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ABSTRACT Genomic selection can increase genetic gain per generation through early selection. Genomic selection is expected to be
particularly valuable for traits that are costly to phenotype and expressed late in the life cycle of long-lived species. Alternative
approaches to genomic selection prediction models may perform differently for traits with distinct genetic properties. Here the
performance of four different original methods of genomic selection that differ with respect to assumptions regarding distribution of
marker effects, including (i) ridge regression–best linear unbiased prediction (RR–BLUP), (ii) Bayes A, (iii) Bayes Cp, and (iv) Bayesian
LASSO are presented. In addition, a modified RR–BLUP (RR–BLUP B) that utilizes a selected subset of markers was evaluated. The
accuracy of these methods was compared across 17 traits with distinct heritabilities and genetic architectures, including growth,
development, and disease-resistance properties, measured in a Pinus taeda (loblolly pine) training population of 951 individuals
genotyped with 4853 SNPs. The predictive ability of the methods was evaluated using a 10-fold, cross-validation approach, and
differed only marginally for most method/trait combinations. Interestingly, for fusiform rust disease-resistance traits, Bayes Cp, Bayes A,
and RR–BLUB B had higher predictive ability than RR–BLUP and Bayesian LASSO. Fusiform rust is controlled by few genes of large
effect. A limitation of RR–BLUP is the assumption of equal contribution of all markers to the observed variation. However, RR-BLUP B
performed equally well as the Bayesian approaches.The genotypic and phenotypic data used in this study are publically available for
comparative analysis of genomic selection prediction models.

P LANT and animal breeders have effectively used pheno-
typic selection to increase the mean performance in se-

lected populations. For many traits, phenotypic selection is
costly and time consuming, especially so for traits expressed
late in the life cycle of long-lived species. Genome-wide
selection (GWS) (Meuwissen et al. 2001) was proposed as
an approach to accelerating the breeding cycle. In GWS,
trait-specific models predict phenotypes using dense molec-
ular markers from a base population. These predictions are

applied to genotypic information in subsequent generations
to estimate direct genetic values (DGV).

Several analytical approaches have been proposed for
genome-based prediction of genetic values, and these differ
with respect to assumptions about the marker effects (de los
Campos et al. 2009a; Habier et al. 2011; Meuwissen et al.
2001). For example, ridge regression–best linear unbiased
prediction (RR–BLUP) assumes that all marker effects are
normally distributed and that these marker effects have
identical variance (Meuwissen et al. 2001). In Bayes A,
markers are assumed to have different variances and are
modeled as following a scaled inverse x2 distribution
(Meuwissen et al. 2001). The prior in Bayes B (Meuwissen
et al. 2001) assumes the variance of markers to equal zero
with probability p, and the complement with probability
(1 – p) follows an inverse x2 distribution, with v degree of
freedom and scale parameter S. The definition of the prob-
ability p depends on the genetic architecture of the trait,
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suggesting an improvement to the Bayes B model, known as
Bayes Cp. In Bayes Cp, the mixture probability p has a prior
uniform distribution (Habier et al. 2011). A drawback of
Bayesian methods is the need for the definition of priors.
The requirement of a prior for the parameter p is circumvented
in the Bayesian LASSO method, which needs less information
(de los Campos et al. 2009b; Legarra et al. 2011b). Methods for
genomic prediction of genetic values may perform differently
for different phenotypes (Meuwissen et al. 2001; Usai et al.
2009; Habier et al. 2011) and results may diverge because of
differences in genetic architecture among traits (Hayes et al.
2009; Grattapaglia and Resende 2011). Therefore, it is valu-
able to compare performance among methods with real data
and identify those that provide more accurate predictions.

Recently, GWS was applied to agricultural crops (Crossa
et al. 2010) and trees (Resende et al. 2011). Here we report,
for an experimental breeding population of the tree species
loblolly pine (Pinus taeda L.), a comparison of GWS predic-
tive models for 17 traits with different heritabilities and pre-
dicted genetic architectures. Genome-wide selection models
included RR–BLUP, Bayes A, Bayes Cp, and the Bayesian
LASSO. In addition, we evaluated a modified RR–BLUPmethod
that utilizes a subset of selected markers, RR–BLUP B. We show
that, for most traits, there is limited difference among these
four original methods in their ability to predict GBV. Bayes
Cp performed better for fusiform rust resistance—a disease-
resistance trait shown previously to be controlled in part by
major genes—and the proposed method RR–BLUP B was sim-
ilar to or better than Bayes Cp when a subsample of markers
was fitted to the model.

Materials and Methods

Training population and genotypic data

The loblolly pine population used in this analysis is derived
from 32 parents representing a wide range of accessions from
the Atlantic coastal plain, Florida, and lower Gulf of the Uni-
ted States. Parents were crossed in a circular mating design
with additional off-diagonal crosses, resulting in 70 full-sib
families with an average of 13.5 individuals per family (Baltunis
et al. 2007a). This population is referred to hereafter as
CCLONES (comparing clonal lines on experimental sites). A
subset of the CCLONES population, composed of 951 indi-
viduals from 61 families (mean, 15; standard deviation, 2.2)
was genotyped using an Illumina Infinium assay (Illumina,
San Diego, CA; Eckert et al. 2010) with 7216 SNP, each
representing a unique pine EST contig. A subset of 4853
SNPs were polymorphic in this population and were used
in this study. None of the markers were excluded on the basis
of minimum allele frequency. Genotypic data and pedigree in-
formation are available in the Supporting Information, File S1
and File S2.

Phenotypic data

The CCLONES population was phenotyped for growth, de-
velopmental, and disease-resistance traits in three replicated

studies. The first was a field study established using single-tree
plots in eight replicates (one ramet of each individual is
represented in each replicate) that utilized a resolvable alpha-
incomplete block design (Williams et al. 2002). In that field
trial, four replicates were grown under a high-intensity and
four were grown under a standard silvicultural intensity re-
gime. The traits stem diameter (DBH, cm), total stem height
(HT, cm), and total height to the base of the live crown (HTLC,
cm) were measured in the eight replicates at years 6, 6, and 4,
respectively. At year 6, crown width across the planting beds
(CWAC, cm), crown width along the planting beds (CWAL,
cm), basal height of the live crown (BLC, cm), branch angle
average (BA, degrees), and average branch diameter (BD, cm)
were measured only in the high-intensity silvicultural treat-
ment. Phenotypic traits tree stiffness (Stiffness, km2/sec2),
lignin content (Lignin), latewood percentage at year 4
(LateWood), wood specific gravity (Density), and 5- and
6-carbon sugar content (C5C6) were measured only in two
repetitions, in the high-intensity culture (Baltunis et al.
2007a; Emhart et al. 2007; Li et al. 2007; Sykes et al. 2009).

The second study was a greenhouse disease-resistance
screen. The experimental design was a randomized complete
block with single-tree plots arranged in an alpha lattice with
an incomplete block (tray container). Fusiform rust (Cronartium
quercuum Berk. Miyable ex Shirai f. sp. fusiforme) suscepti-
bility was assessed as gall volume (Rust_gall_vol) and pres-
ence or absence of rust (Rust_bin) (Kayihan et al. 2005;
Kayihan et al. 2010).

Finally, in the third study the rooting ability of cuttings was
investigated in an incomplete block design (tray container)
with four complete repetitions, in a controlled greenhouse en-
vironment. Root number (Rootnum) and presence or absence
of roots (Rootnum_bin) were quantified (Baltunis et al. 2005;
Baltunis et al. 2007b).

Breeding value prediction

Analyses were carried out using ASReml v.2 (Gilmour et al.
2006) with the following mixed linear model,

y5Xb1 Z1i1 Z2a1 Z3c1 Z4 f 1 Z5d1 1 Z6d21 e;

where y is the phenotypic measure of the trait being analyzed,
b is a vector of the fixed effects, i is a vector of the random
incomplete block effects within replication �N(0, Is2

iblk), a is
a vector of random additive effects of clones,�N(0, As2

a), c is
a vector of random nonadditive effects of clones �N(0, Is2

c),
f is a vector of random family effects �N(0, Is2

f), d1 and d2
are described below, e is the vector of random residual effects
�N(0, DIAGs2

e), X and Z1–Z6 are incidence matrices, and
I, A, and DIAG are the identity, numerator relationship, and
block diagonal matrices, respectively. For traits measured in
the field study under both high and standard culture intensi-
ties, the model also included d1, a vector of the random ad-
ditive · culture type interaction �N(0, DIAGs2

d1), and d2,
a vector of the random family · culture type interaction �N
(0, DIAGs2

d2). Narrow-sense heritability was calculated as
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the ratio of the additive variance s2
a to the total or pheno-

typic variance (e.g., for the field experiment total variance
was s2

a 1 s2
n 1 s2

f 1 s2
d1 1 s2

d2 1 s2
e). Prior to use in

GWS modeling, the estimated breeding values were dereg-
ressed into phenotypes (DP) following the approach described
in Garrick et al. (2009), to remove parental average effects
from each individual. Breeding values and deregressed phe-
notypes are available in File S3 and File S4.

Statistical methods

The SNP effects were estimated on the basis of five different
statistical methods: RR–BLUP, Bayes A (Meuwissen et al.
2001), Bayes Cp (Habier et al. 2011), the Improved Bayes-
ian LASSO (BLASSO) approach proposed by Legarra et al.
(2011b), and RR–BLUP B (a modified RR–BLUP). In all cases
the genotypic information was fitted using the model

DP5 1b1 Zm1 e;

where DP is the vector of phenotypes deregressed from the
additive genetic values (Garrick et al. 2009), b is the overall
mean fitted as a fixed effect,m is the vector of randommarker
effects, and e is the vector of random error effects, 1 is a vector
of ones, and Z is the incidence matrix m, constructed from
covariates based on the genotypes. No additional information,
such as marker location, polygenic effects, or pedigree was
used in those models.

Once the marker effects were estimated using one of the
methods, the predicted DGV of individual j for that method
was given by

ĝj5
Xn

i
Zij bmi;

where i is the specific allele of the ith marker on individual
j and n is the total number of markers.

Random regression–best linear unbiased predictor

The RR–BLUP assumed that the SNP effects, m, were random
(Meuwissen et al. 2001). The variance parameters were as-
sumed to be unknown and were estimated by restricted max-
imum likelihood (REML), which is equivalent to Bayesian
inference using an uninformative, flat prior. The first and second
moments for this model are

m � �
0;G5 Is2

m
�
; EðyÞ5 1b

e � �
0;R5 Is2

e
�
; VarðyÞ5V5ZGR9 1R;

where s2
m is the variance common to each marker effect and

s2
e is the residual variance.
The mixed model equation for the prediction of m is

equivalent to:24 X9X X9Z

Z9X Z9Z1 I
s2
e

s2
a=h

35" b̂
m̂

#
5

�
X9y
Z9y

�
;

where s2
a refers to the total additive variance of the trait and

h, due to standardization of the Z matrix, refers to the total

number of markers (Meuwissen et al. 2009). The matrix Z was
parameterized and standardized to have a mean of zero and
variance of one as previously described (Resende et al. 2010;
Resende et al. 2011). The analyses were performed in the
software R (available at CRAN, http://cran.r-project.org/)
and the script is available in File S5.

Bayes A

The Bayes A method proposed by Meuwissen et al. (2001)
assumes the conditional distribution of each effect (given its
variance) to follow a normal distribution. The variances are
assumed to follow a scaled inversed x2 distribution with
degrees of freedom na and scale parameter S2a. The uncon-
ditional distribution of the marker effects can be shown to
follow a t-distribution with mean zero (Sorensen and
Gianola 2002). Bayes A differs from RR–BLUP in that each
SNP has its own variance. In this study, na was assigned the
value 4, and S2a was calculated from the additive variance
according to Habier et al. (2011) as

S2a 5
~s2
aðva2 2Þ

va
;

where

~s2
a 5

~s2
s

ð12pÞPK
k¼12pk   ð12 pkÞ

and pk is the allele frequency of the kth SNP, ~s2
a is the

variance of a given marker and ~s2
s is the additive genetic

variance explained by the SNPs.

Bayes Cp

Bayes Cp was proposed by Habier et al. (2011). In this
method, the SNP effects have a common variance, which
follows a scaled inverse x2 prior with parameters na, S2a. As
a result, the effect of a SNP fitted with probability (1 2 p)
follows a mixture of multivariate Student’s t-distributions,
t(0, na, IS2a), where p is the probability of a marker having
zero effect. Parameters na and S2a were chosen as described
for Bayes A. The p parameter is treated as unknown with a
uniform (0,1) prior distribution.

Bayes A and Bayes Cp were performed using the software
GenSel (Fernando and Garrick 2008); available at http://
bigs.ansci.iastate.edu/bigsgui/) for which an R package is
available in File S6. The marker input file was coded as
210, 0, and 10 for marker genotypes 0, 1, and 2, respec-
tively. A total of 50,000 iterations were used, with the first
2000 excluded as the burn-in.

Bayesian LASSO

The Bayesian LASSO method was performed as proposed by
Legarra et al. (2011b), using the same model equation used
previously for the estimation of the markers effects. How-
ever, in this case:
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m j l �
Yn

i

l

2
expð2 l j ai j Þ; e js2

e � MVN
�
0; Is2

e

�
VarðmÞ5 2

l2
;

where MNV represents a multivariate normal distribution
and l is the “sharpness” parameter.

Using a formulation in terms of an augmented hierarchical
model including an extra variance component t2i associated
with each marker locus, we have:

pðm j tÞ � Nð0;DÞ; diagðDÞ5 �
t21 . . . t

2
n
�

pðt j lÞ5
Y
i

�
l2

2

�
exp

�
2 l2t2i

2

�
Therefore, VarðmiÞ 5 s2

mi 5 t2i .
The prior distribution for s2

e was an inverted x2 distribu-
tion with 4 degrees of freedom and expectations equal to the
value used in regular genetic evaluation for s2

e. Analyses were
performed using the software GS3 (Legarra et al. 2011a),
available in http://snp.toulouse.inra.fr/�alegarra/. The chain
length was 100,000 iterations, with the first 2000 excluded as
the burn-in and a thinning interval of 100.

RR–BLUP B

We also evaluated a modified, two-step RR–BLUPmethod that
reduces the number of marker effects estimated. In this case,
the DGV for each trait was generated on the basis of a reduced
subset of markers. To define the number of markers in the
subset, the marker effects from the RR–BLUP were ranked in
decreasing order by their absolute values and grouped in mul-
tiples of 10 (10, 20, 30, . . ., 4800). Each group was used, with
their original effects, to estimate DGV. The size, q, of the sub-
set that maximized the predictive ability was selected as the
optimum number of marker effects to be used in subsequent
analyses. Next, markers effects were reestimated in a second
RR–BLUP, using only the selected q markers within each
training partition (see below). The estimated effects derived
from this analysis were used to predict the merit of the
individuals in the validation partition that were not present
in the training partition. This process was repeated for dif-
ferent allocations of the data into training and validation
partitions. In each validation, a different subset of markers
was selected, on the basis of the highest absolute effects
within that training partition. Therefore, the only restriction
applied to the second analysis was related to q, the number
of markers to be included in each data set. The same ap-
proach was performed with two additional subsets of
markers of the same size as a control: the first subset con-
tained randomly selected markers and the second subset con-
tained markers with the smallest absolute effect values.

Validation of the models

Two cross-validation schemes were tested in the RR–BLUP
method: 10-fold and leave-one-out. For the 10-fold cross-

validation approach a random subsampling partitioning,
fixed for all methods, was used (Kohavi 1995). Briefly, the
data for each trait were partitioned into two subsets. The
first one was composed of the majority of the individuals
(90%) and was used to estimate the marker effects. The sec-
ond one, the validation partition (10%), had their phenotypes
predicted on the basis of the marker effects estimated in the
training set. Randomly taken samples of N ¼ (9/10) · NT

individuals were used as training sets, while the remaining
individuals were used for validation (NT is the total number
of individuals in the population). The process was repeated
10 times, each time with a different set of individuals as the
validation partition, until all individuals had their phenotypes
predicted (Legarra et al. 2008; Usai et al. 2009; Verbyla et al.
2010). In the leave-one-out approach, a model was con-
structed using NT 2 1 individuals in the training population
and validated in a single individual that was not used in
the training set. This was repeated NT times, such that
each individual in the sample was used once as the vali-
dation individual. This method maximized the training
population size.

Accuracy of the models

The correlation between the DGV and the DP was estimated
using the software ASReml, v. 2 (Gilmour et al. 2006), from
a bivariate analysis, including the validation groups as fixed
effects since each validation group had DGV estimated from
a different prediction equation and might have had a differ-
ent mean. This correlation represented the predictive ability
ðryŷÞ of GS to predict phenotypes and was theoretically rep-
resented (Resende et al. 2010) by

ryŷ 5 rgĝh;

where rgĝ was the accuracy of GS and h was the square root
of the heritability of adjusted phenotypes, which is associated
to Mendelian sampling effects and is given by

h2m 5
n 0:5s2

a
n0:5s2

a 1s2
e
;

where n was the number of ramets used in each study. To
remove the influence of the heritability upon the predictive
ability and thus estimate the accuracy, the following formula
was applied

rgĝ5
ryŷ
h
:

In addition, for each method and trait, the slope coeffi-
cient for the regression of DP on DGV was calculated as a
measurement of the bias of the DGV. Unbiased models are
expected to have a slope coefficient of 1, whereas values greater
than 1 indicate a biased underestimation in the DGV prediction
and values smaller than 1 indicate a biased overestimation of
the DGV.
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Results

Cross-validation method

Testing the effect of cross-validation using two methods,
10-fold and leave-one-out (N-fold), showed that their pre-
dictive ability was not significantly different (Table S1). The
largest difference was detected for the trait CWAC, where
the leave-one-out method outperformed the 10-fold cross-
validation by 0.02 (standard error, 0.03). Likewise, no signi-
ficant differences were found for bias of the regressions (slope)
in both methods (Table S2). Thus, the 10-fold approach was
selected and used for comparing all methods.

Predictive ability of the methods

Four well-established genome-wide selection methods were
compared in 17 traits with heritabilities ranging from 0.07
to 0.45. Overall, the ability to predict phenotype ðryŷÞ
ranged from 0.17 for Lignin to 0.51 for BA (Table 1). Al-
though the methods differ in a priori assumptions about
marker effects, their predictive ability was similar—no signif-
icant differences were detected for any of the 17 traits. The
standard errors for each method and trait are described in
Table S3.

Bayesian approaches performed better for traits in the
disease-resistance category. For Rust_bin, the methods Bayes
A and Bayes Cp were 0.05 superior than RR–BLUP and 0.06
superior to BLASSO. For Rust_gall_vol, Bayes Cp was 0.05
superior to RR–BLUP and BLASSO. The accuracy (rgĝ) for
each genome-wide prediction method was also estimated and
varied from 0.37 to 0.77 (Table S4).

For all methods, the ability to predict phenotypes ðryŷÞ
was linearly correlated with trait heritability. The strongest
correlation (0.79) was observed for RR–BLUP (Figure 1).
The correlation is expected, as traits with lower heritability
have phenotypes less reflective of their genetic content, and
are expected to be less predictable through genomic selection.

Bias of the methods

The coefficient of regression (slope) of DP on DGV was cal-
culated as a measurement of the bias of each method. Ideally,
a value of b equal to one indicates no bias in the prediction.
For all traits, the slopes of all the models were not signifi-
cantly different than one, indicating no significant bias in the
prediction. In addition, no significant differences among the
methods were detected (Table S5). Although no evidence of
significant bias was detected, the value of b derived from RR–
BLUP was slightly higher for all traits (average across traits
equal to 1.18).

Markers Subset and RR–BLUP B

Prediction of phenotype was also performed with RR–BLUP,
but adding increasingly larger marker subsets, until all
markers were used jointly in the prediction. The predictive
ability was plotted against the size of the subset of markers
(Figure 2). The pattern of the prediction accuracy was sim-
ilar for 13 out 17 traits (Figure 2A), where differences were
mainly found in the rate with which the correlation reached
the asymptote. In these cases, the size of the subset ranged

Table 1 Predictive ability of genomic selection models using four different methods

Methods

Trait category Trait h2 RR–BLUP BLASSO Bayes A Bayes Cp

Growth HT 0.31 0.39 0.38 0.38 0.38
HTLC 0.22 0.45 0.44 0.44 0.44
BHLC 0.35 0.49 0.49 0.49 0.49
DBH 0.31 0.46 0.46 0.46 0.46

Development CWAL 0.27 0.38 0.36 0.36 0.36
CWAC 0.45 0.48 0.46 0.47 0.47
BD 0.15 0.27 0.25 0.27 0.27
BA 0.33 0.51 0.51 0.51 0.51
Rootnum_bin 0.10 0.28 0.28 0.27 0.28
Rootnum 0.07 0.24 0.26 0.25 0.24

Disease resistance Rust_bin 0.21 0.29 0.28 0.34 0.34
Rust_gall_vol 0.12 0.23 0.24 0.28 0.29

Wood quality Stiffness 0.37 0.43 0.39 0.42 0.42
Lignin 0.11 0.17 0.17 0.17 0.17
LateWood 0.17 0.24 0.24 0.23 0.24
Density 0.09 0.20 0.22 0.23 0.22
C5C6 0.14 0.26 0.25 0.25 0.25

h2 is the narrow-sense heritability of the trait.

Figure 1 Regression of RR–BLUP predictive ability on narrow-sense her-
itability for 17 traits (trend line is shown, R2 ¼ 0.79).
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from 820 to 4790 markers. However, a distinct pattern was
detected for disease-resistance-related traits, density, and CWAL
(Figure 2B). In these cases, maximum predictive ability was
reached with smaller marker subsets (110–590 markers)
and decreased with the addition of more markers. An addi-
tional RR–BLUP was performed using as covariates only the
marker subset for which maximum predictive ability was ob-
tained. For traits where a large number of markers (.600)
explain the phenotypic variability, RR–BLUP B was similar
to RR–BLUP or Bayesian methods (Table S6). However, for
traits where the maximum predictive ability (Density, Rust_bin,
Rust_gall_vol) was reached with a smaller number of marker
(,600), RR–BLUP B performed significantly better than RR–
BLUP. For example, the predictive ability of the trait Rust_
gall_vol was 61% higher using RR–BLUP B (0.37) compared
to the traditional RR–BLUP (0.23) and also improved rela-
tive to BLASSO (0.24), Bayes A (0.28 and Bayes Cp (0.29).

We also contrasted these results with the predictive ability
using a subset of markers of similar size, but selected either
randomly or to include those markers with lower effects. As
expected, for the three traits the predictive ability was larger
for the subset selected by RR–BLUP B over the subsets with
lower effects and random effects (Figure 3). A significant dif-
ference over the lower and random subsets was found for
rust-resistance-related traits (Rust_bin, Rust_gall_vol), while
for Density the markers selected by RR–BLUP B were only
significantly different than the lower marker subset but not
different than the random marker subset.

Discussion

We characterized the performance of RR–BLUP/RR–BLUP B,
Bayes A, Bayesian LASSO regression, and Bayes Cp for GWS
of growth, developmental, disease resistance, and biomass
quality traits in common data set generated from an exper-
imental population of the conifer loblolly pine. In general,
the methods evaluated differed only modestly in their pre-
dictive ability (defined by the correlation between the DGV
and DP).

The suitability of different methods of developing GWS
predictive models is expected to be trait dependent, condi-
tional on the genetic architecture of the characteristic. RR–

BLUP differs from the other approaches used in this study in
that the unconditional variance of marker effects is normally
distributed, with the same variance for all markers (Meuwissen
et al. 2001). This assumption may be suitable when consid-
ering an infinitesimal model (Fisher 1918), in which the
characters are determined by an infinite number of unlinked
and nonepistatic loci, with small effect. Not surprisingly,
BLUP-based methods underperformed relative to Bayesian
approaches for oligogenic traits. For instance, Verbyla et al.
(2009) showed that BLUP-based GWS had lower accuracy,
compared to Bayesian methods, in prediction of fat percent-
age in a population in which a single gene explains �50% of
the genetic variation. Similarly, our observation that Bayes
A and Bayes Cp were more accurate in predicting fusiform
rust-resistance traits, compared to RR–BLUP, may reflect
a simpler genetic architecture, with a few loci of large effect.
While the causative genes that regulate fusiform rust resis-
tance have not yet been uncovered, several genetic studies
support the role of few major genes in the trait variation. For
example, the Fr1 locus confers resistance to specific fungus
aeciospore isolates (Wilcox et al. 1996), and at least five

Figure 2 Example of the two patterns of predictive abil-
ity observed among traits, as an increasing number of
markers is added to the model. Each marker group is
represented by a set of 10 markers. (Left) For DBH, the
maximum predictive ability was detected when 380
groups of markers (3800 markers) were included in the
model. (Right) For the trait Rust_gall_vol, predictive ability
pattern reached a maximum when only 10 groups (100
markers) were added. Lines indicate the predictive ability
of RR–BLUP (solid line), Bayes Cp (dashed line), and RR–
BLUP B (dotted line) as reported in Table 1 and Table S6.

Figure 3 Predictive ability for subsets of 310 markers for Rust_bin, 110
markers for Rust_gall_vol, and 240 markers for Density. Subsets were
generated by selecting markers with the lowest absolute effects (light
shading), with random values (medium shading), including all markers
(dark shading), and including only those markers with largest absolute
effects (solid).
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families within the CCLONES population segregate for this
locus (Kayihan et al. 2010).

The underperformance of RR–BLUP for predicting oligo-
genic traits is a consequence of fitting a large number of markers
to model variation at a trait controlled by few major loci,
leading to model overparameterization. In Bayes A and Bayes
Cp, the shrinkage of effects is marker specific, while in BLUP
all markers are penalized equally. To address this limitation,
we proposed an alternative, RR–BLUP B, to Bayesian and the
traditional RR–BLUP approaches, aimed at reducing the num-
ber of parameters. In RR–BLUP B, marker effects are initially
estimated and ranked using RR–BLUP. Next, increasing
markers subsets that include initially those with larger effect
are used to estimate DGV. The number of markers that
maximizes the predictive ability is then defined and used in
a second RR–BLUP model. For rust disease resistance and
wood-density traits, the modified RR–BLUP B approach per-
formed better that traditional RR–BLUP and as well as the
Bayesian methods. Previous studies using simulated data
have shown that improvements in predictive ability could
be obtained by using an approach similar to the one proposed
here (Zhang et al. 2010, Zhang et al. 2011), although with
a different strategy of marker selection. While RR–BLUP B
may add an additional step to the development of predictive
models (i.e., initial marker selection), it is overall simpler and
computationally less expensive than Bayesian approaches.
Therefore, it may provide a suitable alternative to the use
of BLUP-based methods for traits that do not fit an infinites-
imal model and are rather regulated by few major loci.
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