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A B S T R A C T

Cytokine storm, multiorgan failure, and particularly acute respiratory distress syndrome (ARDS) is the leading
cause of mortality and morbidity in patients with COVID-19. A fulminant ARDS kills the majority of COVID-19
victims.

Pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone), is a novel anti-fibrotic agent with trivial adverse effects.
Pirfenidone is approved for the treatment of Idiopathic Pulmonary Fibrosis (IPF) for patients with mild to
moderate disease. Pirfenidone could inhibit apoptosis, downregulate ACE receptors expression, decrease in-
flammation by several mechanisms and ameliorate oxidative stress and hence protect pneumocytes and other
cells from COVID-19 invasion and cytokine storm simultaneously. Based on the pirfenidone mechanism of action
and the known pathophysiology of COVID-19, I believe that pirfenidone has the potential for the treatment of
COVID-19 patients.

Introduction

COVID-19

Every minute, an American dies of COVID-19. Cytokine storm,
multiorgan failure and particularly acute respiratory distress syndrome
(ARDS) are the leading causes of mortality and morbidity in patients
with COVID-19. A fulminant ARDS kills the majority of COVID-19
victims [1]. Also, there are whispers that some of the survivors might
develop pulmonary sequels. Further investigations and follow-ups are
warranted in this case [2,3]. A large number of suggested treatments
such as ivermectin, hydroxychloroquine, and azithromycin are cur-
rently under investigation. Among them, hydroxychloroquine, azi-
thromycin, and recently remdesivir showed acceptable results in clin-
ical trials, as of June 2020 [4–10]. Nevertheless, the results of these
interventions are not completely satisfactory and studies for other
medications are still warranted .

Pirfenidone

Pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone), is a novel anti-
fibrotic agent with trivial adverse effects [11–13]. Pirfenidone is

approved for the treatment of Idiopathic Pulmonary Fibrosis (IPF) in
humans for patients with mild to moderate disease [14,15].

Diverse action mechanisms have been suggested for pirfenidone,
among them are downregulating effects on a series of cytokines, in-
cluding transforming growth factor (TGF)- β1, connective tissue growth
factor (CTGF), platelet-derived growth factors (PDGF), and tumor ne-
crosis factor (TNF)- α [16–20]. Additionally, pirfenidone is a reactive
oxygen species (ROS) scavenger, and last but not the list, pirfenidone
downregulates the expression of ACE receptor, the major cellular re-
ceptor for COVID-19 [21–23]. Additioally, some other characteristics of
pirfenidone makes it an appropriate treatment for COVID-19, among
them are anti-apoptotic and anti-fibrotic effects of pirfenidone. The
details of the hypothesis have been discussed below. Based on known
pirfenidone mechanism of action and the pathophysiology of COVID-
19, I believe that pirfenidone has the potential for the treatment of
COVID-19 patients.

The Hypothesis/theory

Cytokine storm, severe inflammation, oxidative stress, and reactive
oxygen species damage and increased permeability of vascular bed are
responsible for the development of ARDS and multi-organ damage in
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patients with COVID-19 [24,25]. Elderly patients, particularly those
with comorbidities such as DM, cardiovascular disorder, and cancer are
at increased risk of severe manifestation of COVID-19 [26,27]. Patho-
logic manifestation of COVID-19 under microscope includes the pre-
sence of exudate, vascular congestion, inflammatory clusters with fi-
brinoid material and multinucleated giant cell. Reactive alveolar
hyperplasia and fibroblastic proliferation have been shown in alive
patients with COVID-19 who underwent a lung biopsy due to cancer
before the diagnosis of COVID-19 [28,29].

Almost all of the current promising treatments have anti-in-
flammatory characteristics, beyond their antibiotic effects. For ex-
ample, both azithromycin and hydroxychloroquine possess anti-in-
flammatory effects [4].

Pirfenidone, a novel anti-fibrotic agent is known to have several
anti-fibrotic, anti-inflammatory, oxygen radical scavenger/antioxidant
effects [11,22,23,30,31].

Anti-inflammatory effects of pirfenidone

The anti-inflammatory effects of pirfenidone have been shown in
several experimental studies. It has been shown that pirfenidone in-
hibits TNF-α secretion and decrease a large number of other in-
flammatory cytokines as well [20,32–34]. Additionally, Li et al. in a
recent study shown that pirfenidone ameliorates lipopolysaccharide-
induced pulmonary inflammation and fibrosis by blocking NLRP3 in-
flammasome activation [35,36].

Anti-fibrotic effects of pirfenidone

It has been shown in several studies that pirfenidone significantly
inhibits TGF- β 1-induced fibronectin synthesis [17,18]. Down-reg-
ulating of profibrotic gene expression and collagen secretion has been
shown in humans and animal models treated with pirfenidone [37–39].
Reduction of overexpression of TGF- β in inflammatory conditions plays
a key role in the antifibrotic activity of pirfenidone [38,40].

Pirfenidone inhibits collagen I fibril formation and causes a reduc-
tion in collagen fibril bundles [39,41,42]. It has been shown that pir-
fenidone has pleiotropic actions on both the immune system and ex-
tracellular matrix (ECM), such as hyaluronan, a major component of the
ECM that regulates tissue injury and repair [43]. Recently, the upre-
gulation of RGS2 has been suggested as a novel mechanism of ameli-
oration of pulmonary fibrosis with pirfenidone treatment [44].

Protection against oxidative stress and lipid peroxidation

The followings are probable endpoints of an overactive in-
flammatory response and WBC free radical formation in Microsome (via
microsomal NADPH cytochrome c reductase) and Mitochondria
(NADH-quinone oxidoreductase of the inner/outer membranes): ex-
citotoxicity, damage to lipids and proteins, apoptosis, ADP-ribosylation,
injury to mitochondrial DNA, and impaired NO activity [11,22,45].
Cytoskeletal damage and lipid peroxidation are the other destructive
effects of inflammation and severe oxidative stress due to cytokine
storm [23,45,46]. Hence, the antioxidant character of pirfenidone
makes it potent for the treatment of hyperimmune response
[11,22,23,30,31].

Lipid peroxidation, which is initiated by generated superoxide in the
cyclic reduction–oxidation is one of the mechanisms of cytokine storm-
inflammation-oxidative stress end-organ-damage and pulmonary toxi-
city [11]. It has been shown that pirfenidone could inhibit NADPH
dependent lipid peroxidation [22,45].

Anti-apoptotic effects of pirfenidone

It has been shown that Fas-dependent alveolar apoptosis that results
in inflammatory reaction and finally interstitial fibrosis is responsible

for the battle against viruses and also responsible for sequels of infec-
tions such as Poxvirus, bacterial LPS, etc [35,47]. On the other hand, it
has been shown that pirfenidone could decrease apoptosis [19,48–51].

Down regulation of ACE receptor expression

ACE receptors are the major COVID-19-SARS virus receptor in hu-
mans. Trials that targeted the inhibition of these receptors with anti-
bodies are under investigation [52]. Surprisingly, it has been shown
that pirfenidone inhibits the AT1R/p38 MAPK pathway, decreased
angiotensin-converting enzyme (ACE), angiotensin II, and angiotensin
II type 1 receptor expression, and strongly enhanced liver X receptor-α
expression [21]. This will not only protect cells from developing fibrosis
(LXR-α) also by decreasing the ACE receptor expression decrease en-
trance of the COVID-19-SARS virus into cells.

With respect to the known characteristics of pirfenidone (anti-in-
flammatory, anti-fibrotic, antioxidant) and our current understanding
of severe COVID-19 pathophysiology (cytokine storm, inflammation,
probable fibrosis, hyper-immunity and as a result oxidative stress, it is
rational to suggest pirfenidone application in the treatment of patients
with moderate to severe COVID-19-SARS.

Evaluation of the hypothesis

Uncontrolled overreaction of the immune system to the virus leads
to the release of numerous inflammatory cytokines, further superoxide
production, ARDS development and subsequently matrix remodeling
and overproduction of collagen and other matrix components that may
cause fibrosis in survivors [25,53,54]. Cytokine storm, an uncontrolled
immune reaction is responsible for the development of multi-organ
damage and ARDS in patients with COVID-19-SARS [53].

Anti-inflammatory effects of pirfenidone have been shown in sev-
eral animal studies and clinical trials. The antioxidant activity of pir-
fenidone has been verified in several experimental studies
[20,24,25,32–34,54]. Furthermore, the anti-fibrotic effects of pirfeni-
done have been shown in several clinical trials and tend to FDA ap-
proval of this drug for the treatment of patients with IPF [14,22,55–58].

Based on pirfenidone characteristics and therapeutic effects, I have
previously suggested the treatment of paraquat poisoning with pirfe-
nidone which is gradually opened its space in the treatment protocols of
patients with paraquat poisoning [11,59–62]. Previously, Saha et al.
successfully treated the patients with post H1N1 ARDS pulmonary fi-
brosis with combined pirfenidone, azithromycin, and prednisolone
[63]. To the best of my knowledge, the mechanisms of post H1N1 ARDS
fibrosis and paraquat poisoning and COVID-19 share similarities. Ad-
ditionally, pirfenidone successfully improved treatment of post-H1N1
ARDS fibrosis, hence it seems equitable to evaluate the potential of
pirfenidone in the treatment of COVID-19 [63]. Also, pirfenidone has
been suggested and tried successfully in the treatment of ARDS due to
white smoke-induced ARDS [11]. As another example, Zinc Chloride
smoke (white smoke) inhalation induced severe ARDS has been suc-
cessfully treated with a combination of pirfenidone and corticosteroids
[35,64].

Verification of the hypothesis

Pirfenidone has been approved by the FDA for the treatment of
patients with IPF. It has been tolerated very well with trivial side effects
[15,65,66].

The current situation enforced clinicians and agencies to relax strict
preclinical approval and extensive experimentation before starting
human experimental treatment and clinical trials. The fact that our
hands are empty in the battle against COVID-19, and an urgent need for
treatment, enforced us to try any possible probably safe treatment, and
those approved medications with low side effects are among the sug-
gested and tried medications. Actually, our current standard of care is
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based on these experiments.
Nevertheless, a limited number of labs have access to animal models

of COVID-19-SARS and can conduct experimental studies parallel or
before human trials. We have no time to wait for animal modeling, and
animal models do not necessarily provide valid shreds of evidence in
this case in terms of toxicity or efficacy of treatments, because mortality
of this virus is almost always due to interaction of the virus with human
immune system and animals are not appropriate surrogate models here
[67].

At the end of the day, only a well-designed double-blind randomized
controlled clinical trial is the accepted method to appropriately analyze
this hypothesis.

Consequences of the hypothesis and conclusion

In a limited number of patients, COVID-19 present as a fulminant
cytokine storm, ARDS, and end-organ damage. But the death toll of this
limited number of patients surpassed a one and a half million recently.
This is a human tragedy that calls for immediate intervention.

New therapeutic strategies are considered in the treatment of
COVID-19. However, to the best of my knowledge, pirfenidone has not
been tried yet. As discussed above, I believe that pirfenidone could be a
safe add on to the current protocols of COVID-19 treatment, with trivial
side effects and plenty of potential benefits.

During the reviewing process of this article, some other studies
proposed similar point of view [68–70]. For example, parallel to what I
discussed here, George et all, also pointed to the shared risk factors of
COVID-19 and IPF, and mentioned that the burden of lung fibrosis
following COVID-19 is likely to be high; they concluded that given the
scale of the pandemic, the global burden of fibrotic lung disease will
probably increase considerably.

They also suggested a therapeutic rationale for application of ap-
proved antifibrotic therapy in acute exacerbations of IPF. Pirfenidone
and nintedanib are among them.

In conclusion, pirfenidone could inhibit apoptosis, downregulate
ACE receptors expression, decrease inflammation by several mechan-
isms and ameliorate oxidative stress and hence protect pneumocytes
and other cells from COVID-19 invasion and cytokine storm simulta-
neously (Fig. 1).
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