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Regulated hemostasis, inflammation and innate immunity entail extensive interactions

between platelets and neutrophils. Under physiological conditions, vascular inflammation

offers a template for the establishment of effective intravascular immunity, with

platelets providing neutrophils with an array of signals that increase their activation

threshold, thus limiting collateral damage to tissues and promoting termination of the

inflammatory response. By contrast, persistent systemic inflammation as observed

in immune-mediated diseases, such as systemic vasculitides, systemic sclerosis,

systemic lupus erythematosus or rheumatoid arthritis is characterized by platelet

and neutrophil reciprocal activation, which ultimately culminates in the generation

of thrombo-inflammatory lesions, fostering vascular injury and organ damage. Here,

we discuss recent evidence regarding the multifaceted aspects of platelet-neutrophil

interactions from bone marrow precursors to shed microparticles. Moreover, we

analyse shared and disease-specific events due to an aberrant deployment of these

interactions in human diseases. To restore communications between the pillars of the

immune-hemostatic continuum constitutes a fascinating challenge for the near future.

Keywords: platelets, neutrophil, inflammation, autoimmunity, systemic lupus erythematosus, systemic sclerosis,

rheumatoid arthritis, vasculitis

INTRODUCTION

The Immune-Hemostatic Continuum
The circulatory system provides functional integration to tissues throughout the body and
constitutes a dynamic platform for tasks, such as immune patrolling and defense against
threats (1–3). Consistently, abnormalities in blood cells and cardiovascular manifestations
are disproportionately represented in systemic autoimmune diseases, reflecting a network
of interactions among circulating elements in the blood (4–7). Humoral moieties, such as
complement, opsonins, components of the coagulation cascade and regulators of the vascular tone
lie at the lowest level of complexity in this system and provide immediate, stereotyped responses
to abnormal changes in the environment, such as volume loss, vascular injury or pathogen
invasion, besides supporting more elaborate, long-term tasks performed by cells or subcellular
elements (8–11).

Cellular membranes allow the segregation of selected information in compartments
and modulate their subsequent effects on the environment by integrating multiple
stimuli. Circulating membrane-endowed players in the immuno-hemostatic network
encompass leukocytes, platelets and microparticles, with the endothelium as a fourth
static counterpart (12, 13). Platelets and neutrophils play a crucial role in the
maintenance of vascular and tissue integrity and interact extensively and productively.
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Consistently, alterations in platelet-neutrophil cross-talk have
dramatic long-range effects on vascular and immune homeostasis
(14–16) and are growingly appreciated as targets for therapeutic
intervention (17, 18).

PATHOPHYSIOLOGY OF INTERACTIONS
BETWEEN PLATELETS AND
NEUTROPHILS

Characters on the Stage: Platelets,
Neutrophils, and Microparticles
Hemostasis and inflammation counterbalance the effect of
injuring external stimuli. Selective regulation and polarization
of these pathways enhance homeostatic responses at sites of
tissue or vascular injury and minimize the detrimental effects
to the host. Multiple mechanisms have developed, including
variability in the lifespan of players involved in the immune-
hemostatic balance and availability of soluble or membrane-
bound moieties. Emission of membrane-endowed subcellular
particles fine-tunes cellular activation and converts locally
concentrated high-intensity responses into a sum of smaller
but widespread and reciprocally independent biological events.
Generation of extracellular vesicles enables the extension of
the total membrane area interacting with the environment as
well as of the range of potential cellular targets. In addition,
segregation of information in multiple signaling quanta discloses
the possibility of independent interactions with distinct cellular
counterparts according to the differential needs of target tissues.
Platelets are anucleate cell fragments released bymegakaryocytes.
After a multi-stage process of cytoplasm compartmentalisation
and concentration of bioactive compounds into granules taking
place over the course of days, platelets are released as elongated
precursors (proplatelets), which undergo multiple iterative
fission events to reach their final size. Preplatelets are round-
shaped precursors constituting a reversible intermediate stage in
the transition from proplatelets to platelets (19). Small vessels
of the bone marrow, spleen and lung might deliver signals that
facilitate the final process of platelet maturation (20).

Increased platelet demand and/or consumption during acute
systemic inflammation warrants adaptation of megakaryocytes.
Inflammatory cytokines, such as IL6 promote megakaryocyte
increase in ploidy and prompt thrombocytopoiesis through
increased liver synthesis of thrombopoietin as part of the
acute phase response (21). Platelets released under inflammatory
stress are usually larger in volume, which correlates with an
increased ischemic risk at a clinical level (22). Alternative sites
of thrombocytopoiesis, such as the lung, might become activated
under stress conditions in mice (23) and possibly in patients
with lung cancer (24). In addition, stem-like megakaryocyte
progenitors can be activated on demand during interferon-α-
driven inflammatory responses (25). Platelets survive for 7–
10 days in circulation, where they surrogate the damaged
endothelium during vascular injury, recognize and control
invading pathogens and release stimuli to promote tissue
repair (12).

Controlled exocytosis or integration of bioactive compounds
into platelet membrane is crucial for these tasks. Platelets are
endowed with three classes of granules: alpha-granules; dense
granules and few lysosomes. Some authors also described “T
granules” equipped with Toll-like receptor 9 as a potential
fourth platelet compartment (26–28). Besides being providers
of bioactive compounds through exocytosis, platelets also
produce microparticles. Platelet-derived microparticles (PDµP)
constitute a substantial fraction of circulating microparticles in
humans under physiological conditions (29). PDµP can present
with a variety of sizes, contents and functions (30–32) that
range from facilitation of coagulation through tissue factor
(TF) and phospholipid (phosphatidylserine) scaffolds (33, 34)
to angiogenesis, tissue repair (35–37) and defensive responses
(38). Modulation of neutrophil behavior through delivery
of nucleic acids (RNA) or inflammatory signal intercellular
transfer also occurs under inflammatory conditions (39–42).
In addition, mitochondria-enriched PDµP modulate target cell
metabolism (32). Megakaryocytes release microparticles as well,
influencing bone marrow homeostasis and synergising with
PDµP (32, 43, 44).

Neutrophils constitute the most abundant leukocyte
population in the blood and are in charge of the early innate
effector response to noxious stimuli (45). Neutrophils express
a vast array of oxidative and proteolytic enzymes, which are
preformed and stored in ready-to-use granules. Activated
neutrophils express TF, promoting isolation of injured tissues
through thrombosis (46, 47) and contributing to immune-
thrombosis upon interaction with platelets (2, 3). Neutrophils
have a limited lifespan (45), which is mirrored by the timing
of multiple acute or hyperacute clinical manifestations of
infectious and immune-mediated diseases (48–50). Autophagy
induction under inflammatory conditions might extend
neutrophil survival, causing chronicization of tissue damage and
facilitating autoimmunity (40, 51–55). In addition hematopoietic
stem cells and myeloid progenitors respond to extreme
inflammatory stimuli (thanks to the expression of innate germ-
line encoded receptors, such as Toll-like receptors) causing
massive granulopoiesis (56, 57).

Phagocytosis and digestion of invading pathogens constitutes
the default-mode defensive task performed by neutrophils.
However, frustrated microbial phagocytosis promotes the
generation of extracellular traps (NETs) (58), i.e., the extracellular
release of threads of decondensed chromatin and microbicidal
moieties with or without loss of membrane integrity and cell
vitality (suicidal vs. vital NET generation) (59). At least in cases
leading to cell death, granule content is partially repurposed to
facilitate chromatin remodeling and histone citrullination (60–
63). Besides having a role in antimicrobial defense, NETs are
also generated in response to unconventional stimuli, such as
amorphous crystals, apoptotic bodies, cytokines, microparticles
and changes in osmolarity (64, 65). Factors driving neutrophils
to “choose” NET generation as opposed to phagocytosis are
partially understood (66). Unsolicited formation and impaired
clearance of NETs implies persistent exposure of self-antigens
and inflammatory stimuli, which facilitates the development of
autoimmunity (67–73).

Frontiers in Immunology | www.frontiersin.org 2 October 2019 | Volume 10 | Article 2491

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ramirez et al. Platelets and Neutrophils in Chronic Inflammation

Neutrophils also account for tissue and vascular damage
in immune-mediated diseases including inflammatory bowel
diseases, systemic lupus erythematosus (SLE) rheumatoid
arthritis (RA) and vasculitides either directly or through NET-
induced facilitation of thrombosis (2, 67, 68, 74–76). Neutrophils
cooperate to regulate immune activation by secreting soluble
pattern recognition receptors, such as pentraxin-3 (PTX3) or
ficolins (3, 77, 78). Furthermore, they influence the activation
and survival of other immunocompetent cells and tune the
degree of systemic inflammation (45). Finally, neutrophils
emit microparticles loaded with nucleic acids and/or digestive
enzymes and armed with tissue factor (47, 79, 80). Neutrophil-
derived microparticles prime endothelial cells, macrophages and
neutrophils themselves to inflammatory activation (80, 81) and
possibly destabilize genomic integrity in target tissues preventing
resolution of the immune response (82). Elevated levels of
such microparticles, possibly interacting with NET constituents
are detectable in blood of patients with immune-mediated
diseases (83, 84).

Weaving the Plot: General Features of
Platelet-Neutrophil Interactions
Platelets interact productively with multiple cells types (12),
although neutrophils constitute preferential partners (62)
(Figure 1). P-selectin expression on platelet surface (which
interacts with P-selectin granulocyte ligand 1, PSGL1,
constitutively expressed by neutrophils) initiates platelet-
neutrophil interaction (85, 86) and occurs after vessel
injury/endothelial activation (87), pathogen recognition
(88), or aging (89). P-selectin-dependent platelet-neutrophil
interaction recruits downstream integrin-dependent pathways
and culminates in neutrophil activation and facilitated
extravasation (90). Neutrophils interacting with platelets can
either: (a) phagocytose them, quenching their thrombogenic and
inflammatory potential (85); (b) progressing to the generation
of NETs (88), an event influenced by the neutrophil metabolic
state (66, 91, 92).

Vital neutrophil internalization (emperilopolesis) into
megakaryocytes occurs in the bone marrow. Engulfed
neutrophils provide megakaryocytes with activating stimuli
(causing a rise in platelet production) and donate membrane
segments causing enhanced phosphatidylserine expression by
chimeric daughter platelets (93). It is tempting to speculate that
emperilopolesis holds the key to understanding the mechanisms
of the later interactions between neutrophils and platelets in
the circulation.

Platelets and megakaryocytes communicate long-range with
neutrophils through exocytosed mediators and microparticles
with enhancing actions on neutrophil activation (94, 95).
The prototypic alarmin/damage-associated molecular pattern
HMGB1, either as a soluble moiety or loaded into microparticles,
is a potent promoter of extended neutrophil survival and of NET
generation (40, 51, 96–99). Cooperation and bidirectional
exchange of lipid metabolites between neutrophils and
platelets through microparticles maximize the synthesis of
prostaglandins, such as the pro-coagulant and vasoconstrictor

signal, thromboxane A2 (100, 101) and to the activation of
the complement cascade, which in turn promotes neutrophil
recruitment and activation (102).

An Anthology of Recurring Topoi: Shared
Events Linked to Platelet and Neutrophil
Biology
The interaction between platelets and neutrophils impacts on
multiple stereotyped pathological manifestations (Table 1). A
first hint can be found in laboratory tests, such as blood
cell counts. In most cases, platelet and leukocyte numbers
roughly correlate with systemic inflammation (147), either due
to disease activity or infections. By contrast, reduced blood cell
counts are a hallmark of a minority of autoimmune conditions,
including SLE and overlap syndromes and Felty’s syndrome, but
might dominate during sepsis, affecting survival. No specific
evidence is available about the reciprocal interactions between
platelets and neutrophils during severe thrombocytopenia as
an isolated phenomenon. This fact might also be due to
difficulties in uncoupling variations in platelet counts and
neutrophil responses from shared inciting stimuli underlying
both events at an experimental level. Nonetheless, consistent
evidence from sepsis, idiopathic thrombocytopenic purpura,
thrombotic thrombocytopenic purpura and thrombocytopenia
induced by heparin or other drugs suggests that neutrophils
are intravascularly activated and tend to generate NETs in
association with low platelet counts, possibly contributing to
dysregulated hemostasis and adverse clinical outcomes (148–
153). Interestingly, viral infections causing thrombocytopenia
seem to associate with the expansion of low-density neutrophils
(which are thought to have a higher propensity to form
NETs), as observed in autoimmune diseases, such as SLE
(154). Pancytopenia is a distinctive feature of hemophagocytic
lymphohistiocytosis, a severe disorder developing either as a
complication of multiple autoimmune diseases or as a standalone
disorder (155). Variations in cell volume are thought to correlate
with cytoskeletal remodeling and changes in cell function and
metabolism (156–159). Mean platelet volume (MPV) is a variable
provided in the context of blood count, significantly susceptible
to the effects of multiple confounders at the analytical and
preanalytical level. Altered MPV has been detected in SLE, RA,
large- and small-vessel vasculitides, systemic sclerosis (SSc) and
chronic spontaneous urticaria (103, 104, 117, 118, 123, 129,
135, 136, 160). However, disease activity in these settings has
been associated with high and low MPV values, preventing a
straightforward translation of this laboratory tool into clinical
practice (161). Gasparyan et al. (137) and Scherlinger et al. (97)
offer a possible syncretistic perspective: high platelet volume
might reflect chronic low-grade platelet activation (156), whereas
low MPV can be consequent to more severe inflammation,
causing extensive shedding of platelet microparticles (32).
Neutrophils showing increased cellular volume and consequent
lower granular density have long been recognized as a hallmark
of systemic immune-mediated diseases (159), although they
are also detectable in sepsis (162) and cancer (163). This cell
population is characterized by enhanced ability to extravasate,
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FIGURE 1 | Platelet-neutrophil crosstalk. A complex network of interactions connects platelet (PLT) to neutrophil (N) biology. Megakaryocytes (MK) are able to interact

with neutrophils residing in the bone marrow and engulf them, preserving their vitality (a phenomenon called emperilopolesis). Neutrophils may eventually escape

megakaryocyte engulfment after donating membrane components to the host cell. This event causes enhanced platelet production and release of chimeric platelets.

Activated platelets and neutrophils can further interact in the circulating blood, either directly through cell-cell contact and/or through the exchange of soluble

compounds or microparticles. Engagement of platelets by neutrophils through the P-selectin/PSGL-1 axis, and later on, integrin-mediated bonds can lead to

platelet-phagocytosis, resulting in neutrophil exhaustion. Alternatively, failed platelet clearance can promote neutrophil activation (heralded by expression of surface

markers, such as tissue factor and activation of integrins—red spikes in the figure) and facilitate neutrophil extravasation through the endothelial wall (E). Activated

neutrophils can also enter autophagy programmes (green circular arrow), extending their survival, and progress toward the formation of neutrophil extracellular traps

(NET). Platelet-derived microparticles (PDµP), especially when loaded with the damage associated molecular pattern HMGB1, are potent inducers of NET generation.

Neutrophil-derived microparticles (NDµP) constitute and additional channel for platelet-neutrophil interchanges and are thought to have a role in lipid metabolism.
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extended survival and by a tendency to form NETs (68, 158, 164).
By contrast, consistent with the model of inverse association
between NETosis and phagocytosis (Figure 1), low density
neutrophils are less able to engulf substrates (159).

Patients with inflammatory diseases of the blood vessels (124,
130, 131), connective tissue diseases and chronic arthritides have
higher risks of ischemic events (105, 106, 113, 135, 138, 139, 165–
167). Accelerated atherosclerosis is a common finding in SLE
(7, 106, 168–170), RA (7, 139, 165, 171), or systemic vasculitides
(170). Inflammation-related atherosclerotic mechanisms are only
partially understood (172). NETs are major determinants of
endothelial dysfunction and have been detected in atherosclerotic
lesions (173). Platelets are also involved in the early phases
of atherosclerosis, where they facilitate leukocyte egress toward
the subendothelial vascular layers (174, 175). Antiphospholipid
antibodies (aPL) constitute a major independent risk factor in the
antiphospholipid syndrome (APS), a condition characterized by
arterial or venous thrombosis and/or pregnancy complications
occurring as a standalone disorder or secondary to SLE and
other autoimmune diseases (176). aPL promote HMGB1-related
response in platelets and monocytes (177) and, in cooperation
with platelet Toll-like receptor 4, induce NETosis (178), possibly
contributing to immunothrombosis (76). In addition, they might
impair microparticle scavenging by glycoprotein I, increasing the
likelihood of pro-coagulant platelet-neutrophil activation (179).
Besides atherosclerotic lesions, NETs have been detected into
coronary thrombi (96, 180).

Aberrant coagulation is detectable in immune mediated
diseases (34, 107, 108, 119). Altered coagulation cascade
and increased cardiovascular risk are common in asthmatic
patients (181, 182), while patients with chronic spontaneous
urticaria show aberrant thrombin generation but suffer no excess
prevalence of cardiovascular disease (125, 141–146).

Thrombotic microangiopathy, consisting in diffuse deposition
of thrombi along small vessels due to widespread endothelial
activation with hemolysis and platelet consumption, might
complicate SLE, SSc, antiphospholipid syndrome and other
immune-mediated diseases (183–185). Under intravascular
hemolytic conditions, free hemoglobin favors platelet activation.
In turn, activated platelet boost neutrophil activation, possibly
further feeding the inflammatory cascade (186). In addition, sera
from patients with thrombotic microangiopathies fail to degrade
NETs, which, in turn, can trigger thrombosis (76, 187).

The lung is a major inflammatory target (188). Neutrophils
and platelets undergo unique pathophysiological interaction with
the lung vasculature, a reservoir for neutrophils that can thus
easily respond to airborne infectious or sterile inflammatory
stimuli (189). Unleashed neutrophil effector functions contribute
to acute lung injury/acute respiratory distress syndrome (ARDS)
during sepsis or vasculitis (50), to the long-term effects on
bronchial tissue of chronic inflammation in cystic fibrosis (190,
191) and to interstitial fibrosis in SSc (40, 192). NET generation
has a central role in neutrophilic lung injury (193, 194). The
lung vasculature influences platelets since lung microvessels are
(a) a site of maturation of platelet precursors from the bone
marrow (20); (b) a niche for human and mouse megakaryocyte
homing (23, 195); (c) a site of detoxification of platelet mediators, T
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such as serotonin (196). Conversely platelets contribute to
persistent vasoconstriction (potentially leading to pulmonary
hypertension), interstitial fibrosis (197), and NET generation in
acute lung injury (198).

ABNORMAL PLATELET-NEUTROPHIL
INTERACTIONS IN SELECTED DISEASE
SETTINGS

Systemic Vasculitides
Systemic vasculitides encompass a very large set of immune-
mediated diseases characterized by vascular injury and
downstream organ ischemia as the core pathophysiological event
(199). They can be roughly classified into two main subsets,
large- and small-vessel vasculitides, based on (prominent) sites
of vascular involvement. From a pathophysiological point of
view, vascular remodeling with immune infiltration, disassembly
of the physiological extracellular architecture and aberrant
proliferation of macrophages, fibroblasts and endothelial cells
predominate in large-vessel vasculitides, resulting in stroke-like
acute failure of large portions of tissues or entire organ due
to vessel occlusion. By contrast, small-vessel vasculitis are
characterized by necrosis associated or not to granulomatous
inflammation and increased thrombotic risk (200). Altered
cross-talk among platelet, neutrophils and microparticles might
contribute to vascular injury (201).

Neutrophils cause vascular damage in small-vessel vasculitis,
possibly reflected by the accumulation of leukocyte cellular debris
in peri-vasculitic lesions (leukocytoclasia). In anti-neutrophil
cytoplasmic antibody (ANCA)-associated vasculitides (AAV),
neutrophil mediated vascular injury is part of a vicious circle
linking exposure of myeloperoxidase (MPO) and/or proteinase-
3 from granules to neutrophil surface or into the setting of
NETs (202) to the development of ANCA, which in turn activate
neutrophils and the vascular endothelium (3, 67). In patients with
AAV neutrophil responses couple with platelet activation (126).
Consistently, patients with active AAV show increased plasmatic
levels of P-selectin (127) and HMGB1 (203, 204). Elevation of
HMGB1 has also been detected in other vasculitic settings, such
as IgA-vasculitis (formerly Henoch-Schonlein’s purpura) and
Kawasaki disease (205).

In large vessel-vasculitides, activation of platelets may
contribute to promote vascular remodeling through the release of
signals, such as VEGF (206). Platelets in large-vessel vasculitides
show signs of activation (129, 201), and in giant cell arteritis are
significantly increased in number during active disease (147) and
form hetero-aggregates with leukocytes, possibly contributing
to exacerbate ischemic risk (132, 201). This evidence provides
a rationale for the use of aspirin in primary prevention (207)
and for the employment of platelets as diagnostic surrogates
(126). Results in the literature (208) and reports on a potential
cyclooxygenase-independent mechanism for aspirin in giant cell
arteritis (209) suggest however that the role of platelets should be
interpreted with caution.

Little is known on platelet-leukocyte interactions in large
vessel vasculitides, although relative depletion of neutrophil

granule content has been reported in giant cell arteritis in
association with platelet activation (126, 132). Notably, items of
small-vessel (peri)vasculitis have been reported in large series of
temporal artery biopsies from patients with giant cell arteritis
(210) and might be secondary to stereotyped events resembling
those observed in small-vessel vasculitides, possibly targeting
the vasa vasorum and entailing aberrant platelet-neutrophil
cross-talk.

Systemic Lupus Erythematosus
SLE is a multi-organ autoimmune disease with a wide spectrum
of clinical manifestations and pathogenic mechanisms (211).
Failure of clearance mechanisms and/or exposure of cell death
debris in an inflammatory setting promotes autoimmunity and
subsequent tissue damage (212). Hematological manifestations
constitute a hallmark of SLE and are detected in >80% of
patients (213). Cytopenia is the most frequent modality of
presentation and affects either red blood cells, platelets and
leukocytes. Bone marrow abnormalities are frequent, although
no clear correlation can be established with disease activity (214–
217). Accordingly, primary bone marrow failure is a rare cause
of cytopenia (218), with most relevant mechanisms (besides
drugs) being inflammation-induced iron deficiency and cytolysis.
Neutropenia occurs in up to one third of SLE cases, in most
cases due to antibodies (219), which is not apparently associated
to infectious risk (109). Thrombocytopenia is also common in
patients with SLE (220). Megakaryocyte number is generally
increased during disease activity, reflecting extensive platelet
production (214, 220). Patients with SLE and thrombocytopenia
have an increased risk of a severe disease course and of mortality
in large cohort studies (221).

Cardiovascular manifestations are frequent in patients
with SLE and a cause of morbidity and mortality (222).
Accelerated atherosclerosis, aPL and dysfunctional coagulation
likely converge to determine this risk (106). Despite low absolute
platelet counts, patients with SLE frequently show extensive
platelet activation (223–227). Higher levels of P-selectin are
detectable in urines from patients with lupus nephritis (228).
Platelets also contribute to mesangial remodeling and renal
vascular damage (229, 230).

Endothelial derived microparticles constitute the most
abundant microparticle subset in patients with SLE and
correlate with endothelial dysfunction and interferon-α signature
(231, 232). However, PDµP also accumulate during active
SLE (233, 234) and might impact on inflammation and
hemostasis (34, 234). PDµP facilitate coagulation by providing
phosphatidylserine scaffolds and intravascularly expressed TF.
In addition, they promote neutrophil activation and NET
generation being reservoirs of HMGB1 (96) and CD40L (234).
Finally PDµP synergise with NETs as inducers of anti-nuclear
immunity by constituting a source of mitochondria, which
behave as potent damage-associated molecular patterns due to
their bacterial origin (235).

Mechanistically, platelet activation in SLE might depend
on circulating immunocomplexes, which are abundant in
SLE patients biological fluids and are recognized on platelet
surface by FcγRIIA and Toll-like receptor 4,7 (236). PDµP
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themselves could take part in immunocomplexes, enforcing an
inflammatory/immunogenic self-sustaining loop (235). Ensuing
complement activation in turn amplifies and propagates
neutrophil and platelet activation (102, 231, 234).

Systemic Sclerosis
SSc is a systemic autoimmune disease, characterized by
unrelenting inflammation with a wound repair response
consisting in mesenchymal extracellular matrix deposition
leading to fibrosis, and by microvascular dysfunction and
aberrant neoangiogenesis (120, 237, 238). Platelets and aberrant
platelet-neutrophil interactions play a role in SSc (239).
Possibly in response to microvascular damage, platelets of
patients with SSc are constitutively activated and express
signals driving neutrophil interaction (240, 241). P-selectin
dependent cell-cell interactions seem to be relatively less
represented in SSc, due to the lower leukocyte expression of
PSGL-1 (242). Neutrophils have a pericellular distribution of
granules and of their content, causing enhanced degradation
of fibrinogen by exposed neutrophil proteases and eventually
impairing fibrinogen dependent interactions between neutrophil
CD11b/CD18 (also known as Mac-1 or αMβ2 integrin) and
platelet glycoprotein IIbIIIa (40, 96). Indeed, platelet-neutrophil
heterotypic aggregates are less frequently detected in SSc
compared to other inflammatory conditions (40, 96, 242).

Activated platelets in SSc contribute to impaired vascular
tone [due to altered arachidonic acid metabolism (197, 239)]
and to fibrosis. In fact, platelets release multiple fibrogenic
mediators, such as transforming growth factor beta, platelet-
derived growth factor, CXCL4 (also known as platelet factor 4),
beta-thromboglobulin, serotonin and HMGB1 (27, 97, 242–244).
NETs promote fibroblast differentiation and function and might
synergise with platelet in supporting fibrosis (192), also in light of
the abundance of NET byproducts in the blood of patients with
SSc (40). Synergistic NET/platelet-induced fibrosis is expected
to be particularly significant in lung tissue, where neutrophil
and platelets are abundant (189). Consistently, PDµP (retrieved
from the plasma of patients with SSc) induce neutrophil granule
mobilization and autophagy, culminating in extended neutrophil
survival and generation of NETs through a HMGB1-dependent
mechanism. Furthermore, neutrophils stimulated by SSc platelet
microparticles migrate in murine lungs, associate with interstitial
endothelial damage and promote lung fibrosis (40).

Rheumatoid Arthritis
Rheumatoid arthritis is a relatively frequent autoimmune
disease characterized by prominent involvement of the synovial
joints. Although extra-skeletal manifestations are relatively
less frequent compared to other immune-mediated diseases,
patients with RA show an increased ischemic risk, pointing
to the existence of a core pathophysiological event linking
inflammatory manifestations to vascular dysfunction (245).

Neutrophils undergoing NET generation might provide
autoantigens in RA. Patients in fact frequently develop
antibodies against citrullinated peptides (ACPA). Citrullination
occurs thanks to the activity of deiminating enzymes, such as
protein-arginine deiminase 4 (PAD4), abundantly expressed

in neutrophils (246). Citrullinated histones constitute a
fundamental component of chromatin threads within NETs
(73, 247). Platelets might also contribute to ACPA formation
due to their expression of vimentin, a preferential target
of citrullination (248). ACPA sustain joint inflammation
by perpetuating macrophage activation within the synovia,
eventually causing chronically elevated levels of tumor
necrosis factor alpha (TNFα), which in turn promotes
synovial proliferation, bone reabsorption, neoangiogenesis and
enhanced synovial infiltration through activated endothelium
(249). Enhanced expression of TF on activated platelets and
neutrophils, which coexist in the synovial fluid of inflamed
joints in patients with RA, provides an interesting hint on
potential mechanisms involved in RA-associated enhanced
ischemic risk. Platelets and leukocytes from patients with
RA are activated due increased plasmatic concentration of
TNFα (140). Indeed, platelet respond to TNFα thanks to the
expression of TNF receptors 1 and 2 (250) resulting in increased
P-selectin expression, platelet degranulation, phosphatidylserine
up-regulation and TF expression. TNFα-activated platelets
prompt thrombin generation and activation of leukocytes due
to P-selectin. Consistently, platelet and leukocyte activation is
reduced in patients treated with anti-TNF agents (140), who
also face relatively lower rates of cardiovascular events in the
long-term (251, 252).

Platelets can be activated by collagen through the
megakaryocyte lineage-specific glycoprotein VI and
thus prompted to generate microparticles. Boilard and
colleagues (253) showed that, following this mechanism,
high concentrations of PDµP (possibly shuttled by engaging
leukocytes) are detectable in synovial fluid of patients with
RA and are required for arthritis development in a murine
model. PDµP contain significant amounts of interleukin
1α and β, promoting synoviocyte proliferation, and of IL8,
enhancing neutrophil recruitment and ensuring maintenance of
inflammation (253).

CONCLUSION

Platelets and neutrophils are major determinants of the
immune-hemostatic continuum and extensively interact based
on cell-cell contact and/or exchange of soluble signals and
microparticles to synergise in contrasting the noxious effects
of endogenous or environmental stimuli toward vessel and
tissue integrity and to promote physiological tissue renewal
and homeostasis. These events, part of a set of simple,
innate, but evolutionarily preserved stereotyped responses, are
disproportionately active and self-sustained in patients with
immune-mediated diseases, such as systemic vasculitides, SLE,
SSc, RA and possibly allergic disorders and might account for
the development of either some inflammatory manifestations
and of cardiovascular complications. Patients with immune-
mediated diseases consistently show signs of platelet (and/or
PDµP) activation, possibly prompting either the formation of
heterotypic aggregates with neutrophils (as in giant cell arteritis)
or neutrophil activation toward enhanced survival and eventually
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NET generation (as observed in small-vessel vasculitis, SLE, RA
and to a higher extent SSc). Diagnostic and therapeutic strategies
currently employed in the setting of autoimmune diseases to
prevent disease progression and the occurrence of secondary
complications are generally not targeted on these pathogenic
mechanisms, suggesting the existence of a largely unexplored
window of opportunity to improve survival and quality of life for
patients by dampening sustained neutrophil-platelet interactions.
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