Host immune status plays a determining role in TB
disease outcome. It is also well-known that Mtb itself imposes
several evasion strategies and prompts the host to elicit an
immune response that favours its persistence. Adjunctive
treatments aimed at “re-educating” the immune system are
realistic alternative approaches to tailor host anti-TB responses.
The use of host-directed therapeutics (HDTs) is intended to
increase the success of TB treatment by immunomodulation
and/or immune augmentation. Here, immunomodulation
alludes to down-regulating non-productive inflammation and
modifying the immune response. In contrast, immune augmen-
tation is considered in the framework of synergizing with anti-TB
treatment regimens of drug susceptible (DS)- and DR-TB to
improve long-term outcome and promote cure.
HDTs are, therefore, considered crucial to achieving the 2035

World Health Organization (WHO) End TB goals.2 Repurposed
compounds are more likely to be investigated in human clinical
trials. In this regard, prior safety and regulatory approval increases
the likelihood of fast-tracked implementation of drugs as
appropriate immune response modifiers. Here we introduce HDT
agents at advanced testing stages and highlight promising
candidates for future HDT evaluations. These candidates may

reveal favourable clinical outcomes and translate into useful
adjunctive treatment strategies in our fight against TB.

HOST IMMUNE CHARACTERISTICS OF TB
TB disease is perceived as a paradigm of host immune failure. In
contrast, latency is considered a proxy of immunological control of
Mtb infection. There is, however, no clear consensus of what
constitutes clinically protective immunity. First-line innate immune
defences play a central role in TB pathogenesis, albeit insufficient
to clear infection. For this reason, T-helper (TH)-1 and CD8 T-cell
adaptive responses are considered crucial for effective anti-TB
immunity.3,4 Conversely, type-I interferon (IFN) and typical TH2
responses are associated with disease progression, contributing to
disease susceptibility. Additionally, regulatory T cells (Tregs) may
inhibit protective immunity.5,6 Theoretically, each of these path-
ways constitutes potential and ‘druggable’ targets. However, this
notion is complicated by the complex course of progressive TB
disease, including stages such as initial infection, protracted
latency and overt disease7,8 Furthermore, other factors such as
genetic diversity and co-morbidities (e.g. type-2 diabetes and HIV
infection) also have a role to play.
A more recent concept is that TB represents a dynamic

spectrum of mycobacteria at varying states of replication,7

highlighting the importance of immunotherapeutics treating
the full TB spectrum. Realistically, a single immunotherapeutic
agent is unlikely to be effective in the full TB spectrum. This has
led to the concept of precision medicine approaches, since
patient groups are likely to vary in their need for HDTs directed
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at immunomodulation and/or immune augmentation. For
example, the treatment requirements from HDTs for individuals
with advanced TB disease or even post-TB lung disorders are
likely to differ considerably from those required for latently
infected community members or healthy contacts of TB
patients.
The National Institutes of Health (NIH) clinicaltrials.gov resource

database of privately and publicly funded human clinical trials lists
investigations on adjunct therapies for various forms of TB. A
literary search of human clinical trials, animal model studies and
preliminary in vitro cohort studies was performed to identify
current research highlighting repurposed drugs, HDTs and
adjunctive candidates for TB treatment. Many of these have
confirmed effective therapeutic manipulation of host immunity
against Mtb and realignment of the response to support immune
protection. Within the context of repurposed drugs, we summarize
the four main mechanisms by which these adjunctive therapies
are thought to improve outcome in TB (Fig. 1); namely, (1)
mediating non-productive inflammation and inflammation-
induced tissue pathology to improve lung function/integrity, (2)
enhance host immune response efficacy and strengthen immune
and memory responses, (3) enhance host bactericidal mechan-
isms, macrophage-mediated Mtb killing and reducing bacilli

growth, and (4) disrupting and penetrating the granuloma to
expose Mtb bacilli to anti-TB treatment.

PROMISING TB HDT CANDIDATES TESTED IN PRE-CLINICAL
AND HUMAN CLINICAL TRIALS
Eicosanoid modulating drugs
Catabolism of arachidonic acid by cyclooxygenase (COX) enzymes
produces prostaglandins, whereas lipoxygenase (LOX) metabolism
yields leukotrienes.9 These eicosanoid products serve as signalling
molecules, modulating inflammation and cell death. A delicate
balance in eicosanoid levels is crucial for Mtb control and
regulating the production of pro-inflammatory cytokines, such
as tumour necrosis factor (TNF)-α (which plays a dual role in
protection and exacerbated pathology in TB). Several modulators
of the arachidonic acid pathway have been evaluated in humans
as TB HDT.

Non-steroidal anti-inflammatory drugs (NSAID). Emerging evi-
dence shows that heightened levels of prostaglandins at
late stages of Mtb infection (>45 days post-infection in mice)
promote TB disease progression by down-regulating cell-
mediated immunity.10 NSAID are commonly prescribed analgesic

I. Modulate pro-inflammatory mediators to
dampen inflammation, curb immunopathology

and improve lung function/integrity

II.  Enhance immune reponse efficacy,
strengthen immune and memory responses

IV. Disrupt structure and penetrate granuloma
to expose Mtb to anti-TB treatment

III. Enhance bactericidal mechanisms, macrophage
Mtb killing & reduce bacilli growth

Fig. 1 Main mechanisms by which repurposed, adjunctive compounds improve outcome in TB; I modulate inflammatory pathways and pro-
inflammatory mediators to dampen inflammation and inflammation-induced tissue pathology and improve lung function/integrity, II
enhance host immune response efficacy and strengthen immune and memory responses, III enhance host bactericidal mechanisms,
macrophage-mediated Mtb killing and reducing bacilli growth, and IV disrupting and penetrating the granuloma to expose Mtb bacilli to anti-
TB treatment.
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and anti-inflammatory medications worldwide and have shown
promise as HDT in several pre-clinical studies.11–13 NSAID exert
their effects by inhibiting COX activity, thereby interrupting
formation of pro-inflammatory and immunosuppressive mediators
such as prostaglandins and leukotrienes.9,14 Thus, the rationale for
use of NSAID as HDT encompasses the inhibition of pro-
inflammatory COX enzymes to attenuate excessive
inflammation-induced tissue pathology and to improve host
bactericidal mechanisms in individuals with active TB disease.
Resultantly, clinical trials have been initiated to assess the safety

and efficacy of NSAID as adjunctive treatment of DS- and DR-TB
(NCT02781909; NCT03092817; NCT02060006). For example, aspirin
was investigated as an HDT candidate in a randomized trial during
early TB treatment with dexamethasone in adult TB meningitis.
Findings suggest that aspirin reduces new brain infarcts and
related deaths through a mechanism involving inhibition of
thromboxane-A2 and increased levels of protectins.15 Earlier trials
also demonstrated reduced TB meningitis-associated strokes and
mortality (Table 1).16 New generation NSAID selectively inhibiting
the COX-2 enzyme are associated with less side-effects and
gastrointestinal complications. Celecoxib and etoricoxib are
currently undergoing evaluation in phase-I trials for safety and
bactericidal activity in healthy volunteers and for efficacy as HDT
in DS-TB (NCT02602509; NCT02503839; Table 1). Daily meloxicam,
another selective COX-2 inhibitor, is currently under investigation
in a randomized control trial, for its ability to prevent development
and severity of paradoxical TB immune reconstitution inflamma-
tory syndrome (TB-IRIS) (NCT02060006). The WHO recommends
routine inclusion of NSAID as an adjunctive therapy to the
standard TB treatment regimen to reduce antibiotic-related joint
pain. However, the use of NSAID as preventative treatment
remains unclear. Compared with nonusers, use of traditional
NSAID was associated with an increased risk of TB in an
unadjusted analysis of a population-based study.17 Results from
carefully controlled trials should provide more conclusive findings
on the effect of these inexpensive and widely available
compounds on TB treatment outcomes.

Lipoxygenase inhibitors. Eicosanoids were previously suggested
as targets for therapeutic exclusion in TB. However, data
demonstrate the protective role of prostaglandin E (PGE)-2 during
early infection, either by direct supplementation or via inhibition
of 5-Lipoxygenase (5-LOX). Inhibiting 5-LOX has been linked to
restricted lung pathology, lower type-I IFN production, reduced
Mtb replication and greater survival rates in a TB-susceptible
murine model18; thus rationalizing the prospective use as
adjunctive therapy to improve TB outcome. Accordingly, indivi-
duals with latent TB, who fail to develop active TB disease, display
balanced levels of PGE-2 and lipoxins.18 Lipoxins also negatively
regulate protective TH1 responses. This was demonstrated by
increased IFN-γ, interleukin (IL)-12 and nitric oxide synthase (NOS)-
2 mRNA levels and reduced mycobacterial burden in 5-LOX-
deficient mice.19 At present, no trials evaluating 5-LOX inhibitors
as HDT complementing standard TB treatment are registered on
the clinicaltrials.gov resource database. The 5-LOX inhibitor,
zileuton, is however, approved for treating asthma which could
be repurposed as TB HDT and tested to elucidate whether
modulation of this pathway improves TB treatment outcomes.

Inflammatory modulators
Corticosteroids. Corticosteroids have been employed as adjunc-
tive therapy for a range of inflammatory conditions and disease
states, including bacterial and viral meningitis, pneumonia and
sepsis.20,21 In TB, hyper-activation of the inflammatory response
often results in tissue pathology and oedema, leading to tissue
dysfunction and chronic inflammation. The rationale for using
anti-inflammatory corticosteroids as adjunctive treatment of active
TB disease mechanistically involves modulation of inflammatory

and apoptotic gene transcription pathways.22 This occurs by
binding to intracellular receptors and modulating gene transcrip-
tion in target tissues, thus modulating inflammatory mediator
function, suppressing the humoral immune response and inhibit-
ing leucocyte infiltration to the site of disease.23,24 These effects
are thought to reduce chronic, non-productive inflammation and
favour the host antimicrobial response.
Corticosteroids as immunoadjuvants to standard TB treatment

have proven useful in several studies, including an HIV/TB co-
infection framework. Supporting evidence demonstrates
improved lung radiological lesions, earlier symptomatic improve-
ment and reduced morbidity in severe disease.25–28 In particular,
trials testing the efficacy of adjunctive dexamethasone treatment
on the risk of death or disability in TB meningitis demonstrated
improved patient survival rate (Table 1).29 Other phase-III and IV
multicentre trials, investigating survival and disability outcomes
following dexamethasone adjunctive treatment of TB meningitis,
are underway (NCT03100786; NCT03092817; NCT02588196;
Table 1). Similarly, prednisolone for treating TB pericarditis in
HIV infection was investigated in a phase-III trial (NCT00810849;
Table 1). Results indicate no significant effect on the combined
outcome of death, cardiac tamponade or constrictive pericarditis,
although prednisolone did reduce incidences of pericardial
constriction and hospitalization.30

Importantly, since data suggest that the effects and benefits of
corticosteroid adjunctive therapy are organ specific, its use in
extrapulmonary TB requires careful consideration on a case-
specific basis. Meta-analyses refute long-term treatment efficacy
of corticosteroids. In fact, studies involving high-dose corticoster-
oid treatment observed an increased risk of side effects.31 Low-
dose trials, however, appear to circumvent such consequences,
while maintaining favourable clinical outcomes in pulmonary TB
(PTB) disease.25,31,32 Taken together, it is evident that more
investigation is needed to establish conclusive outcomes for the
risks and benefits of corticosteroids as adjunctive therapy for
advanced TB disease.

Phosphodiesterase inhibitors. Phosphodiesterase inhibitors
(PDE-i) are small-molecule inhibitors that reduce inflammation
by increasing intracellular cyclic adenosine monophosphate
(cAMP) and cGMP.33 Altogether, the anti-inflammatory effects of
PDE-i serve to modulate chronic inflammation and cytokine
storms associated with infectious disease, while improving
antibacterial responses and reducing bacillary load. This suggests
relevance, not only during active TB disease, but also in clearing
non-productive inflammation for conditions such as TB-IRIS and
extrapulmonary TB.
Several selective PDE-i have shown promise as HDT candidates

in TB animal models. Inhibitors of PDE-3 and PDE-5, cilostazol and
sildenafil respectively, accelerated bacterial clearance and lung
sterilization in murine TB.34 The PDE-4-i, roflumilast has also shown
promise as an effective HDT in a TB mouse model when used with
isoniazid. Supporting evidence illustrated reduced TNF-α produc-
tion, thwarted neutrophil recruitment and reduced lung bacillary
burden.35 Similar findings were reported for another selective
PDE-4-i, CC-11050, in a TB rabbit model.36 Analogues of
thalidomide, such as CC-3052, have also shown to possess similar
PDE-4-i properties and demonstrated potential as TB HDT by
reducing lung pathology and inflammation.37 These promising
pre-clinical screenings of PDE-i have led to safety and efficacy
testing of adjunctive CC-11050 with the standard 6-month multi-
drug therapy. This phase-II open-label human clinical trial is
currently recruiting South African TB patients (NCT02968927;
Table 1). Pending outcome of these results, several other members
of the PDE-i family represent attractive HDT candidates. These
include PDE-5-i, shown to reverse the host immunosuppressive
effects of regulatory immune cells such as myeloid-derived
suppressor cells (MDSC) in cancer.38
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N-Acetylcysteine (NAC). NAC is an L-cysteine prodrug, which
replenishes levels of the antioxidant glutathione by making
cysteine available for incorporation into the glutathione synthesis
pathway. NAC, often prescribed to patients with chronic
pulmonary disease, has mucolytic and antioxidant activities, with
the capacity to modulate inflammation.39 In vitro data rationaliz-
ing improved outcome in TB indicate a dose-dependent NAC-
mediated reduction in Mtb growth and metabolic activity. This
occurs by suppressing the host oxidative response, along with
direct anti-mycobacterial affects.40,41 Therefore, beneficial effects
of NAC as HDT is not limited to use in symptomatic TB disease and
post-TB lung disease, but also to clear Mtb in healthy latently
infected individuals.
NAC has subsequently been tested in a prospective randomized

control trial, demonstrating significantly faster sputum conversion
with improved lung pathology in TB patients receiving daily NAC
treatment during the intensive phase of DOTS.42 Additionally, NAC
has a hepatoprotective effect on liver injury during TB treatment
(Table 1),43,44 and a murine macrophage model has illustrated the
ability of NAC to potentiate the efficacy of TB chemotherapy,
specifically in combination with isoniazid.46 Together, these data
provide promising outlooks for NAC as an adjunctive therapy to
synergize with current therapies and improve outcome in TB.
Currently, a phase 2 randomized trial is investigating the
tolerability and treatment outcome of daily adjunctive NAC for
2 months in conjunction with the standard 6-month TB treatment
regimen in Brazil (NCT03281226). Outcomes from ongoing studies
should provide greater insight and justification for further trials
investigating concomitant NAC for treatment of multi-drug-
resistant (MDR)-TB patients (Table 1).

Tyrosine kinase inhibitors
Another avenue for treating MDR-TB and HIV/TB co-infection
includes the use of tyrosine kinase inhibitors as HDT. Imatinib is a
tyrosine kinase inhibitor typically employed for treatment of
cancers, more specifically, chronic myelogenous leukaemia. In the
context of Mtb infection, beneficial outcomes of imatinib are
associated with reducing bacillary burden by promoting myelo-
poiesis, phagosome maturation and acidification, and autop-
hagy.45,47–49 Findings have illustrated that imatinib as an
adjunctive therapy with first-line anti-TB drugs has synergistic
therapeutic effects.48,49 A study by Steiger and colleagues in
2016 showed that imatinib induced lysosome acidification and
antimicrobial activity against M. bovis in human macrophages
treated with glucocorticoids. Notably, these effects were exhibited
without reversing the anti-inflammatory effects of glucocorti-
coids.50 A clinical trial (NCT03891901; Table 1) is scheduled to roll
out soon, which aims to evaluate safety, pharmacokinetics and
effects of imatinib on myelopoiesis in adults, as a potential
adjunctive therapy with an antimicrobial regimen for DS-TB.
Other tyrosine kinase inhibitors have shown potential in in vitro

and murine studies. One candidate specifically, geftinib, an FDA-
approved inhibitor of epidermal growth factor receptor (EGFR)
tyrosine kinase, has shown promise in both acute and chronic Mtb
infection, by augmenting TH1 immunity and reducing bacterial
load.51 Tyrosine kinase inhibitors that have been studied
extensively in tumour models, such as nilotinib, are now showing
promising pharmacological expansion of protective innate immu-
nity to mycobacterial infections.52 These compounds are attractive
candidates for testing as a prophylactic anti-TB regimen in high-
risk communities.

Antihyperglycaemic drugs
Poor glycaemic control is a risk factor for TB disease onset,
mortality, treatment failure and relapse.53,54 In this regard,
metformin (class: biguanide) treatment improves glucose control
in diabetic patients and restores dysfunctional immunity asso-
ciated with hyperglycaemia.55–57 In the context of TB, the

immunomodulatory effects of metformin have been shown to
promote macrophage autophagy by activating the expression of
AMP-activated protein kinase (AMPK) and reactive oxygen species
(ROS) production. Altogether these effects inhibit Mtb growth,
reduce inflammation and prevent lung damage.58 These findings
have promoted metformin as a candidate for therapeutic
prevention and adjunctive treatment approaches in TB.55

In vitro and in vivo murine studies have further shown that
metformin treatment reduces inflammation in TB by promoting
expansion of anti-inflammatory cell types, particularly alternatively
activated macrophages.59–62 A number of pre-clinical studies
further demonstrated that metformin synergizes with the
antimicrobial properties of rifampicin and reduces intracellular
Mtb growth. This occurs in an AMPK-dependant manner, through
inhibition of pro-inflammatory cell proliferation, thereby reducing
disease severity.63,64 Other in vitro and in vivo findings show that
metformin promotes ROS production, required for fusion of the
phagosome-lysosome complex to aid in phagocytosis- and
autophagy-induced killing of Mtb.64,65 Metformin also has a direct
effect on the bacterial respiratory chain complex, which plays an
important role in bacterial persistence and tolerance.66 Retro-
spective evaluation of clinical trial data demonstrated that
metformin treatment of type-II diabetics with TB is associated
with fewer lung cavities, lower proportion of individuals with
advanced disease and improved sputum culture conversion rate
2 months post-treatment initiation.58,64,67 Retrospective analyses
also showed that type-II diabetics receiving metformin treatment
have a lower TB risk profile compared to those using sulfonylur-
eas.68 Interestingly, diabetics on metformin treatment have a
lower chance of having latent Mtb infection (LTBI), as measured by
a positive T-Spot TB test.64

Most clinical testing has been limited to evaluating the effects
of metformin on diabetic TB patients. This begs the question of
whether these same properties translate to non-diabetic TB
patients in a clinical setting. Pre-clinical evidence of a recent
in vitro study showed metformin-mediated modulation of cellular
metabolism, immune function and gene transcription involved in
innate immune responses to Mtb in heathy subjects.69 Moreover,
metformin has illustrated beneficial effects for non-diabetic
indications such as obesity, polycystic ovary syndrome and
Alzheimer’s disease.70 The first prospective trial testing the
addition of metformin to DOTS, the ‘Metformin for TB/HIV Host-
directed Therapy’ (METHOD) trial, is currently in planning and will
evaluate the proportion of smear negative TB patients at month
two post-treatment. This trial will also test the efficacy of
metformin on lung function, severity of lung involvement and
HIV viral load (R34-AI124826-01).
While the TB community is anxiously awaiting results from

clinical trials testing these and other drugs with anti-inflammatory
or antihyperglycemic properties, it remains important to carefully
consider and assess ideal dosages to prevent excessive anti-
inflammatory responses, which too may favour Mtb proliferation.

Vitamins and biologics
Vitamins are furthest along the pipeline of TB HDT testing in
human clinical trials (Table 1). This is likely attributed to the
relative ease of accessibility and low risks associated with vitamin
supplementation. Vitamins are essential for regular immune
function and deficiencies have been implicated in a range of
disease states. As such, vitamin supplementation may be
applicable as an adjunctive therapy to the standard of care to
improve outcome to TB disease. On the other hand, perhaps
vitamin supplementation may pose as a preventative strategy to
strengthen the immune system and prevent progressive onset of
disease.
Vitamin D (vitD), acting via its vitD receptor (VDR), regulates

gene expression of cytokines and immune mediators in activated
cells. In the antimicrobial immune response, VDR is upregulated

Therapeutic host-directed strategies to improve outcome in tuberculosis
C. Young et al.

196

Mucosal Immunology (2020) 13:190 – 204



following ligation of TLRs, which induces antimicrobial peptides
such as cathelicidins and defensins. Thus, vitD as an adjunctive
therapy may enhance the immune response and favourable
disease outcome in TB. At least 22 current and completed trials of
vitD as TB HDT are listed on the clinicaltrials.gov database.
Inconsistencies in trial outcomes have, however, impeded
interpretation of HDT efficacy. While some studies on vitD
supplementation during TB treatment demonstrate clinical and
radiological involvement in patients with vitD deficiency (Table 1),
others fail to show any advantage on TB outcomes (Table 1).71,72

At a pre-clinical level, the protective effects of vitD has been linked
to enhanced innate immune production of ROS, IL-1β, IFN-γ and
cathelicidin,73,74 while positive trials have shown a reduction in
inflammatory mediators including matrix metalloproteinases
(MMPs) (Table 1). It is believed that contrasting trial outcomes
reflect variations in vitD administration and dosage, differing
levels of endogenous baseline vitD, genetic differences in the vitD
receptor, underpowered cohorts and variations in sunlight
exposure at trial locations.
Vitamin A (vitA) deficiency has also been associated with

incident TB and correlated with increased mortality in HIV/TB co-
infected individuals. VitA supplementation is thought to
strengthen the immune system and reduce mortality; however,
information on vitA supplementation in conjunction with TB
treatment has been inconsistent. The handful of completed case-
control studies investigating vitA supplementation during TB
treatment mainly report findings as part of a dietary multivitamin
supplement.75 Therefore, evidence of the direct benefit of vitA has
been weak, at best demonstrating modest improvements in the
weight of TB patients.76 VitA supplementation with zinc yielded
similar results75 (Table 1). A more recent case control study, nested
within a longitudinal TB household contact study, showed that
baseline vitA deficiency was associated with a tenfold increased
risk of developing TB.77

Although the overall findings in the area of vitamins as TB HDT
is promising, significant challenges exist that impede objective
interpretation of data. This mainly stems from heterogeneous
study design with discrepancies in nutritional/dietary intake and
route of administration, amongst others. We propose that
meticulous study design may overcome these challenges and
may provide more conclusive data for the use of vitamin
supplementation to improve TB outcome.
Sodium phenylbutyrate (PBA), a biological aromatic fatty acid,

has been approved for treating various diseases, including urea
cycle disorders, cancer, muscular dystrophy and Parkinson’s
disease. Its functions include inhibition of histone deacetylase
and endoplasmic reticulum stress.78,79 Pre-clinical studies and
clinical trial data have shown that PBA synergises with vitD to
upregulate expression of the anti-mycobacterial peptide cathe-
licidin, restrict Mtb uptake, reduce Mtb intracellular growth in
macrophages, upregulate chemokine secretion and induce
autophagy.80,81 These benefits of PBA has been verified in a
randomized controlled trial in Bangladesh, demonstrating its
potential as TB HDT (Table 1).
Other immunomodulatory biologics include immune check-

point inhibitors (ICIs). The ICIs currently attracting the most
attention in TB include nivolumab and ipilimumab. Nivolumab is a
monoclonal antibody targeted against programmed death (PD) 1
protein, while ipilimumab targets cytotoxic T-lymphocyte-
associated antigen 4 (CTLA4). Typically, signalling via immune
checkpoints inhibits T- and B-cell function. However, in the
context of TB, immune regulatory checkpoints are dysregulated
and associated with T-cell exhaustion.82–86 Despite promising
outcomes in animal and in vitro models, clinical use of ICIs may
favour progression to active TB disease, potentially attributed to
excessive inflammation and focal necrosis.87 Such therapies thus
require careful consideration regarding method, dose and timing
of administration to minimise potential negative effects.

Cytokine modulation
Therapeutic modulation of immunity via cytokines is another
method to support host defences. Cytokines play crucial roles in
immune cell function and can theoretically serve as promising
candidates for inclusion in adjunctive immunotherapies. This,
however, is strictly dependent on role of a given cytokine in host
immunity. Reducing excessive cytokine responses appears as a
promising HDT strategy for individuals with active DR- and DS-
TB.88,89 In contrast, boosting TH cytokine responses could serve as
a feasible strategy for those with acute/recent Mtb infection.90,91

Cytokines may polarize the immune response in favour of host
protection by strengthening immune and memory responses or
by disrupting and penetrating the granuloma to expose Mtb bacilli
to anti-TB treatment (Table 2; Fig. 1). The hallmark TH1 cytokines,
namely IFN-γ, IL-2, IL-12 and GM-CSF, have been highlighted as
recombinant therapeutics in adjunctive HDT trials. Additionally,
the activity of TH2/immunosuppressive cytokines may be
modulated as an alternative strategy92–96 (Table 2). A currently
active, phase-II interventional trial of pascolizumab, an anti-IL4
monoclonal antibody, is being investigated in TB patients
receiving standard treatment (NCT01638520; Table 1). As the TB
community eagerly awaits this outcome, another randomized,
placebo-controlled trial disappointingly demonstrated that
adjunctive recombinant IL-2 immunotherapy in TB patients did
not afford a statistically significant improvement in bacterial
clearance as measured by culture conversion at months 1 and 297

(Table 2).
Cytokine HDT approaches that have received considerable

attention in TB involve IFN-γ or modulation of TNF-α. In particular,
aerosol administration of recombinant IFN-γ-1b as supplement to
DOTS for patients with cavity PTB was evaluated in a phase-II trial.
Results demonstrated favourable immunomodulation by reducing
inflammatory cytokines at the site of disease and accelerated Mtb
sputum clearance (Table 2).93 More recent pre-clinical data have
however illustrated the propensity for exacerbated lung infection
and deleterious effects of increased IFN-γ production by CD4
T cells in murine models.98 While TNF-α stimulates monocytes/
macrophages and maintains granuloma integrity, high levels may
exacerbate pathology. Thus, approaches that decrease TNF-α have
been favoured with the rationale of restricting pathology or
destabilizing fibrotic granulomas to improve drug penetration99

(Table 2). TNF-α-blockers routinely used for treating inflammatory
bowel disease and arthritis (such as etanercept) demonstrated
some benefit in TB, while TNF-α-antibodies (such as infliximab and
adalimumab) have shown success in advanced TB disease.101–102

In contrast, a recent meta-analysis indicated that the risk of TB
may be significantly increased in patients treated with TNF-α
antagonists, and may be evoking more harm than good in
majority of patients.103 Therefore, despite some promising
therapeutic outcomes, the use of IFN-γ and TNF-α modulating
agents remains controversial, ultimately due to their interactions
being both synergistic and antagonistic.
Considering their involvement in highly complex networks, the

therapeutic impact of cytokines is often challenging to predict.
This reiterates the importance of critically evaluating dosage
systems to ensure optimal benefit to recipients. Additionally,
despite promising outcomes of some cytokine-based therapies,
employment of such strategies may be restricted by high cost,
potential toxicity and role in immunopathology.104 Lastly, it has
become increasingly evident that single-cytokine HDTs are often
inadequate during the initial phase of therapy, and thus requires
further exploration for combinatory cytokine therapy options.

Statins and other drugs
Statins are well-known for their lipid-lowering, immunomodula-
tory and anti-inflammatory activities. These effects are achieved
via inhibition of HMG-CoA (β-Hydroxy β-methylglutaryl-CoA)
reductase enzymes, which are essential in lipid metabolism and
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Table 2. The role of cytokines in TB disease and evidence to support their therapeutic intervention and outcome as TB HDT strategies.

Cytokine Role in TB disease Therapeutic intervention and outcome in TB
disease

Reference

INF-γ Activates macrophages and DCs, promotes cell
proliferation, apoptosis, cell adhesion and
bacterial killing (through phagocytosis and
reactive nitrogen and oxygen intermediates).

Aerosol administration of INF-γ improved
bacillary clearance and improved clinical
condition. Aerosol administration of INF-γ in
conjunction with anti-TB drugs cured MDR-
TB. Nebulized INF-γ1b and subcutaneous
injections of INF-γ1b alleviated disease
symptoms, although culture showed that
nebulized administration increased the
likelihood of negative smears at 4 weeks.
Supplementation of recombinant INF-γ
improves response to anti-TB drugs in
cavitary TB patients.

75,174–177

TNF-α Controls Mtb infection and replication by
formation and maintenance of the granuloma;
by regulating macrophage activation,
phagocytosis, and nitrogen and oxygen
intermediates.

TNFα inhibition causes granuloma disruption
and bacillus reactivation to increase Mtb
susceptibility to standard TB drugs; results in
rapid clearance of Mtb from the lung and
altered inflammatory responses to benefit
the host in TB/HIV-1 co-infected individuals.

178,179

GM-CSF Induces granulocyte and macrophage
proliferation and differentiation, stimulates
macrophage phagocytosis, increases
cytotoxicity and reactive nitrogen and oxygen
intermediates.

Administration of GM-CSF resulted in
negative sputum culture conversion after
8 weeks.

TGF-β* Immunosuppressive cytokine, inhibits the Th1
response during chronic infection.

Suppression of TGF-β enhances resolution of
local Mtbinfection and associated
inflammatory responses, while decreasing
bacillary load in mouse models.

180

VEGF* Angiogenic cytokine that promotes hypoxic
microenvironment.

Neutralization or inhibition increases
efficiency of TB treatment regimens by
disrupting the granuloma thus promoting
drug penetration and Mtb killing in human,
rabbit and zebrafish models.

181,182

IL-2 Aids proliferation of antigen-specific CD4+ and
CD8+ T, activates the JAK-STAT signalling
pathway for gene transcription of cell growth
and survival genes.

Recombinant IL-2 supplementation with
anti-TB drugs improved immunity status and
promoted sputum smear conversion to
negative, with reduced INF-γ production and
low skin response to Mtb antigens (response
is likely mediated by regulatory T cells).

183

IL-4* Downregulates INF-γ production and mediates
cytotoxicity and fibrosis.

Genetically deficient IL-4−/− mice
successfully eradicated Mtb infection
following reconstruction with recombinant
IL-4, and has the potential to be adjunctive
to standard TB regimens.

184,185

IL-7* Enhances T-cell memory, upregulates IL-17
production, downregulates TGF-β, aids in DC
activation.

Mtb mouse models demonstrated increased
survival and bacilli clearance when
administered in conjunction with BCG
vaccine.

186,187

IL-10* Immunoregulatory cytokine with Th2-
modulatory effects.

Inhibition of IL-10 in conjunction with anti-
TB drugs effectively improved disease
outcome and drug efficiency.

188

IL-12* Strong inducer of INF-γ production in antigen-
stimulated CD4+ T cells, essential for protective
immune response to intracellular pathogens.

Administration to Mtb-infected mice
decreased viable bacilli load in lymphoid
organs. One case study provided evidence of
successful response to anti-TB drugs only
following treatment with IL-12 for 3 months
in a patient that was previously refractory to
anti-TB treatment.

189,190

IL-15* Aids proliferation and survival of CD8+ T cells,
strengthens immune memory.

BCG-vaccinated IL-15 transgenic mice
displayed resistance against Mtb infection,
thus acting as an immune adjuvant to
increase efficiency when administered with
BCG vaccination.

186,191

IL-23* Inducer of INF-γ production and proliferation of
activated memory T cells.

Vector-mediated intratracheal delivery in
mice reduced bacilli load and inflammation.

192
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inflammatory pathways. Since the lipid-rich macrophage is a
favourable environment for Mtb persistence, statins reducing
intracellular lipid accumulation thus limits bacterial growth.
Moreover, statins enhance phagosome maturation and autophagy
(Table 1).106–107 The StAT-TB trial is investigating the safety,
tolerability and pharmacokinetics of pravastatin co-administered
with standard TB treatment. The ability of pravastatin adjunctive
therapy to shorten the time to sputum culture conversion and
improve lung function will also be tested in a second phase of this
trial (NCT03456102; Table 1). Of particular interest is the drug
−drug interactions between statins and anti-TB drugs such as
rifampicin and isoniazid.108 The associated adverse events such as
myopathy and rhabdomyolysis are often associated with non-
adherence and unsuccessful treatment, making it particularly
important to select statins with no known drug interactions with
TB antibiotics.
Another drug, auranofin, is an organogold compound that

induces transcription of heme-oxygenase-1. This inducible heme-
degrading enzyme exerts anti-inflammatory properties and
decreases free radical production, while enhancing oxygen-
mediated killing and bactericidal activity in TB disease. A trial in
South Africa is currently recruiting TB patients to test the safety
and efficacy of auranofin as an adjunctive TB HDT (NCT02968927;
Table 1).
Within the scope of cancer management, cell-based therapies are

receiving growing interest. Indeed, such strategies may form a good
template for HDTs in the TB field. As reviewed by Rao et al., in the
context of MDR-TB, adoptive cell therapies and screening techni-
ques could identify useful non-cross-reactive Mtb target-specific T-
cell receptors (TCRs). These TCRs, in turn, may be transferred into
recipient effectors (such as NK or T cells), theoretically giving rise to
genetically modified therapeutic cellular products.109 Indeed, there
has also been promising outcomes in MDR/extensively drug-
resistant (XDR)-TB patients receiving mesenchymal stromal cells
(MSC) as a single infusion of bone marrow-derived autologous
MSC.110,111 These MSC are well-known for their safety, anti-

inflammatory and immunomodulatory properties and may thus
also be applicable to various forms of TB disease.109,112 Additionally,
microRNAs (miRs) have been implicated as potential adjunctive
HDTs to regulate immune responses in TB and improve outcome.
This approach holds promise by using miR for repairing and
replenishing miR stores or administering anti-miRs to inhibit rogue
miR that may otherwise induce pathology.113,114 Although having
solid theoretical foundation and promising outlooks for the future,
cell-based therapies and miRs in the context of TB remains in its
infancy, with much still to be uncovered.
Autophagy-activating compounds may represent promising

adjunctive therapies against TB disease. A review by Paik et al.
discusses autophagy mediators targeting VDR signalling, the
AMPK pathway, sirtuin 1 activation and nuclear receptors.115

Autophagy-targeting small molecules have shown promise in the
context of Mtb infection. In pre-clinical testing, gefitinib (targeting
EGFR), fluoxetine (a serotonin reuptake inhibitor), baicalin (a
herbal medicine targeting the PI3K/Akt/mTOR pathway) induce
autophagy and enhance intracellular Mtb clearance.116,117 Indeed,
antimicrobial drugs such as loperamide, verapamil and standard
anti-TB drugs (such as INH and pyrazinamide) themselves promote
autophagy and may work synergistically with autophagy-inducing
small molecules as adjunctive therapy to standard treatment for
TB patients.115,118–120

Although falling beyond the classification of HDT, antibiotics
(such as doxycycline; NCT02774993; Table 1121,122) and vaccine
strategies may modulate immunity, and have been proposed as
potential adjunctives to the TB treatment regimen. There is
evidence supporting beneficial effects of Bacille Calmette-Guérin
(BCG) re-vaccination in adolescents and adults. Results indicate
that BCG re-vaccination reduces the rate of sustained Quanti-
FERON (QFT) conversion and displays improved long-term innate
or trained immunity and adaptive responses, thus leading to
effective control of mycobacterial infection.123–129 A comprehen-
sive review by Schaible et al. in 2017 evaluates strategies to
improve vaccine efficacy against TB by targeting innate

Table 2 continued

Cytokine Role in TB disease Therapeutic intervention and outcome in TB
disease

Reference

IL-24* Activated CD8+ T cells, increases INF-γ
production, activates neutrophils and increases
IL-12 production

Mtb mouse models demonstrate protective
response upon administration of exogenous
IL-24.

193

IL-37* Antiinflammatory cytokine, broadly suppresses
innate and adaptive immunity.

BCG-infected transgenic IL-37 mice
displayed reduced bacilli load and tissue
damage in the lung, with reduced
frequencies of regulatory T cells and
Th17 cells.

194

Cytokine modulators

RhIL-2 Cytokine adjunctive therapy is thought to
restore the immune response and modulate the
immunologic status in favour of the host by
promoting CD4+ and CD8+ T-cell proliferation,
and by activating gene transcription pathways
of cell growth and cell survival genes.

Study of adjunctive recombinant human
interleukin-2 therapy in patients with MDR-
TB

74,183,195,196

Pascolizumab The IL-4 cytokine is known as an
immunosuppressant molecule which impairs
the immune system’s ability to clear Mtb
infection. Thus, pascolizumab, an anti-IL-4
monoclonal antibody is thought to strengthen
the immune response and benefit the host’s
ability to clear infection.

Safety and Efficacy of Blocking IL-4 with
Pascolizumab in Patients Receiving Standard
Therapy for Pulmonary Tuberculosis

185,197

INF-γ interferon-γ, TNF-α tumor necrosis factor-α, GM-CSF granulocyte/macrophage-colony stimulating factor, VEGF vascular endothelial growth factor, Ang
angiopoietin, IL interleukin, DCs dendritic cells, CD cluster of differentiation, JAK-STAT Janus tyrosine kinase-signal transducer and activator of transcription,
TGF-β transforming growth factor-β; BCG = Bacille Calmette Guerin, CFU colony-forming units, MGIT Mycobacteria Growth Indicator Tube
aNo clinical trial data as evidence for therapeutic intervention potential and outcome in TB disease
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immunity.130 Here, they propose that short-term modulation of
the local immune response to BCG vaccination may result in long-
term protective immunity against Mtb infection. Examples of
interventions for such modulation may involve regulating
neutrophil, Treg and MDSC recruitment to the vaccination site,
preventing disadvantageous cell death pathways, modulating
vaccination-induced inflammatory responses, and regulating anti-
inflammatory cytokine profiles (e.g. IL-10).130 These strategies are
aimed at processes that would otherwise negatively influence T-
cell priming, function and proliferation upon vaccination; and
many of which are in fact analogous to the rationale of HDT
strategies discussed here.

CONCLUSION
While the outcome of some trials has been met with anticlimactic
conclusions, emerging evidence outlined in this review suggests
that the TB field is making steady progress in identifying beneficial
HDTs across a broad range of drug classification and mechanistic
activity. Building on these data, it is hoped that future investigations
will translate into meaningful, effective clinical developments.
According to the therapies discussed in this review, we propose

that certain HDTs will be of particular relevance to a specific TB
infection/disease group. In this regard, we recommend the
following HDT strategies to be most appropriate against active
TB and associated forms of TB (such as, TB-IRIS, TB-induced
pulmonary diseases and extrapulmonary TB): eicosanoid modula-
tors (NSAID and lipoxygenase inhibitors), inflammatory mediators
(corticosteroids and tyrosine kinase inhibitors), metformin, ICIs,
cytokine modulating therapy, statins, auranofin, cell-based thera-
pies, miR and autophagy modulating drugs.
As TB preventative therapy, HDTs could, for example, alter

bacillary cell entry or enhance anti-mycobacterial properties of
lung phagocytes. Ideally, this would prevent infection, while also
averting disease development in latently infected individuals.
For TB contacts, those in high-exposure settings, recent Mtb-
infected individuals and LTBI, we propose promising outcomes
associated with host-strengthening preventative strategies,
including vitamin supplementation, PBA (acting in synergy with
vitD), NAC and BCG re-vaccination. We further propose HDTs to
supplement new vaccines which may include: PDE-i to regulate
effects of immunosuppressive subsets such as MDSC, ICIs to
modulate cell death pathways, cytokine therapy to regulate anti-
inflammatory cytokine profiles and perhaps eicosanoid and
inflammatory mediators to modulate vaccine-induced inflam-
matory responses and potentiate vaccine-specific responsive-
ness and durability.
One of the major shortcomings of HDTs includes off-target and

associated side effects. These drawbacks require further evalua-
tion against the backdrop of other aspects such as storage
stability, delivery method, formulation and timing of administra-
tion at different phases of Mtb infection and TB disease. In this
context, several HDTs remain highly controversial and require
more investigation into their potentially severe off-target and
associated effects. Two major examples include, ICIs and cytokine
therapies. Although offering preventative HDTs to latently
infected individuals remains a promising avenue, distinguishing
latent infection from early active TB is however, challenging in
high-exposure regions. Applicability of HDTs to MDR-TB, TB
treatment shortening, TB/HIV and TB-derived lung diseases,
although highlighted in some studies, have not been considered
for all HDTs. This leaves much to be answered in the context of the
TB spectrum. Furthermore, many theoretically sound approaches
remain in their infancy in the TB field and require further
investigation, hopefully showing promise and advancing to
clinical trial status. Here we propose keeping a watchful eye on
autophagy modulators, cell-based and miR therapies.

Considering the spectrum of TB disease formats and complexity
of host immunity, adjunct HDT is unlikely to be efficient as a ‘one-
size-fits-all’ approach. Even so, personalized medicine is also not
feasible in high-burdened TB regions, making a case for a
precision medicine approach, tailored to phenotypic disease
groups. Therefore, developing biosignatures translating into an
efficient, rapid, point-of-care pre-screening test is of great interest.
In this way, immune profiling or patient stratification according to
the degree of lung involvement or risk of disease relapse, will be a
game changer for TB treatment strategies. The field remains
inspired in the face of our ambitious goal to eradicate TB disease,
and the even greater aspiration of preventing Mtb infection. These
goals are hoped to be achieved through clever strategies
involving multimodular approaches, including implementation of
adjunct HDT as standard of care for TB patients.
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