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Abstract
The	miniaturization	and	affordability	of	new	technology	is	driving	a	biologging	revo‐
lution	in	wildlife	ecology	with	use	of	animal‐borne	data	logging	devices.	Among	many	
new	biologging	technologies,	accelerometers	are	emerging	as	key	tools	for	continu‐
ously	recording	animal	behavior.	Yet	a	critical,	but	under‐acknowledged	considera‐
tion	 in	 biologging	 is	 the	 trade‐off	 between	 sampling	 rate	 and	 sampling	 duration,	
created	 by	 battery‐	 (or	 memory‐)	 related	 sampling	 constraints.	 This	 is	 especially	
acute	among	small	animals,	causing	most	researchers	to	sample	at	high	rates	for	very	
limited	durations.	Here,	we	 show	 that	high	accuracy	 in	behavioral	 classification	 is	
achievable	when	pairing	 low‐frequency	 acceleration	 recordings	with	 temperature.	
We	conducted	84	hr	of	direct	behavioral	observations	on	67	free‐ranging	red	squir‐
rels	(200–300	g)	that	were	fitted	with	accelerometers	(2	g)	recording	tri‐axial	accel‐
eration	 and	 temperature	 at	 1	Hz.	We	 then	 used	 a	 random	 forest	 algorithm	 and	 a	
manually	created	decision	tree,	with	variable	sampling	window	lengths,	to	associate	
observed	behavior	with	 logger	 recorded	acceleration	and	temperature.	Finally,	we	
assessed	the	accuracy	of	these	different	classifications	using	an	additional	60	hr	of	
behavioral	 observations,	 not	 used	 in	 the	 initial	 classification.	 The	 accuracy	 of	 the	
manually	 created	 decision	 tree	 classification	 using	 observational	 data	 varied	 from	
70.6%	to	91.6%	depending	on	the	complexity	of	the	tree,	with	increasing	accuracy	as	
complexity	decreased.	Short	duration	behavior	like	running	had	lower	accuracy	than	
long‐duration	behavior	 like	 feeding.	The	 random	forest	algorithm	offered	similarly	
high	overall	accuracy,	but	the	manual	decision	tree	afforded	the	flexibility	to	create	a	
hierarchical	 tree,	and	to	adjust	sampling	window	 length	for	behavioral	states	with	
varying	durations.	Low	frequency	biologging	of	acceleration	and	temperature	allows	
accurate	behavioral	classification	of	small	animals	over	multi‐month	sampling	dura‐
tions.	Nevertheless,	low	sampling	rates	impose	several	important	limitations,	espe‐
cially	related	to	assessing	the	classification	accuracy	of	short	duration	behavior.
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1  | INTRODUC TION

In	 recent	years,	accelerometers	have	become	an	 important	 tool	 in	
ecology,	 initially	used	 in	marine	ecosystems	where	direct	observa‐
tions	are	difficult	and	the	need	for	a	device	that	records	what	can‐
not	be	observed	was	necessary	 (Brown,	Kays,	Wikelski,	Wilson,	&	
Klimley,	2013;	Yoda	et	al.,	1999).	Since	then,	there	has	been	a	slow	
integration	of	these	dataloggers	by	terrestrial	wildlife	biologists	to	
aid	in	the	quantification	of	energy	expenditure,	activity	levels,	and	
animal	behavior	(Gleiss,	Wilson,	&	Shepard,	2011;	Wilson,	Shepard,	
&	Liebsch,	2008).	An	exciting	opportunity	afforded	by	biologgers	is	
the	potential	to	document	how	the	behavior	of	free‐ranging	animals,	
including	their	time	budgets	(McClintock,	Russell,	Matthiopoulos,	&	
King,	2013),	movement	rates	(Heurich	et	al.,	2014),	and	occurrence	of	
specific	acts	like	predation	(Williams	et	al.,	2014),	mating	(Whitney,	
Pratt,	 Pratt,	 &	 Carrier,	 2010),	 specialized	 feeding	 (Watanabe	 &	
Takahashi,	 2013),	 or	 refuge	 occupation	 (Körtner	 &	 Geiser,	 2000),	
corresponds	with	 temporal	 variation	 in	 temperature,	 photoperiod,	

and	 resource	 availability	 operating	 over	 daily	 (e.g.,	 photoperiod),	
monthly	(e.g.,	moon	phase),	annual	(e.g.,	seasons),	and	multi‐annual	
time	scales.	However,	constraints	 related	to	biologger	battery	 life,	
memory	 capacity,	 and	 device	 size	 generate	 a	 trade‐off	 between	
sampling	 rate	 (frequency	of	 recording)	 and	 sampling	duration	 (the	
recording	interval	between	the	start	and	end	of	observations).	While	
high	sampling	rates	are	attractive	because	they	offer	more	accurate	
information	at	higher	temporal	resolution,	they	often	require	sam‐
pling	durations	that	are	much	shorter	than	many	ecologically	import‐
ant	timescales.	Small	animals	that	cannot	carry	large	biologgers	are	
most	constrained	in	this	way.

The	 sampling	 rate	 versus	 duration	 trade‐off	 is	made	more	 ex‐
treme	with	accelerometers	by	 the	 recommendation	 that	 recording	
frequencies	need	to	be	at	least	twice	that	of	the	highest	frequency	
movement	of	the	individual	(Brown	et	al.,	2013).	For	small	species,	
which	 consequentially	 have	 the	 highest	 stride	 frequencies	 (Bejan,	
Marden,	 &	 Ansell,	 2006),	 this	 requires	 a	 recording	 frequency	 be‐
tween	8	and	100	Hz	(Brown	et	al.,	2013).	This	results	in	a	potential	
maximum	recording	longevity	in	the	order	of	minutes	to	days,	unless	
sub‐sampling	techniques	are	used	(Hammond,	Springthorpe,	Walsh,	
&	Berg‐Kirkpatrick,	 2016).	Unfortunately,	 such	 short	 sampling	du‐
ration	severely	constrains	the	forms	and	extent	of	 temporal	varia‐
tion	that	can	be	incorporated	into	behavioral	studies.	An	alternative	
method	is	to	extend	the	sampling	duration	by	reducing	the	sampling	
rate.	If	behavioral	classification	is	possible	at	recording	frequencies	
of	1	Hz	or	 slower,	 sampling	period	 could	be	 increased	 from	hours	
or	days	to	weeks,	months,	or	years,	again	depending	on	the	size	of	
the	tag	possible	given	animal	mass.	However,	 the	few	studies	that	
have	 directly	 tested	 this	 possibility	 suggested	 that	 low	 recording	
frequencies	have	significantly	reduced	accuracy	when	using	current	
classification	methods	(Broell	et	al.,	2013;	Pagano	et	al.,	2017;	Wang	
et	al.,	2015).

For	species‐specific	calibrations,	a	variety	of	methods	have	been	
proposed	for	the	conversion	of	raw	acceleration	values	into	behav‐
ioral	 states	 (Bidder	et	 al.,	 2014;	Collins	et	 al.,	 2015;	Nathan	et	 al.,	
2012).	Many	methods	use	supervised	machine	 learning	algorithms	
and	among	the	most	popular	methods	is	the	random	forest	algorithm	
(Breiman,	2001),	which	uses	known	data	to	generate	numerous	de‐
cision	 trees	and	calculates	 the	overall	 relative	 importance	of	each	
variable	with	which	 it	was	 provided	 (Graf	 et	 al.,	 2015).	 The	 black	
box	nature	and	data	specificity	of	these	methods	makes	it	difficult	
for	researchers	to	assess	the	logic,	validity,	and	accuracy	of	apply‐
ing	classification	schemes	developed	with	training	data	to	new	ap‐
plications	lacking	training	data	(Bidder	et	al.,	2014;	McClune	et	al.,	
2014).	As	alternatives	to	such	methods,	arguments	have	been	raised	
for	more	simplified	analytical	techniques	such	as	manually	creating	
decision	trees	(Collins	et	al.,	2015).	Although	more	time	consuming,	
the	hands‐on	nature	of	this	approach,	likely	results	in	a	more	com‐
prehensible	classification	that	should	be	more	easily	transferable	to	
new	applications.

In	addition	to	acceleration,	many	accelerometer	devices	designed	
for	wildlife	research	are	equipped	with	built‐in	temperature	loggers	
(Figure	 1).	 Although	 often	 overlooked	 and	 under	 used,	 recorded	

F I G U R E  1  Example	of	temperature	and	acceleration	biologger	
data	on	red	squirrels	demonstrating	the	distinct	signatures	of	
different	behavioral	states.	This	includes	in	(black	bars)	and	out	
(gray	bars)	of	the	nest	in	the	temperature	data	during	both	winter	
and	summer,	and	running,	feeding,	not	moving,	and	foraging	
signatures	in	acceleration	data
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temperature	 can	 provide	 important	 supplementary	 information	
about	 an	 individual	 and	 its	 thermal	micro‐environment.	When	 at‐
tached	externally	 to	an	animal,	 the	 temperature	 recorded	 is	often	
intermediate	 between	 body	 temperature	 and	 the	 ambient	 tem‐
perature	of	 the	environment	 immediately	 surrounding	 the	 individ‐
ual	(Osgodd	&	Weigl,	1972;	Studd,	Boutin,	McAdam,	&	Humphries,	
2016;	Tremblay,	Cherel,	Oremus,	Tveraa,	&	Chastel,	2003).	This	tem‐
perature	 intermediacy	 likely	accounts	 for	 their	 rarity	of	use;	collar	
temperature	 is	 not	 a	 reliable	measure	 of	 body	 temperature	 or	 air	
temperature	(Audet	&	Thomas,	1996;	van	Beest,	Moorter,	&	Milner,	
2012).	However,	depending	on	the	ecology	of	the	species	and	which	
of	 these	 two	 temperatures	 vary	 more,	 collar	 temperature	 can	 be	
used	to	monitor	thermal	exposure	 (Osgodd	&	Weigl,	1972;	Kanda,	
Fuller,	&	Friedland,	2009)	or	heterothermic	fluctuations	indicative	of	
torpor	expression	or	hibernation	(Lazerte	&	Kramer,	2016).	Most	per‐
tinent	here,	collar	temperature	likely	offers	useful	information	about	
behavioral	state,	as	 it	tends	to	more	closely	approximate	the	body	
temperature	of	inactive	animals	confined	in	small	spaces	(e.g.,	ther‐
mal	 refuges)	and	 to	more	closely	approximate	 the	air	 temperature	
experienced	by	active	animals	fully	exposed	to	ambient	conditions	
(Körtner	&	Geiser,	2000;	Messier,	Taylor,	&	Ramsay,	1994;	Murray	&	
Smith,	2012;	Olson	et	al.,	2017;	Wassmer	&	Refinetti,	2016).

An	 ideal	 candidate	 for	 investigating	 the	 potential	 for	 low	 fre‐
quency	recordings	is	the	North	American	red	squirrel	(Tamiasciurus 
hudsonicus),	 as	 their	 small	 size	 (~250	g)	 drastically	 restricts	 poten‐
tial	battery	life	of	biologging	devices.	This	diurnal	homeotherm	uses	
insulated	nests	during	rest	periods,	and	remains	active	year‐round	
(Guillemette	et	al.,	2009;	Humphries	et	al.,	2005).	 In	 the	northern	
boreal	 forest,	 they	 larder	 hoard	 resources	 every	 autumn	 to	 sus‐
tain	 activity	 and	 reproduction	during	 the	winter,	 resulting	 in	 large	
variation	 in	 activity	 and	 energy	 expenditure	 throughout	 the	 year	
(Fletcher	 et	 al.,	 2013;	 Humphries	 et	 al.,	 2005;	 McAdam,	 Boutin,	
Sykes,	&	Humphries,	2007).	Due	to	the	fact	that	they	are	diurnal,	and	
actively	defend	small	 (0.3	ha)	 territories	 (LaMontagne	et	al.,	2013;	
Smith,	1968),	individuals	are	relatively	easy	to	capture	and	observe	
in	the	wild.

Here,	we	used	a	 combination	of	 low‐frequency	 (1	Hz)	 accel‐
eration	and	temperature	recordings	on	free‐ranging	red	squirrels	
to	develop	methods	for	biologger‐based	behavioral	classification.	
Our	main	objective	was	 to	determine	whether	accurate	classifi‐
cations	can	be	achieved	using	low‐frequency	accelerometer	and	
temperature	recordings	from	a	small	animal,	and	determine	what	
modifications	 to	common	 recommendations	 for	behavioral	 clas‐
sification	methods	of	accelerometer	data	would	be	needed.	The	
first	part	of	our	analysis	develops	a	method	that	integrates	tem‐
perature	data	into	the	behavioral	classification	allowing	for	iden‐
tification	of	whether	or	not	the	 individual	 is	 in	a	thermal	refuge	
or	not.	The	second	part	of	our	analysis	explores	different	analyt‐
ical	approaches	to	the	accelerometer	classification	to	determine	
best	practices	for	 low‐frequency	data.	We	initially	complete	the	
classification	using	the	commonly	used	random	forest	approach,	
and	use	this	to	explore	how	selection	of	sample	window	size	can	
affect	both	the	accuracy	of	the	classification	and	structure	of	the	 TA
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resulting	 behavioral	 dataset.	 Using	 this	 information	 on	 sample	
window	size,	we	then	manually	create	a	hierarchical	decision	tree	
that	starts	with	the	broadest	classification	of	behavior	(2‐behav‐
ior:	 not	 moving,	 moving)	 and	 then	 expands	 in	 detail	 with	 each	
subsequent	 branch	 until	 a	 6‐behavior	 classification	 is	 reached	
(see	Table	1	for	description	of	each	stage).	This	approach	creates	
a	tree	that	can	be	easily	clipped	for	the	level	of	detail	that	is	de‐
sired	for	different	ecological	questions.	Finally,	we	compare	the	
accuracy	of	the	classification	using	the	random	forest	algorithm	
to	that	of	our	manually	created	decision	tree.	This	study	demon‐
strates	that	manually	created	decision	trees	give	a	greater	level	of	
understanding	and	control	over	the	classification,	and	allows	ad‐
justment	of	sampling	windows	to	the	characteristics	of	naturally	
occurring	behavior.	We	show	how	to	achieve	accurate	behavioral	
classifications	on	free‐ranging	small	animals	using	low‐frequency	
accelerometer	 recordings	 and	 conclude	by	 highlighting	 some	of	
the	difficulties	that	may	be	faced	when	trying	to	implement	this	
method	 on	 other	 free‐ranging	 species,	 as	 well	 as	 how	 best	 to	
overcome	them.

2  | MATERIAL S AND METHODS

2.1 | Study site and species

Between	February	and	October	2014,	we	studied	free‐ranging	North	
American	red	squirrels	in	southwestern	Yukon	(61°N,	138°W),	a	pop‐
ulation	that	has	been	part	of	a	long‐term	study	since	1987	(McAdam	
et	al.,	2007).	Male	squirrels	were	trapped	on	their	territories	using	
Tomahawk	 live	 traps	 baited	with	 peanut	 butter,	 and	 fitted	with	 a	
collar	(total	weight	=	8	g)	combining	a	ventrally	mounted	VHF	radio‐
transmitter	(model	PD‐2C,	4	g	[1.7%	of	body	mass],	Holohil	Systems	
Limited,	Carp,	ON,	Canada)	and	a	dorsally	mounted	tri‐axial	acceler‐
ometer	(model	Axy2,	4	g	[1.7%	of	body	mass],	Technosmart	Europe).	
Accelerometers	were	set	to	record	forces	between	−8	and	8	gforce	at	
1	Hz.	Collars	were	constructed	in	the	field	on	day	of	deployment	(see	
Supporting	 Information	 Appendix	 S1:	 Section	 1.1).	 Once	 collared,	
squirrels	were	released	and	remained	free‐ranging,	including	during	
focal	observations	(see	below),	until	they	were	recaptured	an	aver‐
age	of	22	days	(range	5–65)	later	and	collars	were	removed.	During	
2014,	we	deployed	37	accelerometers	on	20	individual	red	squirrels	
in	winter	(February)	and	mating	season	(March),	25	accelerometers	
on	18	individuals	in	summer,	and	30	accelerometers	on	30	individu‐
als	in	autumn	for	a	total	of	1,924	days	of	recordings.

2.2 | Behavioral observations and scoring

We	 used	 two	methods	 to	 record	 instantaneous	 behavioral	 states	
of	free‐ranging	red	squirrels.	In	winter	2014,	we	located	individuals	
using	VHF	and	continuously	recorded	behavior	for	2	min	using	an	ap‐
plication	built	for	iPod	touch	(see	Supporting	Information	Appendix	
S1:	Section	1.2).	Six	behavioral	 states	were	 recorded:	 feeding,	not	
moving,	in	nest,	running,	slow	travel,	and	stationary	movement	(de‐
fined	as	not	traveling	but	still	moving:	e.g.,	grooming,	vocalizing).

In	autumn	2014,	in	addition	to	recording	continuous	behavior	on	
the	 iPod	app,	we	 located	 individuals	 and	 recorded	behavior	with	a	
video	camera	(Sony	Handycam	HDR‐CX240)	for	as	long	as	the	indi‐
vidual	was	visible.	Videos	were	watched	by	two	observers	and	scored	
in	real	time,	recording	the	start	and	end	time	of	each	behavior.	Autumn	
behavior	was	categorized	as:	caching,	clipping	cones,	digging,	feed‐
ing,	grooming,	 running,	slow	travel,	and	vocalizing.	For	all	analyses,	
observed	behavior	was	then	combined	into	in	nest,	not	moving,	feed‐
ing,	foraging	(caching,	clipping	cones,	digging,	slow	travel),	stationary	
movement	 (grooming,	 vocalization),	 and	 traveling	 (see	 Supporting	
Information	Video	S1).	Over	both	winter	and	autumn	deployments,	
we	completed	1,165	two‐minute	observations	on	20	individuals,	and	
video‐recorded	a	total	of	83.8	hr	of	direct	observation	on	27	individ‐
uals	with	videos	ranging	from	15	s	to	12	min	in	duration.

2.3 | Adjusting for time errors

Although	we	made	every	effort	to	ensure	that	accelerometers	and	
time	 devices	 used	 for	 behavioral	 observations	were	 synchronized	
upon	deployment,	 the	 internal	 clocks	on	 the	different	devices	did	
not	run	precisely	at	the	same	rate.	This	resulted	in	small	deviations,	
in	the	order	of	seconds,	that	would	not	be	noticed	if	only	a	single	re‐
cording	device	was	used.	However,	when	trying	to	synchronize	and	
cross‐reference	observations	 recorded	by	 two	devices,	 such	as	an	
accelerometer	and	a	 focal	observation	app,	 these	small	deviations	
were	significant,	especially	because	most	recorded	behavior	lasted	
for	only	a	few	seconds.	We	corrected	the	time	on	the	observations	
by	 aligning	 abrupt	 changes	 in	 acceleration	with	 abrupt	 changes	 in	
observed	movement	data	(resting	to	traveling,	and	vice	versa)	on	the	
two	devices	(see	Supporting	Information	Appendix	S1:	Section	1.3	
for	details).	We	removed	from	future	analysis	all	squirrels	for	which	
there	was	not	an	abrupt	change	in	the	observed	data	during	a	given	
day	(320	of	403	squirrel	days),	leaving	46	squirrel	days	(12	individu‐
als;	 378	min)	 from	 the	winter	 and	37	 squirrel	 days	 (18	 individuals;	
326	min)	from	the	autumn	observational	periods	in	the	analysis.

2.4 | In nest versus out of nest

Red	squirrels	spend	considerable	amounts	of	time	in	their	nests,	dur‐
ing	which	time	they	mostly	rest.	The	first	stage	of	our	classification	
was	to	identify	whether	or	not	the	individual	was	in	a	nest.	The	ac‐
celerometer	units	recorded	temperature	in	addition	to	acceleration	
(Figure	1).	Following	a	similar	method	used	by	Studd	et	al.	(2016),	we	
inferred	nest‐use	based	on	the	concept	that	the	ambient	tempera‐
ture	of	the	local	environment	(i.e.,	surrounding	the	squirrel)	is	warm	
and	stable	when	in	the	nest,	and	cold	and	variable	when	out	of	the	
nest.	Before	analysis,	all	temperature	data	were	smoothed	to	filter	
out	erroneous	recordings	(see	Supporting	Information	Appendix	S1:	
Section	1.4).	For	each	day	of	recordings	(12	p.m.–12	p.m.),	we	used	
k‐means	clustering	constrained	to	two	clusters	to	determine	a	daily	
threshold	temperature,	above	which	a	squirrel	was	considered	to	be	
in	the	nest	(Studd	et	al.,	2016).	This	threshold	is	unique	to	each	squir‐
rel	and	day	to	account	for	changes	in	nest	insulation	(Guillemette	et	
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al.,	2009),	orientation	of	collar,	and	daily	ambient	 temperature.	As	
there	are	some	occasions	when	squirrels	were	observed	to	be	active	
and	out	of	the	nest	but	the	temperatures	were	above	the	threshold,	
possibly	as	a	result	of	the	individual	sitting	in	the	sun,	we	imposed	an	
additional	constraint	using	the	squirrel's	activity	levels	from	the	ac‐
celerometer	data.	We	assumed	that	squirrels	use	nests	primarily	for	
resting	and,	therefore,	should	not	be	moving	most	of	the	time	they	
are	in	the	nest.	Thus,	we	calculated	the	proportion	of	each	nest	bout	
that	the	squirrel	was	moving	versus	not	moving	(using	the	method	
below)	and	reclassified	any	nest	bout	where	the	ratio	of	moving	to	
not	moving	was	above	1,	as	being	out	of	the	nest.

2.5 | Moving versus not moving

Prior	 to	 all	 accelerometer	 analysis,	 we	 separated	 the	 static	 accel‐
eration	from	the	dynamic	acceleration	by	applying	a	running	means	
smoothing	 function	 at	 a	window	 of	 91	s.	 Following	methods	 pro‐
posed	by	Shepard	et	al.	(2008)	on	selecting	appropriate	window	size	
for	the	smoothing,	we	completed	a	sensitivity	analysis	of	the	window	
on	 the	estimation	of	overall	 dynamic	 acceleration	 (see	Supporting	
Information	Appendix	 S1:	 Section	1.5).	Although	body	orientation	
and	posture	can	be	determined	from	the	static	acceleration,	we	only	
used	 the	 dynamic	 acceleration	 (raw	 acceleration	minus	 smoothed	
acceleration)	for	all	analysis.

The	first	level	of	classification	of	the	accelerometer	data	was	to	
determine	when	the	squirrels	were	moving	or	not	moving	(Figure	2).	
In	 most	 deployments,	 accelerometers	 would	 be	 turned	 on,	 pack‐
aged,	and	then	sat	on	a	table	for	30	min	to	8	hr	prior	to	being	de‐
ployed.	 We	 selected	 a	 1,000	s	 section	 during	 this	 time	 from	 36	
accelerometers	(14	winter,	22	autumn	deployments),	and	calculated	
the	delta	dynamic	body	acceleration	(ΔDBA),	defined	as:

where	 the	 change	 in	 dynamic	 acceleration	 (Δa)	 for	 the	 surge	 (x),	
sway	(y),	and	heave	(z)	axis	is	calculated	for	each	recording	and	then	
summed	across	a	sample	window	(t).	From	our	data	of	devices	sitting	
still,	we	selected	the	99.9%	quantile	of	these	ΔDBA	measurements	
at	a	sample	window	(defined	as	the	no.	of	consecutive	acceleration	
records	over	which	the	statistic	is	calculated)	of	14	s	as	the	threshold	
(1.06	gforce;	Figure	2),	above	which	the	device	was	considered	to	be	
moving	and	below	which	to	be	not	moving.

2.6 | If moving: Feeding versus foraging 
versus traveling

For	 the	 next	 stage	 of	 our	 hierarchical	 classification	 (Figure	 2),	we	
took	all	accelerometer	data	that	indicated	periods	of	movement	and	
divided	them	into	the	three	most	common	moving	behavioral	states	
(feeding,	foraging,	and	running;	97.4%	of	observed	movement).	Using	
the	random	forest	classification	algorithm	in	R	(Svetnik	et	al.,	2003),	
we	tested	the	degree	to	which	accuracy	of	classification	varied	with	
the	chosen	sample	window	(2,	4,	7,	10,	14,	20,	and	30	s).	For	this,	we	
separated	the	focal	observation	data	 into	segments	of	the	desired	
sample	windows,	identified	the	most	common	behavior	within	these	
sample	windows,	 calculated	 their	duration,	 and	 selected	only	 seg‐
ments	that	met	the	following	criteria:	100%	of	sample	window	was	
feeding,	at	least	75%	was	foraging	with	0%	running,	or	at	least	51%	
was	running	(as	running	rarely	continuously	lasted	for	more	than	4	s).	
To	create	our	training	dataset,	we	randomly	sampled	equal	numbers	
of	each	behavior	from	this	pool	of	segments.	Across	each	window,	
we	calculated	six	summary	statistics	on	the	dynamic	acceleration	of	
each	axis	(mean,	standard	deviation,	maximum,	sum,	range,	and	sum	
of	Δa),	 the	 overall	 dynamic	 body	 acceleration	 (ODBA;	 sum	of	 the	
absolute	values	of	dynamic	acceleration;	Wilson	et	al.,	2006),	ΔDBA,	
minimum	Δa,	maximum	Δa,	maximum	acceleration,	mean	pitch,	and	
mean	roll	using	all	three	axes	together	for	a	total	of	25	different	sum‐
mary	statistics.	All	statistics	were	input	into	the	random	forest	algo‐
rithm	using	75%	of	observations	for	training	(growing	2,000	trees),	
and	25%	for	calculating	the	accuracy.

As	an	alternative	method,	we	constructed	a	manual	decision	tree	
for	classification	using	R	(R	Core	Team,	2017).	Our	first	division	of	
moving	behavior	was	into	two	categories:	feeding	and	traveling.	We	
selected	a	sample	window	of	10	s;	we	considered	this	sample	win‐
dow	to	be	long	enough	that	only	the	two	behavioral	states	of	inter‐
est	would	 be	 relevant	 (those	 that	 naturally	 occur	 at	 that	 duration	
or	longer).	Following	rationale	suggested	by	Collins	et	al.	(2015),	we	

ΔDBA=

t
∑

i=1

Δaxi+Δayi+Δazi

F I G U R E  2  Classification	decision	tree	of	behavior	from	animal‐
borne	acceleration	and	temperature	biologgers	on	wild	North	
American	red	squirrels.	Red	squirrel	use	of	insulated	nests	can	be	
identified	through	temperature	signatures	while	behavioral	state	
can	be	classified	using	acceleration.	Classification	was	done	at	
sample	windows	relevant	to	the	natural	duration	of	each	behavior.	
For	example,	short	duration	behavior	like	running	was	classified	at	
4	s	sample	windows.	Values	in	dark	gray	are	the	summary	statistics	
and	threshold	values	(in	gforce)	used	for	each	division
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initially	plotted	histograms	of	all	summary	statistics	for	each	behav‐
ioral	category	to	visually	determine	which	statistic	had	the	clearest	
division	between	the	two	behavioral	states	(Figure	3).	We	then	ran	
an	optimization	calculating	the	%	error	of	classification	of	known	be‐
havior	across	a	range	of	values	of	that	statistic	to	determine	a	thresh‐
old	 value.	 This	 method	 is	 easily	 repeatable	 for	 separation	 of	 any	
behavioral	 states	 and	was	 used	 to	 subsequently	 separate	 running	
from	other	forms	of	traveling	(foraging),	using	only	the	segments	of	
behavior	that	were	correctly	classified	in	the	previous	division.	Since	
the	average	duration	of	running	behavior	in	red	squirrels	is	4	s	(see	
Section	3),	we	ran	this	last	division	at	a	4	s	sample	window.

2.7 | Testing overall accuracy

Once	our	decision	tree	was	built,	we	tested	the	accuracy	in	two	ways:	
(a)	 at	high	 resolution	with	 the	 full	 observational	dataset	of	detailed	
continuous	 behavioral	 observations	 used	 in	 the	 training	 as	 is	 com‐
monly	done	in	accelerometer	calibrations	(Bidder	et	al.,	2014),	and	(b)	
at	lower	resolution	with	a	7	min	behavioral	observation	data	set	that	
was	 collected	 concurrently	 during	 autumn	 2014.	We	 chose	 to	 test	

accuracy	at	two	resolutions	to	explore	whether	issues	with	the	time	
alignment	may	be	influencing	the	accuracy	values	at	the	high	resolu‐
tion.	These	 latter	observations	recorded	behavior	of	each	 individual	
squirrel	every	30	s	for	7	min,	as	well	as	the	occurrence	of	critical	inci‐
dents	defined	as	vocalizations,	caching,	and	new	feeding	events.	From	
these	(n	=	509),	we	selected	only	those	7	min	observations	where	the	
individual	spent	95%	of	the	observations	feeding	(n	=	45),	or	traveling	
(n	=	50).	For	 this	analysis,	 traveling	was	defined	as	any	combination	
of	foraging	and	running	as	they	always	co‐occurred	over	the	course	
of	7	min.	To	eliminate	issues	of	time	alignment,	we	selected	the	inner	
5	min	 of	 these	 observational	 periods	 and	 tested	whether	 the	most	
common	behavior	from	the	accelerometer	classification	aligned	with	
the	most	common	behavior	during	 those	5‐min	periods.	To	test	ac‐
curacy	of	in/out	of	the	nest	for	both	accuracy	measures,	we	assumed	
that	since	squirrels	are	diurnal	and	are	known	to	sleep	in	nests	that	
the	majority	 of	 each	 night	 all	 squirrels	 should	 be	 in	 nest.	Thus,	we	
randomly	 selected	 400,	 15‐s	 samples	 between	 10	p.m.	 and	 4	 a.m.	
from	 accelerometers	 that	 were	 deployed	 during	 winter	 (n	=	200)	
and	 autumn	 2014	 (n	=	200)	 and	 labeled	 them	 as	 in	 nest.	Accuracy	
was	calculated	for	each	step	of	the	hierarchical	decision	tree	(2,	4,	5,	
and	6‐behavior	classifications;	Table	1)	on	a	random	subsample	of	50	
observational	event	for	each	behavior	in	the	respected	classification.	
We	calculated	the	average	accuracy	and	standard	deviation	for	each	
behavior	by	repeating	the	subsampling	process	100	times.	Accuracy	
was	calculated	for	the	lower	resolution	behavioral	dataset	following	
the	same	method	with	 the	exception	that:	 (a)	each	subsampling	se‐
lected	15	random	observational	events	for	each	behavioral	state	due	
to	lower	total	sample	size,	and	(b)	only	for	the	5‐behavior	classifica‐
tion	tree	due	to	which	behavioral	states	were	recorded	at	this	lower	
resolution.

2.8 | Red squirrel seasonal time budgets

We	calculated	 the	 average	 time	budget	 per	 season	 for	 red	 squir‐
rels	using	all	accelerometer	recordings	used	for	the	calibration.	We	
selected	a	10‐day	period	in	each	season	(winter:	February	15–25,	
n	=	15;	mating:	March	10–20,	n	=	9;	 summer:	 June	10–20,	n	=	12;	
autumn:	September	5–15,	n	=	24)	and	included	all	squirrels	that	had	
accelerometer	recordings	during	that	time.	All	recordings	were	con‐
verted	to	behavior	using	our	decision	tree	(Figure	2),	and	the	pro‐
portion	of	each	day	spent	doing	each	behavior	was	calculated.	To	
test	whether	time	budgets	varied	with	season,	we	used	a	MANOVA	
analysis	with	 a	 Pillai	 test	 in	R	 (Fox	&	Weisberg,	 2011)	where	 the	
number	 of	 seconds	per	 day	 spent	 doing	 each	of	 six	 the	behavio‐
ral	states	were	the	dependent	variables,	and	season	and	squirrel	id	
were	the	explanatory	variables.

3  | RESULTS

3.1 | In nest versus out of nest

Using	a	k‐means	cluster	analysis	to	determine	daily	threshold	tem‐
peratures	for	in/out	of	the	nest	and	a	movement‐based	correction,	

F I G U R E  3  Example	of	methodology	used	for	determination	of	
threshold	values	in	separating	two	behavioral	states.	Histograms	
of	summary	statistics	were	plotted	to	determine	which	statistics	
visually	had	the	clearest	distinction	between	two	behavioral	states	
(a).	The	optimal	threshold	value	was	then	determined	by	assessing	
the	accuracy	of	classification	of	each	known	behavior	across	the	
selected	summary	statistic	(b).	Here,	ODBA	showed	a	clear	division	
between	red	squirrel	feeding	and	traveling	(a)	and	an	ODBA	value	
of	6.2	gforce	produced	the	highest	overall	accuracy	(92.1%;	b)
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we	achieved	an	overall	nest	classification	accuracy	of	91.6	±	2.5%.	
The	classification	had	higher	accuracy	for	the	out	of	nest	(observed	
feeding,	or	traveling)	category	(93.8	±	3.4%)	than	for	the	in	nest	cat‐
egory	(89.3	±	3.9%).

3.2 | Moving and not moving classification (Two 
behavior level)

Before	 testing	 the	 accuracy	 of	 the	 moving/not	 moving	 threshold	
(ΔDBA	=	1.06),	we	removed	all	behavior	classified	as	“in	nest”	from	
the	testing	dataset	as	we	did	not	have	visual	confirmation	of	whether	
the	individuals	were	moving	or	not	while	in	the	nest.	On	the	remain‐
ing	training	data	set	of	known	behavior,	the	threshold	had	an	overall	
accuracy	of	90.3	±	2.3%.	The	accuracy	of	known	not	moving	behavior	
was	83.9	±	4.7%,	and	for	known	moving	behavior	was	96.9	±	2.3%.

3.3 | Classifying moving behavior

We	tested	how	different	sampling	windows	influenced	classifica‐
tion	 accuracy	 of	 the	 random	 forest	machine	 learning	 algorithm.	
The	 overall	 accuracy	 increased	 with	 increasing	 sample	 window	
size	from	84.8%	correct	classification	at	2	s	to	90.2%	at	20	s	be‐
fore	decreasing	at	the	longest	window	size	(Figure	4).	The	ability	
to	 distinguish	 feeding	 behavior	was	 consistently	 above	 90%	 for	
all	 sample	windows	 increasing	 from	2	to	20	s.	Foraging	and	run‐
ning	varied	from	77%	to	90.0%	accuracy.	However,	using	different	

sample	window	sizes	influenced	the	average	duration	of	each	be‐
havior	classified	through	the	analysis	(Table	2).

The	first	step	of	the	manual	decision	tree	method	was	to	sepa‐
rate	feeding	behavior	(consumption	of	food)	from	traveling	(forag‐
ing	and	running).	We	identified	that	ODBA	provided	the	clearest	
division	between	the	two	categories.	Optimization	across	a	range	
of	 ODBA	 values	 produced	 the	 highest	 classification	 accuracy	
(92.1%)	at	a	threshold	of	6.2	gforce	(Figure	3).	Since	the	natural	av‐
erage	duration	of	 running	was	4	s	 (Table	2),	we	 selected	 that	 as	
our	sample	window	to	classify	 running	 from	other	 traveling	 (for‐
aging).	We	 identified	 that	 the	maximum	 value	 of	 the	 surge	 axis	
had	 the	 greatest	 distinction	 between	 the	 two	behavioral	 states,	
although	 there	was	considerable	overlap,	with	a	 threshold	value	
of	1.15	gforce	providing	the	highest	overall	accuracy	of	71.9%,	with	
individual	accuracies	of	78.0%	and	65.9%	of	distinguishing	forag‐
ing	and	running	among	the	observations	that	had	been	classified	
as	non‐feeding	behavior	in	the	previous	step	of	the	decision	tree	
(Figure	2).

3.4 | Overall accuracy of decision tree

Accuracy	 decreased	 with	 increasing	 complexity	 of	 the	 deci‐
sion	 tree	where	 the	 highest	 accuracy	 occurred	 at	 the	 2‐behavior	
tree	 (91.6	±	2.5%),	 and	 lowest	 accuracy	 at	 the	 6‐behavior	 tree	
(70.6	±	2.3%;	 Table	 3).	 For	 individual	 behavioral	 states,	 the	 accu‐
racy	was	high	for	in	nest	(89.4	±	4.2%),	feed	(86.3	±	4.3%),	and	out	
of	nest	not	moving	(83.9	±	4.7%),	and	low	for	foraging	(66.4	±	5.9%)	
and	 running	 (26.8	±	5.8%).	 For	 these	 last	 two	 behavioral	 states,	
most	error	was	associated	with	misclassification	of	running	as	for‐
aging	and	vice	versa	as	the	combined	category	of	the	two	behavioral	
states	 (traveling)	had	high	accuracy	of	classification	 (89.4	±	3.6%).	
Using	an	independent	data	set	of	5	min	observational	periods,	we	
were	able	to	test	the	accuracy	of	the	classification	of	feeding,	trave‐
ling	(foraging	and	running),	and	in	nest	behavior.	The	overall	accu‐
racy	was	96.4	±	1.7%,	with	individual	accuracies	of	97.8	±	3.1%	for	
feeding,	91.5	±	6.9%	for	in	nest,	and	100	±	0.0%	for	traveling.

3.5 | Seasonal time budgets

Red	 squirrels	 adjusted	 daily	 time	 budgets	 between	 seasons	
(MANOVA	 Pillai	=	1.25,	 F	=	70.0,	 df =	15	 and	 1,467,	 p	<	0.001),	
spending	 considerably	 more	 time	 in	 the	 nest	 not	 moving	 during	

F I G U R E  4  Percent	accuracy	of	random	forest	algorithm	at	
classifying	accelerometer	data	to	known	active	behavioral	states	at	
varying	sample	windows	for	red	squirrels.	Overall	accuracy	is	the	
mean	accuracy	of	the	three	behavioral	states:	running,	foraging,	
and	feeding

TA B L E  2  Average	durations	in	seconds	of	each	behavior	common	in	red	squirrels	calculated	from	different	classification	methods.	Winter	
and	autumn	durations	are	tabulated	from	observations	of	free‐ranging	squirrels	during	each	season	(winter:	18	squirrels,	2,328	min;	autumn:	
27	squirrels,	621	min).	These	are	compared	to	durations	calculated	from	classified	accelerometer	data	from	6	squirrels	(3	winter,	3	autumn)	
using	the	random	forest	method	with	varying	sample	sizes	of	2–30	s,	and	a	manual	decision	tree	method	(DT)

Observed Predicted—Random forest

DTWinter Autumn 2 4 7 10 14 20 30

Feed 45.89 24.03 3.84 20.24 32.1 48.5 54.5 72.49 81.61 57.75

Forage 8.29 10.56 3.22 8.02 13.07 18.43 23.86 32.69 58.33 19.01

Run 5.2 3.77 3.78 11.82 19.74 28.98 42.94 66.05 60.47 7.44
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winter	(64.5	±	0.7%	of	24	hr)	and	mating	season	(56.5	±	1.2%)	than	
in	summer	(43.9	±	0.8%)	and	autumn	(36.4	±	0.3%).	Time	spent	for‐
aging	and	running	was	the	greatest	during	the	autumn	hoarding	pe‐
riod	 (forage	=	32.25	±	0.3%,	 running	=	7.9	±	0.2%)	 and	 least	 during	
winter	(forage	=	5.7	±	0.1%,	running	=	0.7	±	0.0%),	with	intermediate	
amounts	during	summer	(forage	=	17.7	±	0.3%,	running	=	3.6	±	0.2%)	
and	mating	(forage	=	10.9	±	0.6%,	running	=	1.3	±	0.7%).	The	amount	
of	time	spent	feeding	(autumn	=	15.0	±	0.2%,	mating	=	20.2	±	0.6%,	
summer	=	19.1	±	0.3%,	winter	=	15.7	±	0.02%),	 in	 nest	moving	 (au‐
tumn	=	4.1	±	0.1%,	 mating	=	6.1	±	0.2%,	 summer	=	5.5	±	0.2%,	
winter	=	7.6	±	0.1%),	 and	 not	 moving	 (autumn	=	4.4	±	0.3%,	 mat‐
ing	=	4.8	±	0.5%,	 summer	=	10.3	±	0.6%,	 winter	=	5.7	±	0.6%)	 were	
the	most	consistent	behavioral	 states	between	seasons	 (Figure	5).	
These	 seasonal	 time	 budget	 differences	 were	 expressed	 consist‐
ently	by	most	individuals	across	most	seasons.

4  | DISCUSSION

We	demonstrate	 that	 accurate	 behavioral	 calibrations	 are	 achiev‐
able	using	low‐frequency	accelerometer	recordings	on	free‐ranging	
species	with	a	decision	tree	methodology	that	is	simple	to	use	and	
easy	 to	 interpret.	Our	 classification	of	1	Hz	acceleration	and	 tem‐
perature	 recordings	 of	 red	 squirrels	 into	 six	 behavioral	 categories	
had	an	accuracy	of	70.6%.	However,	classifying	into	five	behavioral	
categories	had	a	much	improved	accuracy	of	87.5%	in	matching	high	
resolution	 observational	 data	 and	 96.4%	 accuracy	 in	 matching	 to	
the	general	behavioral	state	during	5	min	visual	observations.	This	
was	the	first	terrestrial	study,	to	our	knowledge,	that	integrates	ac‐
celeration	with	 temperature,	 producing	 information	 on	 behavioral	
state	 as	well	 as	whether	 that	 behavioral	 state	 is	 expressed	 inside	
or	outside	of	a	thermal	refuge.	Using	this	calibration,	we	were	able	
to	produce	the	first	seasonal	time	budgets	for	North	American	red	
squirrels,	showing	that	there	are	substantial	changes	in	daily	behav‐
ior	between	seasons	(Figure	5).

Here,	we	 showed	 that	 the	 standard	 accelerometry	 practice	 of	
high	frequency	recording	may	not	be	as	necessary	as	previously	sug‐
gested.	Our	calibration	of	1	Hz	acceleration	data	yielded	high	overall	

accuracy	while	allowing	continuous	recordings	on	red	squirrels	for	
up	to	2	months	per	deployment.	This	contrasts	alternative	methods	
of	increasing	sampling	duration	of	these	devices	through	non‐con‐
tinuous	 sampling	 regimes.	 For	 example,	 on	 chipmunks,	Hammond	
et	al.	(2016)	recorded	at	a	commonly	recommended	20	Hz	which	re‐
quired	a	sampling	regime	of	10	s	every	15	min	in	order	to	achieve	a	
4.5‐day	sampling	period.	If	a	continuous	recording	regime	had	been	
used,	the	maximum	sampling	period	would	have	been	just	over	one	
hour.	While	our	study	design	 (exclusive	 reliance	on	 low	frequency	
sampling)	 does	 not	 permit	 direct	 comparison	 of	 accuracies	 that	
could	have	been	obtained	with	higher	sampling	rates,	we	can	assess	
this	indirectly	by	examining	the	classification	accuracy	of	behavioral	
states	of	variable	duration	(see	recommendation	2	below).	However,	
future	 research	on	 the	direct	 comparison	of	 sampling	 rate	 is	war‐
ranted	by	subsampling	a	higher	frequency	recording	while	allowing	
for	variation	in	sample	window	size	with	each	new	sampling	rate	(see	
recommendation	 3	 below).	 Currently,	 all	 comparative	 studies	 that	
have	been	completed	maintain	the	same	sample	window	size	for	all	
recording	frequencies	(Pagano	et	al.,	2017;	Wang	et	al.,	2015)	which	
may	be	driving	the	sudden	and	drastic	decrease	in	accuracy	seen	at	
low	frequency	recordings	(Figure	4).	Despite	this,	the	accuracies	that	
we	 achieved	here	 (70.6%–91.6%)	were	 comparable	 to	 other	 stud‐
ies	which	sampled	at	much	higher	rates	(3.3–40	Hz)	with	accuracies	
ranging	from	75%	to	98%	(Bidder	et	al.,	2014;	Hammond	et	al.,	2016;	
McClune	et	al.,	2014;	Nathan	et	al.,	2012).

Our	study	 is	one	of	few	that	has	completed	a	calibration	using	
free‐ranging	individuals.	Although	many	calibrations	use	captive	an‐
imals	or	surrogate	species	for	training	data	(Campbell,	Gao,	Bidder,	
Hunter,	&	Franklin,	 2013),	 Pagano	et	 al.	 (2017)	 showed	 that	 high‐
est	accuracy	is	achieved	using	free‐ranging	individuals	of	the	same	
species	of	interest.	We	followed	this	advice	by	incorporating	obser‐
vations	 from	 both	 low	 activity	 (winter)	 and	 high	 activity	 (autumn)	
seasons	for	training,	attempting	to	incorporate	the	full	range	of	po‐
tential	movements	that	red	squirrels	might	express	in	the	calibration.	
Although	specific	behavioral	 states	may	change	between	seasons,	
at	 the	 broad	 behavioral	 categories	 that	we	were	 using,	 there	was	
no	evidence	 that	 there	were	distinct	 enough	 seasonal	 differences	
to	merit	a	separate	calibration	for	each	season,	but	future	research	

TA B L E  3  Mean	percent	accuracy	of	the	manually	created	decision	tree	at	correctly	classifying	each	behavioral	state	in	four	trees	of	
increasing	complexity.	Mean	accuracy	is	calculated	over	100	subsampling	events	of	observational	data	(50	observations	per	behavioral	
state).	There	is	no	observational	data	of	whether	red	squirrels	were	moving	or	not	moving	while	in	the	nest	so	those	two	categories	were	
combined	as	“In	nest”	for	the	4,	5,	and	6‐behavior	classification	trees

2‐Behavior 4‐Behavior 5‐Behavior 6‐Behavior

Category Mean ± SD Category Mean ± SD Category Mean ± SD Category Mean ± SD

Out	of	nest 93.8	±	3.4% Moving 96.9	±	2.3% Feeding 86.7	±	4.0% Feeding 86.3	±	4.3%

Traveling 89.4	±	3.6% Foraging 66.4	±	5.9%

Running 26.8	±	5.8%

Not	moving 83.9	±	4.7% Not	moving 84.2	±	4.6% Not	moving 83.9	±	4.7%

In	nest 89.3	±	3.9% In	nest 90.0	±	4.1% In	nest 89.8	±	4.2% In	nest 89.4	±	4.2%

Total 91.6	±	2.5% Total 90.3	±	2.3% Total 87.5	±	1.9% Total 70.6	±	2.3%
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could	explore	this	in	more	detail.	The	one	aspect	of	the	calibration	
that	may	be	susceptible	to	seasonality	is	the	use	of	temperature	for	
determining	in	and	out	of	the	nest,	where	the	efficacy	depends	on	
the	nest	temperature	being	distinctly	warmer	than	ambient	air	tem‐
perature	 (Osgodd	&	Weigl,	 1972).	 The	 population	 of	 red	 squirrels	
used	 in	 this	 study	 lives	 in	a	 climate	where	 this	 is	 always	 the	case,	
and	 even	 in	 summer,	 we	 found	 that	 you	 could	 clearly	 distinguish	
between	in	and	out	of	the	nest	(see	Figure	1	for	example),	but	this	
may	not	be	 the	case	 in	all	 studies.	Despite	 the	high	accuracy	 that	
we	achieved,	we	would	 like	 to	highlight	 a	 couple	 issues	 that	were	
encountered	with	 both	 low	 frequency	 recordings	 and	working	 on	
free‐ranging	individuals	that	may	be	common	to	others	who	follow	
a	similar	methodology.

First,	when	recording	at	a	 lower	frequency	than	the	stride	fre‐
quency	of	the	species,	some	commonly	used	and	recommended	an‐
alytical	techniques	(spectral	analysis,	orientation;	Brown	et	al.,	2013)	
may	become	less	applicable.	At	1	Hz,	the	data	recorded	is	a	snapshot	
of	acceleration	values	from	each	movement	type.	This	means	that	
it	will	not	always	record	the	peak	acceleration	that	was	reached	but	
some	value	along	the	wave	of	accelerations	experienced	during	each	
stride.	Second,	no	two	time	devices	will	record	time	at	precisely	the	
same	 rate	due	 to	 variation	 in	 crystal	 oscillating	 frequency	 in	 each	
time	device,	which	 is	 influenced	by	general	noise,	 voltage	change,	
temperature,	 and	 aging	 of	 the	 clock	 (Syed	 &	 Heinemann,	 2006).	
When	there	is	a	need	to	precisely	align	instances	recorded	on	two	
devices,	 for	 example	 to	 calibrate	 one	 observation	method	 via	 an‐
other	using	 instantaneous	observations	 recorded	every	 second	or	
less,	 then	 small	 time	 offsets	 become	 noticeable	 and	 problematic.	
Until	behavior	and	accelerometer	data	can	be	collected	over	a	net‐
work	with	a	shared	clock,	studies	on	free‐ranging	animals	fitted	with	
non‐networked,	 store‐on‐board	 biologgers	 will	 face	 this	 problem	
(Gaylord	&	Sanchez,	2014).

Although	 these	 two	 issues	do	make	 field‐based	calibrations	of	
low‐frequency	 acceleration	 more	 difficult,	 they	 do	 not	 preclude	
detailed	 time	 budget	 classification	 and	 an	 overall	 assessment	 of	
classification	 accuracy.	We	 conclude	 the	 paper	with	 some	 recom‐
mendations	for	behavioral	classifications	using	low‐frequency	accel‐
eration,	applicable	to	a	research	context	 in	which	the	priority	 is	to	
accurately	 classify	major	behavioral	 states,	 recorded	continuously,	
across	a	sampling	period	of	maximum	length.

1.	 Behavioral	 observations	 used	 for	 calibrations	 should	 be	 con‐
tinuous	 and	 as	 long	 in	 duration	 as	 is	 possible	 for	 the	 study	
species:	More	stark	transitions	between	behavioral	states	 (trav‐
eling	 to	 not	 moving	 and	 vice	 versa)	 within	 each	 observational	
period	 makes	 it	 easier	 to	 accurately	 align	 events	 recorded	 on	
both	 devices.	 That	 being	 said,	 the	 feasibility	 of	 long	 duration,	
continuous	 observation	 sampling	 varies	 by	 species.	 Although	
red	 squirrels	 are	 relatively	 easy	 to	 observe,	 their	 small	 size,	
arboreality,	 and	 rapid	movement,	 all	within	a	 three‐dimensional	
visual	 obstructed	 forested	 landscape	 makes	 long	 continuous	
observations	 challenging	 to	 obtain.	 As	 a	 result,	 we	 had	 to	
remove	 80%	 of	 observational	 periods	 (320	 of	 403	 squirrel	
days)	 from	 the	 analysis	 because	 in	 too	many	 instances	 we	 did	
not	observe	enough	major	transitions	within	a	single	continuous	
bout	 to	 accurately	 and	 objectively	 align	 time	 as	 recorded	 by	
the	 accelerometer	 and	 the	 observer.

2.	 Select	behavioral	states	that	naturally	occur	at	durations	longer	
than	both	 the	 recording	 frequency,	 and	 the	error	 in	 the	 time	
alignment:	 Longer	duration	behavioral	 states	provide	 the	op‐
portunity	 to	 select	 the	 middle	 segment	 of	 each	 occurrence,	
thereby	eliminating	the	chance	of	working	with	mislabeled	ac‐
celerometer	data	 from	misalignment.	 If	 classifying	a	behavior	
that	typically	lasts	for	2	s,	using	a	1	Hz	sampling	rate	with	a	2	s	
error	in	alignment,	the	likelihood	that	the	labeled	segment	will	
include	the	matching	acceleration	is	only	~30%.	We	found	that	

F I G U R E  5  Time	red	squirrels	spent	each	day	from	late	winter	to	
late	autumn	doing	each	of	the	four	main	behavioral	states:	running,	
foraging,	feeding	and	in	nest.	Each	box	represents	the	interquartile	
range	of	all	individuals	as	calculated	from	classified	accelerometer	
data	using	a	manual	decision	tree	classification.	The	dotted	line	
signifies	a	break	in	the	time	line	when	no	accelerometers	were	
deployed
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short	duration	behavior	had	the	lowest	accuracy	(26.8%)	when	
testing	on	observational	data	aligned	to	the	second,	a	pattern	
that	is	common	to	other	studies	(Pagano	et	al.,	2017).	We	used	
a	 lower	 resolution	 observational	 data	 set	 (5‐min)	 to	 test	
whether	the	low	accuracy	is	likely	resulting	from	misalignment	
of	time.	If	the	inaccuracies	are	the	result	of	poor	ability	of	the	
decision	tree	than	we	would	expect	that	accuracies	would	be	
similar	between	the	low	and	high‐resolution	datasets,	while	if	
the	errors	 are	 stemming	 from	 time	alignment	 then	we	would	
expect	higher	accuracy	at	the	lower	resolution	when	time	mis‐
alignment	 has	 minimal	 effects.	 We	 found	 that	 accuracy	 of	
lower	resolution	data	was	~10%	greater	than	the	higher	resolu‐
tion	data,	 suggesting	 that	our	estimate	of	classification	accu‐
racy	 for	 short	 behavior	 is	 likely	 more	 conservative	 than	 is	
actually	 the	case.	Though	 this	 is	vaguely	 reassuring,	accurate	
classification	 (and	 assessment	 of	 classification	 accuracy)	 be‐
comes	an	increasingly	intractable	challenge	as	behavioral	dura‐
tion	 begins	 to	 approximate	 sampling	 rate.	 The	 trade‐off	
between	sampling	rate	and	sampling	duration	dictated	by	the	
accelerometer	manifests	 as	 the	 same	 trade‐off	 affecting	 the	
behavioral	 classification.	 Extending	 the	 sampling	 duration	 by	
reducing	 the	 sampling	 frequency	 inevitably	 compromises	de‐
tection	of	behavioral	events	confined	to	very	short	time	inter‐
vals.	Thus,	researchers	will	need	to	set	expectations	to	either	
accurately	 documenting	 fine	 scale	 behavior	 continuously	 at	
millisecond	 sampling	 rates,	 or	 accurately	 documenting	 long‐
term	 behavior	 continuously	 over	months	 and	 years,	 as	 likely	
both,	 at	 the	 same	 time,	 with	 the	 same	 device	 will	 not	 be	
possible.

3.	 Create	classifications	using	a	manual	decision	tree:	There	are	two	
key	benefits	to	this	approach	over	a	machine	learning	algorithm.	
First,	 creation	 of	 hierarchical	 decision	 trees	 become	 possible,	
such	 that	 classification	 can	 be	 performed	 at	multiple	 levels	 of	
complexity,	starting	with	coarse	distinctions	(e.g.,	active	vs.	inac‐
tive)	 that	 subdivide	 into	 more	 resolved	 categories	 (e.g.,	 active	
subdividing	 into	 different	 types	 of	 activity)	 (Figure	 2;	 e.g.,	
McClune	et	 al.,	 2014).	This	 allows	 for	 a	 tree	 that	 can	be	easily	
trimmed	post	calibration	to	match	the	ecological	question	being	
studied	 that	has	an	accompanying	accuracy	 for	each	 trimming.	
For	example,	 if	a	study	 is	only	 interested	 in	when	the	animal	 is	
vigilant	 versus	 active	 when	 out	 of	 the	 nest,	 the	 tree	 can	 be	
trimmed	to	four	behavioral	states	(moving/not	moving)	with	the	
knowledge	that	the	accuracy	is	90.3%.	Second,	this	provides	an	
opportunity	 to	 classify	 each	 step	 separately	 starting	 with	 the	
longest	 duration	 behavior	 for	 which	 the	 time	 alignment	 issue	
should	be	 trivial,	 and	proceeding	 toward	 the	 shortest	 duration	
behavior.	Data	can	be	cleaned	at	each	stage	ensuring	that	when	
distinguishing	the	shortest	duration	behavior,	the	training	data‐
set	has	the	lowest	error	due	to	time	alignment.

4.	 Select	sample	windows	based	on	the	duration	characteristics	
of	the	behavior,	and	the	recording	frequency:	Sample	windows	
must	be	large	enough	to	contain	multiple	samples	of	accelera‐
tion	 in	 order	 to	 calculate	 the	 summary	 statistics.	 Generally,	

calibrations	of	high	frequency	recordings	use	sample	windows	
of	1–2	s	(20–80	samples,	e.g.,	Pagano	et	al.,	2017).	Using	lower	
recording	frequencies	require	larger	windows,	and	thus	run	the	
risk	of	extending	beyond	the	natural	duration	of	the	behavior	
being	classified.	Although,	 it	may	always	be	possible	to	find	a	
summary	 statistic	 that	 can	 separate	 two	behavioral	 states	 at	
any	sample	window	(Figure	4),	selecting	an	inappropriate	win‐
dow	 will	 result	 in	 unrealistic	 behavioral	 durations	 (Table	 2)	
leading	 to	 biased	 time	 budgets	 (Robson	 &	Mansfield,	 2014).	
Thus,	it	is	critical	that	careful	consideration	is	given	to	sample	
window	size,	and	it	may	be	necessary	to	incorporate	different	
sized	windows	for	different	behavioral	categories	into	the	clas‐
sification,	as	we	did	in	this	study	(Figure	2).

5.	 Select	summary	statistics	that	are	consistent	across	individuals:	
Variation	in	the	placement	of	accelerometer	tags	during	attach‐
ment	 to	 each	 individual	may	 influence	 deployment	 angles	 and	
what	 each	 axis	 is	 actually	measuring.	 In	 our	 study,	 despite	 the	
fact	that	all	tags	were	attached	in	the	same	orientation	on	all	in‐
dividuals,	the	nature	and	weight	balance	of	the	collars	resulted	in	
the	devices	spinning	around	the	neck	of	the	animal	and	resting	in	
unique	orientations	for	each	individual.	One	option	to	counteract	
this	problem	during	calibration	is	to	do	individual‐specific	calibra‐
tions,	when	possible.	The	other	option	is	to	carefully	select	sum‐
mary	statistics	for	the	calibration	that	will	not	be	influenced	by	
this	issue,	such	as	statistics	that	are	summaries	of	all	three	axes	
(e.g.,	ODBA,	ΔDBA,	or	single‐axis	values	that	are	not	affected	by	
the	possible	 range	 in	deployment	angles	 (e.g.,	 surge	axis	 in	our	
study).

Accelerometers	provide	an	unprecedented	potential	 for	ecolo‐
gists	to	estimate	time‐	and	energy‐budgets	of	many	species	at	a	level	
of	detail	that	is	not	achievable	by	traditional	methods.	We	found	that	
the	limitations	in	the	applicability	of	these	devices	on	small	species	
can	be	alleviated	through	low	frequency	recordings	without	loss	in	
accuracy,	 though	 low	sampling	 rates	do	preclude	 the	detection	of	
very	short	behavior.	With	an	ability	to	record	behavior	continuously	
on	 small	 species	 regardless	 of	 light	 or	 weather	 conditions,	 ecolo‐
gists	can	now	not	only	explore	 time	budgets	at	seasonal	scales	as	
we	did	here	(Figure	5),	but	also	how	the	timing	of	behavior	is	struc‐
tured	throughout	a	day	(Ropert‐Coudert	et	al.,	2004).	Having	access	
to	 this	 detail	 provides	 a	means	 for	 easily	 incorporating	behavioral	
responses	of	species	to	their	environments	 into	broader	and	more	
complex	 questions	 about	 how	 they	may	 interact	with	 the	 species	
around	them	in	a	changing	world.
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