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Early life is a period of considerable plasticity and vulnerability and insults during that
period can disrupt the homeostatic equilibrium of the developing organism, resulting in
adverse developmental programming and enhanced susceptibility to disease. Fetal
exposure to prenatal stress can impede optimum brain development and deranged
mother’s hypothalamic–pituitary–adrenal axis (HPA axis) stress responses can alter the
neurodevelopmental trajectories of the offspring. Corticotropin-releasing hormone (CRH)
and glucocorticoids, regulate fetal neurogenesis and while CRH exerts neuroprotective
actions, increased levels of stress hormones have been associated with fetal brain
structural alterations such as reduced cortical volume, impoverishment of neuronal
density in the limbic brain areas and alterations in neuronal circuitry, synaptic plasticity,
neurotransmission and G-protein coupled receptor (GPCR) signalling. Emerging evidence
highlight the role of epigenetic changes in fetal brain programming, as stress-induced
methylation of genes encoding molecules that are implicated in HPA axis and major
neurodevelopmental processes. These serve as molecular memories and have been
associated with long term modifications of the offspring’s stress regulatory system and
increased susceptibility to psychosomatic disorders later in life. This review summarises
our current understanding on the roles of CRH and other mediators of stress responses
on fetal neurodevelopment.
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INTRODUCTION

Early life, especially thefirst 1000 days from conception to age 2, is considered as one of themost critical
periods of development (1), where the foundations of optimumhealth, growth, and neurodevelopment
across the lifespan are established.During pregnancy, themothermust activate and coordinatemultiple
and diverse homeostatic mechanisms to support the growing fetus, especially neurodevelopment and
achieve a favourable outcome. Optimal function of this adaptation process (2), involving mediators of
the neuroendocrine stress response, promotes brain plasticity and resilience. In cases of excessive
prenatal adversity, optimal homeostatic equilibriummight be severely impaired (3) and (mal)adaptive
responsesmight contribute to development of prolonged pathogenic mechanisms. Pathological signals
n.org August 2021 | Volume 12 | Article 7142141
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arising from the mother can be transmitted to the developing fetus
leading to adverse programming of the offspring (2, 4).

Altered developmental trajectories of the fetus, can lead to acute
consequences or long-termoutcomes suchas enhanced susceptibility
to adult disease (the fetal origin of adult disease) (5). A plethora of
studies identified correlations between disrupted fetomaternal
symbiosis and fetal programming sometimes leading to
pathological birth phenotypes including abnormal immune
function (6, 7) and increased metabolic risk of the offspring (8–10).
Prenatal stress has also been associated with disrupted brain
programming and function, since the perinatal period is a critical
period of neurogenesis where the fetal brain can be remodelled or re-
programmed (11). Such exposures to adverse early life experiences
that disrupt fetal neurodevelopment are associated with offspring’s
increased risk for various psychopathologies (12–15).

In this review we describe current knowledge and emerging
evidence about the key players involved in maternal stress
responses on fetal neurodevelopment, focusing on the two
distinct but interacting mediators of hypothalamic–pituitary–
adrenal axis (HPA axis) responses: corticotropin-releasing
hormone (CRH) and its G-protein coupled receptors (GPCRs),
and adrenal glucocorticoids (GCs).

ADAPTATION TO MATERNAL STRESS,
RESILIENCE, AND NEURODEVELOPMENT

In human, the period between 20 and 32 weeks after conception
is characterized by rapid brain development in particular neural
migration and synaptogenesis and a high rate of fetal neuronal
proliferation (16); this is associated with development of the
fundamental anatomical structures for the initial functioning of
early neural circuits in utero (17). Brain neurogenesis is
remarkably complex and the fetal brain tissue can be
particularly plastic and vulnerable to a hostile intrauterine
environment. During pregnancy, coordinated actions of
hormones produced by the mother, placenta and fetus,
regulate fetal neurodevelopmental processes and fine-tune
brain formation (18). Members from at least three families of
GPCRs, (rhodopsin, secretin and adhesion) have been identified
as crucial for mediating these actions (18–20) (Table 1).

Fetal exposure to maternal stressors and enhanced allostatic
load, candisrupt optimumbraindevelopment.Mappingpathologic
pathways implicated as central mediators of the effects of early life
stress in brain function, identified altered HPA axis responses and
perturbed glucocorticoid signalling as well as variousmodifications
in the fetal brain function, including impaired GPCR signalling,
alterations in neurotransmission and disturbed functionality of
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neuronal circuits (21–26). Thus, as the phenotype responds to the
intrauterine environment, these adaptations can sometimes result
in long term consequences and increased risk for disease in later life
(27). See Howland et al. (28) for a recent review.

HPA Axis Activation and Pathological
Offspring Phenotypes
The HPA responses during pregnancy are characterized by another
major source of neuropeptide secretion, the placenta, which
synthesises placental CRH (pCRH) as early as 7 weeks of gestation.
Placental CRH exhibits distinct responses to glucocorticoids and
during gestation there is a bi-directional release of pCRH into the
maternal and fetal compartments (29, 30). Acting via type 1 (CRH-
R1) and type 2 (CRH-R2) receptors, CRH coordinating homeostatic
challenges (31) that might be crucial in fetal maturation and
providing nutritional signals that ultimately control pace of fetal
development. It is thus reasonable to assume, that hormonal
imbalances associated with severe or prolonged stress response,
could potentially affect optimal outcomes (18). For example, it has
been suggested that prenatal maternal stress signals associated with
elevated levels of CRH, influence fetal growth in directions that
determine gestation outcomes and alter birth phenotypes (32).
Results from the ELGAN (Extremely Low Gestational Age
Newborns) study suggest that extremes of pCRH expression
identify risk for adverse fetal developmental outcomes: low CRH
mRNA concentrations are associated with placenta inflammation
and predict ventriculomegaly whereas high CRH mRNA
concentrations predict motor dysfunctions (33). In addition, pCRH
through cortisol stimulationmight induce a state of insulin resistance
and increased glucose in maternal circulation available to the fetus.

CRH as a Neuroprotective Signal and
Molecular Mechanisms
A potential neuroprotector role has been suggested for CRH by
promoting neurogenesis, differentiation and survival of neuronal
cells (34, 35), however, abnormal intrauterine exposure to excess
CRH, can affect fetal neurodevelopment and result in brain
alterations resulting in cognitive and emotional deficits that
persist in later life (16, 36–39). Studies on early human embryos
suggest that CRH can promote survival of the neural progenitor
cells (NPCs) and serve as an endogenous neuroprotector. These
actions involve CRH-R1 and downstream activation of multiple
kinases including PKA and CREB activation (40) as well as
MAPK and PI3K signalling pathways. The latter control
apoptosis of NPCs, through inactivation of proapoptotic signals
such as Glycogen Synthase Kinase (GSK-3b) that prevents
degradation of b-catenin, augmenting neurogenesis (41). CRH
TABLE 1 | GPCRs involved in CNS development.

Receptor family Ligand example Type of receptor Actions on neuronal tissue

Secretin GPCRs CRH CRH-R1 Neurogenesis, differentiation of neuronal cells, development of neuronal circuits (21, 22)
Rhodopsin GPCRs Serotonin 5-HT1A, 5-HT2A, 5-HT2C Development of neuronal circuits

Modulation of memory, emotions and cognition (20)
Oxytocin OT-R Myelination, anti-inflammatory actions, neuroprotection (18)

Adhesion GPCRs Architecture and wiring of cortical and subcortical brain areas (19)
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direct neuroprotective actions can oppose the neurotoxic effects of
excess glucocorticoids on neuronal progenitors (34). Additionally,
CRH serves as a key modulator in adult neurogenesis and genetic
disruption of CRH/CRH-R impairs hippocampal neurogenesis.
Exposure of hippocampal neural stem cells (NSCs) to CRH
increases proliferation, survival, and differentiation via
transcriptional processes involving upregulation of Notch3, a
crucial regulator of adult tissue NSC quiescence and
maintenance (35).

CRH control of neurogenesis involves regulators of neuronal
connectivity and synaptic plasticity such as brain derived
neurotrophic factor (BDNF). Hypothalamic CRH is positively
regulated by BDNF via a mechanism that involves the cAMP
response-element binding protein (CREB) coactivator CRTC2.
This transcriptional regulator serves as a bidirectional switch for
BDNF and glucocorticoids to control expression of CRH (42).
Studies in CRH-overexpressing mice also identified a positive
feedback loop between CRH and BDNF that enhances BDNF
release. This leads to improved neuroprotective outcomes under
acute excitotoxic stress, with reduced neurodegeneration and
neuroinflammation of the hippocampus (43). Stress-induced
epigenetic modifications, resulting in BDNF methylation and
decreased expression in prefrontal cortex, amygdala and
hippocampus of prenatally stressed rats (44, 45), disrupt the
optimum neurodevelopmental processes, with similar effects also
reported in humans (46).

Fetal Neurodevelopment in States of
Maternal Stress and Excess CRH
Placental CRH can cross the immature fetal blood-brain barrier
where it may alter the rate of maturation of developing neuronal
structures. Differentiated cortical neurons in the fetal brain
express CRH-R as early as 13 weeks’ gestation. Studies in
humans and animals linking pCRH with early life behavioural
outcomes, show a positive correlation between maternal stress
and aberrant neurodevelopmental function likely related to
stunting of normal neuronal growth. See Lautarescu et al. (47)
for a recent review. Reduced cortical volume in the frontal and
temporal lobe, in the face of elevated levels of pCRH during
gestation, have been associated with both cognitive and
emotional deficits in pre-adolescent children (36). Moreover, in
rodents models of disease, stress-induced dendritic remodelling
has been linked with increased anxiety and depressive like
behaviours and with memory impairment (48). In human
studies, fetal exposure to accelerated pCRH trajectories during
mid-gestation was associated with child internalizing symptoms
at 5 years of age (16) and prenatal exposure to high pCRH can
affect infant temperament. Full term infants of mothers with
lower CRH levels at 25weeks of gestation showed lower levels of
distress in infancy compared with infants exposed to elevated
levels of the stress hormone (49).

Placental CRH levels have been positively correlated with
thinning of selective brain regions during gestation. The impact
of such developmental effects on maturation of neurons and
brain circuits is long-lasting as it is evident into early life:
children exposed to elevated levels of pCRH prenatally exhibit
significant thinning in the whole cortical mantle at age 7. The
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timing of the exposure to altered pCRH levels also determines
region specific changes; prefrontal thinning is associated with
elevated pCRH levels at early gestation whereas temporal
thinning is associated with pCRH levels later in gestation (36).
Experimental animal models demonstrated CRH-induced
alterations in dendritic brunching, specifically, decreased
branching of cortical neurons (37); altered synaptic plasticity,
impaired myelin formation and decreased dendritic spine
density in the hippocampal region of the offspring (50, 51).
Some evidence link maternal anxiety to reduced fetal amygdala
volume during the late second and third trimester of pregnancy
and alterations in fetal cortical gyrification of the frontal and
temporal lobes in brains of human fetuses of stressed
mothers (52).

The hippocampus and the HPA axis are functionally
interconnected, therefore stress alterations to the HPA axis
could mediate changes in the developing hippocampus (4).
Recent studies demonstrated that maternal adversity involves
brain CRH-R1 activation and regulation of neuronal
connectivity and developmental trajectories of the immature
hippocampus (38); this leads to structural remodelling of
hippocampal CA3 neurons with significant reduction of
complexity of apical dendrites and spine density (53–56).

CRH-Glucocorticoid Interplay
In addition to CRH, glucocorticoids (GC), the end-product of
HPA axis, control a distinct HPA-driven regulatory pathway in
fetal brain neurogenesis and neural cell proliferation (57, 58).
GCs rise over the course of pregnancy to further enhance pCRH
release in a distinct pCRH-adrenal GC positive feedback loop
(59, 60). This loop also involves placental inflammatory
pathways such as RelB and NF-kB2, molecules of the
noncanonical NF-kB pathway (61–63). While GCs are key
mediators of regulation of fetal growth and maturation of fetal
tissues and organs (64, 65), excessive GCs during pregnancy has
been associated with adverse fetal outcomes including
intrauterine growth restriction (IUGR), cardiovascular disease,
metabolic disorders and altered HPA set point of the neonate
(18, 66).

Recent studies investigating impact of natural disasters as
prenatal stressors associated with abnormal offspring HPA
function and development (67), identified raised cortisol as a
mediator of an angiogenic phenotype and a crucial role for GCs in
altering placental transcriptome, especially reduced expression of
GR-regulated endocrine genes expressed in syncytiotrophoblast.
Fetal glucocorticoid exposure is partially regulated by the enzyme
11b-hydroxysteroid dehydrogenase type 2 (11b-HSD2), which is
abundantly expressed in the placenta and other GC -target tissues
catalysing the unidirectional conversion of cortisol to its inactive
metabolite cortisone (68), thereby controlling fetal exposure to
maternal cortisol. Placental activity and expression levels of 11b-
HSD2 have been linked with fetal programming, and down-
regulation or deficiency of placental 11b-HSD2 have been
associated with unfavourable birth outcomes such as significant
restriction in fetal growth and low-birth weight (69, 70). Fetal
brain development and limbic brain areas (e.g., amygdala,
hippocampus, hypothalamus) are particularly vulnerable to
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overexposure to high GCs levels. Maternal cortisol levels during
pregnancy can predict amygdala volume in childhood and have
been associated with temperament of the offspring (71, 72).
Moreover, repeated antenatal corticosteroid administration has
been linked with lower density of hippocampal neurons of
neonates (73), cortical thinning (74) and reduced brain
maturation (75) findings that are consistent with animal studies
(76–80).

Moreover, a significant rise in GCs levels in response to
disease or severe or prolonged stress can impair beneficial
effects of CRH on neuronal brain tissue. As numerous studies
have linked CRH to neuro-damaging effects in neuronal tissue of
prenatally stressed offspring, a key question remains whether
CRH is causally linked to structural brain alterations or whether
it is an indirect indicator of raised GCs and neurodevelopmental
negative outcomes.
PLACENTAL STRESS SIGNALS AND
FETAL BRAIN NEUROTRANSMITTERS
AND GPCRS

In addition to its traditional roles, placenta is recognised as a
functional organ supporting fetal central nervous system (CNS)
development through adaptive responses to the maternal
environment. Recent gene expression and network analysis in
murine studies demonstrated that the placenta transcriptome is
tightly interconnected with the fetal brain and inhibition of
neurotrophin signalling has been identified as a potential mediator
of this crosstalk. A pattern of coordinated regulation suggests an
extensive network of genes encoding specific receptors and ligands
predicted to regulate functional interactions between the placenta
and brain (81, 82). Prenatal adverse conditions that activate placenta
responses also induce changes in fetal brain neurotransmitter
circuits. For example, placental inflammation and raised
proinflammatory cytokines (IL6 and IL1b) has been shown to
alter the neural expression of dopamine D1 and D2 receptors in
brain (83). Other studies have shown thatmaternal inflammation in
midpregnancy results in an upregulation of tryptophan conversion
to serotonin (5-HT) within the placenta, leading to exposure of the
fetal forebrain to increased concentrations of this biogenic amine
and to specific alterations of 5-HT-dependent neurogenic processes
(25, 84). 5-HT receptors in the brain are expressed in neurons and
glial cells and are involved inmanyneurodevelopmental events (e.g.,
neuronal formation, connectivity and synaptic formation)
identifying a possible link between the neurodevelopmental
complications of the offspring upon changes in the serotonergic
system.Altered5-HTlevelscandisrupt theexpected thalamocortical
and intracortical microcircuitry and modify CRH activation via the
hypothalamic 5-HT1A and 5-HT2A receptors and via the 5-HT2C
receptors at the hypothalamic paraventricular nucleus (PVN),
resulting in HPA axis dysregulation and altered basal activity (21).
The g aminobutyric acid (GABA) system is also sensitive in prenatal
environmental insults and the latter can lead to changes in
GABAergic gene expression of presynaptic GABAergic genes and
GABA receptor. The function of GABA receptors also appears
Frontiers in Endocrinology | www.frontiersin.org 4
sensitive to such insults: while in the adult brain GABA
neurotransmission serves as an inhibitory network, in the fetal and
early postnatal brain, GABA signalling is primarily excitatory.
Studies revealed that offspring born to immune-challenged
mothers, exhibit altered gene expression of genes encoding the
two cotransporters involved in the excitatory-to-inhibitory GABA
switch, leading to an increased NKCC1:KCC2 ratio and thus
experience a delay in the developmental switch of GABA
signalling. This might represent a link between early life
environmental hits andbehavioural changes in adult life (22–24, 50).
INFLAMMATION AND ACTIVATION OF
THE HPA AXIS

The HPA axis responds to a wide variety of maternal signals that
disrupt fetomaternal equilibrium. In particular, maternal immune
activation (MIA) during pregnancy by pathogen-derived stimuli,
autoinflammatory conditions or environmental irritants (85)
might be an important contributor to fetal or early life
neurodevelopmental disorders such as spectrum autism disorders
and schizophrenia (86–88). For a latest review see Depino A., 2018
(89). The pathophysiological processes implicated in the
association between MIA and adverse fetal brain programming,
involve not only the hyperactivation of the maternal stress system
but also inflammatory processes, elevations in mother’s circulating
cytokine levels (e.g. IL-6) and oxidative stress in the maternal and
fetal tissues as well as, sometimes, disruption of placental optimal
functions due to inflammatory conditions (90, 91). Some prenatal
factors that can potentially support fetal resilience to effects of
MIA, include high maternal levels of vitamin D, iron and zinc,
availability of omega-3 fatty acids and efficient anti-inflammatory
and antioxidant response systems. On the other hand, maternal
hypoferremia and anaemia, gestational diabetes mellitus, maternal
stress during pregnancy, dysbiosis of the maternal gut microbiota
and maternal history of cannabinoid exposure (90) can increase
the susceptibility of the offspring response to MIA. As
inflammatory mediators can pass through fetal blood-brain
barrier they can cause neuroinflammation leading to neuronal
loss, white matter abnormalities and impaired synaptic
development and neurotransmission (92). In addition, studies in
rodents suggest that MIA during pregnancy can also result in
profound changes in protein synthesis of the fetal brain (involving
translation initiation factors and other regulators of protein
synthesis) disrupting the neurodevelopment of the fetus (85).
MIA due to environmental insults by endocrine disrupting
chemicals (EDCS) can also affect the developing embryo by
altering synaptic connectivity, neurotransmitter or neuropeptide
expression, and neuronal differentiation (93).

MIA appears to induce dysregulation of the bi-directional gut-
brain axis (GBA) in particular the gut microbiome and HPA axis.
Pro-inflammatory cytokines can modulate the offspring’s HPA
axis activity, in particular CRH-R1 expression shown in rodent
environmental ‘two-hit’ insult models (94), or modify its
neuroimmune function and gut microbial colonization (95).
Many studies highlight the role of gut microbiome in health
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(96) and disease (97). An increasing body of research indicates an
association between intestinal microbes and brain function, as
intestinal microbes can modulate anxiety-like behaviour and cause
endocrine abnormalities in the HPA axis (98). See Morais et al.
(99) for a recent review. During pregnancy, maternal microbiome
composition, influenced by prenatal conditions (such as MIA),
can dynamically affect the offspring and potentially program
susceptibility to psychiatric disorders later in life (86, 100, 101).
The latter finding is of crucial importance for fetal
neurodevelopment as maternal gut microbiome promotes fetal
thalamocortical axonogenesis, probably via signalling by
microbially modulated metabolites to neurons in the developing
brain (102). Recent findings suggest a novel interplay between
maternal gut microbes and CCL2 in mediating fetal brain
inflammation via raised IL-6 and placental serotonin
metabolism in mediating the programming effects of prenatal
stress leading to aberrant sociability and anxiety-like behaviour in
adult offspring (25). Moreover, murine studies suggest that early
prenatal stress disrupts maternal-to-offspring microbiota
transmission and has lasting effects on metabolism, physiology,
cognition, and behaviour in male offspring. Maternal vaginal
microbiota appears to contribute to the long-lasting effects of
prenatal stress on offspring gut and reprogramming of the
developing hypothalamus associated with neurodevelopmental
disorders (103).
EPIGENETIC MECHANISMS LINKING
STRESS AND NEURODEVELOPMENT

Fetal neurodevelopment is associated with considerable epigenetic
changes targeting a wide range of genes andmolecules with diverse
biological roles (104). Recent studies exploring activity of HPA axis
in maternal prenatal adversity, demonstrated enhanced
methylation of the promoter region of NR3C1, leading to
transcription silencing (105, 106). This results in decreased GCs
negative feedback and a concomitant increase in both basal and
stress-activated (107) HPA activity and elevated CRH and cortisol
levels in response to stressors (108, 109). Disruption of key
epigenetic processes during critical periods of brain development
and themodifications observed in the stress regulatorymechanism,
can increase an individual’s vulnerability to psychopathology later
in life (110). For example, humanpost-mortemhippocampal tissue
of suicide victims showed reduced GC receptor expression in the
hippocampus of those with a history of childhood abuse (111). In
previous studies, NR3C1methylation has also been associated with
internalizing psychopathology in children and adolescents (112,
113). Other perceived stressors, such as socioeconomic status,
health conditions, and lifestyle can also influence NR3C1 gene
regulation, revealing the complexity of environmental impacts
on epigenetic modifications (114). During human hippocampal
neurogenesis, exposure toGCs can lead to lastingDNAmethylation
changes and subsequent alterations in gene transcription (115).
Similar findings have been described in guinea pigs with the
intriguing finding that hippocampal changes in gene
transcription and DNA methylation persist across three
generations of the juvenile female offspring (116).
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The impact of stress-induced methylation on CRH gene
expression is not well understood. Recent studies identified positive
association between prenatal maternal stress and methylation of the
transcription factor binding site of CRH gene in the neonatal cord
blood, maternal and placenta blood samples. Methylation in
several NR3C1 and CRH CpG sites, predicted a negative correlation
with birth weight (117). Maternal pCRH concentration correlates
with cord blood cellsDNAmethylation, especiallymethylationof the
leptin (LEP) gene promoter, and these epigenetic alterations are
present into mid-childhood. As higher LEP methylation has been
associated with lower BMI in childhood, these results might suggest
an underlying link between pCRH andmetabolic fetal programming
(118). Studies on rodents reveal that chronic stress can induce
epigenetic alterations that can mould the central stress response
and ultimately affect gene expression and CRH transcriptional and
translational activities in many brain areas, in a sex specific manner
(119). Although maternal interaction is a major determinant of
hypothalamic CRH expression in early life (28), data from in utero
epigenetic studies are not available but required to explore the impact
of prenatal interaction on later-life stress responsiveness. DNA
methylation is not the only epigenetic alteration that can be
detected; early life stress can also lead to histone modifications, that
can modify chromatin architecture, alter transcription, and
ultimately affect gene expression of candidate genes during early
brain development (120–122). Chronic maternal stress can also
generate major alterations in the antioxidant levels, and in the
cellular pathways implicated in neurodevelopmental processes and
DNA damage; a recent study demonstrated that maternal chronic
stress downregulates levels of b-catenin and BDNF and upregulates
GSK-3b, resulting in compromised neurogenesis in the prenatally
stressed offspring (41, 123). Long-term alterations on signalling
pathways interfering with the inflammatory/immune response and
metabolism in the prenatally stressed offspring, have been reported
especially with the neuroinflammation signalling pathway, the NF-
kB and p38 MAPK signalling (124). Epigenetic changes may also
interferewithGPCR signalling and changes in themethylation status
of genes encoding G proteins or GPCRs may result in inability of G
protein signalling initiation or even in abruption of the GPCR
signalling transduction. For example, in male neonates, there is a
positive correlationbetweenpregnancy anxiety and fetalmethylation
of the GABBR1 gene, that encodes the G protein coupled receptor
subunit GABA-B1 (26). Likewise, maternal emotional stress and
cortisol levels during pregnancy are associated with fetal DNA
methylation of GNASXL, the extra large isoform of Gas protein
involved in networks that control fetal growth and development
(125). For a recent review see Cao-Lei et al. (126).
CONCLUSIONS

The placenta is pivotal in the development of the fetal brain and
extensive molecular networks and pathways functionally link the
two tissues. Placental adaptive inflammation and epigenetic
responses to the maternal environment under the influence of
prenatal stress, activate mechanisms that exert adverse roles in
fetal neurodevelopment (Figure 1). The underlying biological
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mechanisms only recently began to unravel, especially the roles of
altered HPA responses involving placental CRH and
glucocorticoids. However, the precise mechanisms employed by
the fetus to protect itself from an unfavourable intrauterine
environment have not yet been fully elucidated. The fetus plays
an active role in its own development and efforts to establish
successful pregnancy outcomes, and via developmental
programming, alters the birth phenotype to adjust better to the
postnatal life. This “fight response”, is controlled by the HPA at
multiple levels with pCRH exerting a major influence by
integrating the homeostatic mechanisms that will ultimately
promote adaptation to maternal adversity. Nonetheless, in cases
of extremely unfavourable intrauterine conditions, the fetus can
also choose to ‘escape’ from a hostile maternal environment,
triggering the “flight response” via HPA axis activation, that will
ultimately initiate parturition and lead to preterm birth. This
hypothesis places pCRH in a central role in controlling the
placental “clock” determining the length of pregnancy and the
Frontiers in Endocrinology | www.frontiersin.org 6
onset of labour (32, 39, 127–129) but at extreme situations at
the expense of optimal fetal development. The impact of HPA and
pCRH activation on neurodevelopment is crucial and dissecting
these actions could provide novel mechanistic (and potentially
actionable) insights especially for understanding susceptibility to
psychosomatic disorders later in life.
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FIGURE 1 | Possible pathophysiological mechanisms linking prenatal maternal adversity to disrupted fetal brain programming. Maternal stress could activate adrenal
production of glucocorticoids (GCs) that can cross the placenta and regulate fetal brain neurogenesis. GCs also enhance production and release of placental CRH
(pCRH) into the fetal compartments, a neuropeptide that can exert either neuroprotective or neuro-impairment effects. Excess levels of GCs and pCRH have been
associated with structural fetal brain modifications, impaired neurotransmission and disrupted programming of the HPA axis of the fetus that involves epigenetic
modifications of the glucocorticoid receptor (GR) gene and is linked with increased HPA axis reactivity of the neonate and adverse behavioral and emotional outcomes
later in life. Additionally, maternal stress or inflammatory conditions can enhance placental output of serotonin (5-HT) to the fetal brain leading to serotonergic dysfunction.
Excess maternal stress, can influence signals arising from gut microbiota to affect placental CCL signaling. The interplay between placental 5-HT, CCL-2 and other
inflammatory mediators ultimately drives fetal neuroinflammation and IL-6 elevation in the fetal brain.
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32. Alcántara-Alonso V, Panetta P, de Gortari P, Grammatopoulos DK.
Corticotropin-Releasing Hormone as the Homeostatic Rheostat of Feto-
Maternal Symbiosis and Developmental Programming In Utero and
Neonatal Life. Front Endocrinol (Lausanne) (2017) 8:161. doi: 10.3389/
fendo.2017.00161

33. Leviton A, Allred EN, Kuban KCK, O’Shea TM, Paneth N, Majzoub J. Brain
Disorders Associated With Corticotropin-Releasing Hormone Expression in
the Placenta Among Children Born Before the 28th Week of Gestation. Acta
Paediatr Int J Paediatr (2016) 105:7–11. doi: 10.1111/apa.13174

34. Koutmani Y, Politis PK, Elkouris M, Agrogiannis G, Kemerli M, Patsouris E,
et al. Corticotropin-Releasing Hormone Exerts Direct Effects on Neuronal
Progenitor Cells: Implications for Neuroprotection. Mol Psychiatry (2013)
18:300–7. doi: 10.1038/mp.2012.198

35. Koutmani Y, Gampierakis IA, Polissidis A, Ximerakis M, Koutsoudaki PN,
Polyzos A, et al. CRH Promotes the Neurogenic Activity of Neural Stem
Cells in the Adult Hippocampus. Cell Rep (2019) 29:932–45. doi: 10.1016/
j.celrep.2019.09.037

36. Sandman CA, Curran MM, Davis EP, Glynn LM, Head K, Baram TZ.
Cortical Thinning and Neuropsychiatric Outcomes in Children Exposed to
Prenatal Adversity: A Role for Placental CRH? Am J Psychiatry (2018)
175:471–9. doi: 10.1176/appi.ajp.2017.16121433

37. Curran MM, Sandman CA, Davis EP, Glynn LM, Baram TZ. Abnormal
Dendritic Maturation of Developing Cortical Neurons Exposed to
Corticotropin Releasing Hormone (CRH): Insights Into Effects of Prenatal
Adversity? PloS One (2017) 12:1–11. doi: 10.1371/journal.pone.0180311
August 2021 | Volume 12 | Article 714214

http://www.parliament.uk/copyright
http://www.parliament.uk/copyright
https://doi.org/10.1016/j.yfrne.2019.02.003
https://doi.org/10.2399/ana.09.034
https://doi.org/10.1159/000488468
https://doi.org/10.1210/en.2016-1003
https://doi.org/10.1002/dev.20316
https://doi.org/10.3109/10253890.2013.876404
https://doi.org/10.1371/journal.pone.0011896
https://doi.org/10.1016/j.ajog.2008.03.006
https://doi.org/10.1016/j.ajog.2008.03.006
https://doi.org/10.1016/j.psyneuen.2020.104591
https://doi.org/10.1016/j.jsbmb.2015.08.003
https://doi.org/10.1016/j.jsbmb.2015.08.003
https://doi.org/10.1038/sj.npp.1301450
https://doi.org/10.1192/bjp.180.6.502
https://doi.org/10.1002/da.20856
https://doi.org/10.1007/s00787-010-0113-9
https://doi.org/10.1016/j.psyneuen.2016.01.023
https://doi.org/10.1038/npp.2009.115
https://doi.org/10.3389/fendo.2019.00179
https://doi.org/10.1038/nrn.2016.86
https://doi.org/10.1016/j.pharmthera.2015.01.009
https://doi.org/10.1016/j.pharmthera.2015.01.009
https://doi.org/10.3390/ijms21165850
https://doi.org/10.1093/schbul/sbs195
https://doi.org/10.1038/s41398-020-01027-6
https://doi.org/10.1038/s41398-020-01027-6
https://doi.org/10.1016/j.neuroscience.2006.07.029
https://doi.org/10.1038/s41398-020-00876-5
https://doi.org/10.1186/s13148-017-0408-5
https://doi.org/10.1038/nature02725
https://doi.org/10.1080/17446651.2017.1356222
https://doi.org/10.1111/j.1749-6632.2000.tb06220.x
https://doi.org/10.1210/jcem-72-5-1001
https://doi.org/10.1530/JME-13-0238
https://doi.org/10.1530/JME-13-0238
https://doi.org/10.3389/fendo.2017.00161
https://doi.org/10.3389/fendo.2017.00161
https://doi.org/10.1111/apa.13174
https://doi.org/10.1038/mp.2012.198
https://doi.org/10.1016/j.celrep.2019.09.037
https://doi.org/10.1016/j.celrep.2019.09.037
https://doi.org/10.1176/appi.ajp.2017.16121433
https://doi.org/10.1371/journal.pone.0180311
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Kassotaki et al. Placental CRH and Fetal Neurodevelopment
38. Chen Y, Bender RA, Brunson KL, Pomper JK, Grigoriadis DE, Wurst W,
et al. Modulation of Dendritic Differentiation by Corticotropin-Releasing
Factor in the Developing Hippocampus. Proc Natl Acad Sci USA (2004)
101:15782–7. doi: 10.1073/pnas.0403975101

39. Sandman CA. Fetal Exposure to Placental Corticotropin-Releasing
Hormone (pCRH) Programs Developmental Trajectories. Peptides (2015)
72:145–53. doi: 10.1016/j.peptides.2015.03.020

40. Bayatti N, Zschocke J, Behl C. Brain Region-Specific Neuroprotective Action
and Signaling of Corticotropin-Releasing Hormone in Primary Neurons.
Endocrinology (2003) 144:4051–60. doi: 10.1210/en.2003-0168

41. Fatima M, Srivastav S, Ahmad MH, Mondal AC. Effects of Chronic
Unpredictable Mild Stress Induced Prenatal Stress on Neurodevelopment
of Neonates: Role of GSK-3b. Sci Rep (2019) 9:1305. doi: 10.1038/s41598-
018-38085-2

42. Jeanneteau FD, Lambert WM, Ismaili N, Bath KG, Lee FS, Garabedian MJ,
et al. BDNF and Glucocorticoids Regulate Corticotrophin-Releasing
Hormone (CRH) Homeostasis in the Hypothalamus. Proc Natl Acad Sci
USA (2012) 109:1305–10. doi: 10.1073/pnas.1114122109

43. Hanstein R, Lu A, Wurst W, Holsboer F, Deussing JM, Clement AB, et al.
Transgenic Overexpression of Corticotropin Releasing Hormone Provides
Partial Protection Against Neurodegeneration in an In Vivo Model of Acute
Excitotoxic Stress. Neuroscience (2008) 156:712–21. doi: 10.1016/
j.neuroscience.2008.07.034

44. Boersma GJ, Lee RS, Cordner ZA, Ewald ER, Purcell RH, Moghadam AA,
et al. Prenatal Stress Decreases Bdnf Expression and Increases Methylation
of Bdnf Exon IV in Rats. Epigenetics (2014) 9:437–47. doi: 10.4161/
epi.27558

45. Blaze J, Asok A, Borrelli K, Tulbert C, Bollinger J, Ronca AE, et al.
Intrauterine Exposure to Maternal Stress Alters Bdnf IV DNA
Methylation and Telomere Length in the Brain of Adult Rat Offspring. Int
J Dev Neurosci (2017) 62:56–62. doi: 10.1016/j.ijdevneu.2017.03.007

46. Lautarescu A, Craig MC, Glover V. Prenatal Stress: Effects on fetal and Child
Brain Development. Clin Epigenet (2020) 150:17–40. doi: 10.1016/
bs.irn.2019.11.002

47. Lautarescu A, Craig MC, Glover V. Prenatal Stress: Effects on Fetal and
Child Brain Development. Inter Rev Neurobiol (2020) 150:17–40.
doi: 10.1016/bs.irn.2019.11.002

48. Gray JD, Kogan JF, Marrocco J, McEwen BS. Genomic and Epigenomic
Mechanisms of Glucocorticoids in the Brain. Nat Rev Endocrinol (2017)
13:661–73. doi: 10.1038/nrendo.2017.97

49. Davis EP, Glynn LM, Schetter CD, Hobel C, Chicz-Demet A, Sandman CA.
Corticotropin-Releasing Hormone During Pregnancy Is Associated With
Infant Temperament. Dev Neurosci (2005) 27:299–305. doi: 10.1159/
000086709

50. Shang Y, Chen R, Li F, Zhang H, Wang H, Zhang T. Prenatal Stress Impairs
Memory Function in the Early Development of Male- Offspring Associated
With the Gaba Function. Physiol Behav (2021) 228:113184. doi: 10.1016/
j.physbeh.2020.113184

51. Hermes M, Antonow-schlorke I, Hollstein D, Kuehnel S, Rakers F,
Frauendorf V, et al. Maternal Psychosocial Stress During Early Gestation
Impairs Fetal Structural Brain Development in Sheep. Stress (2020) 23:233–
42. doi: 10.1080/10253890.2019.1652266

52. Wu Y, Lu Y, Jacobs M, Pradhan S, Kapse K, Zhao L, et al. Association of
Prenatal Maternal Psychological Distress With Fetal Brain Growth,
Metabolism, and Cortical Maturation. JAMA Netw Open (2020) 3(1):
e1919940. doi: 10.1001/jamanetworkopen.2019.19940

53. Wang XD, Chen Y, Wolf M, Wagner KV, Liebl C, Scharf SH, et al. Forebrain
CRHR1 Deficiency Attenuates Chronic Stress-Induced Cognitive Deficits
and Dendritic Remodeling. Neurobiol Dis (2011) 42:300–10. doi: 10.1016/
j.nbd.2011.01.020

54. Liu R, Yang XD, Liao XM, Xie XM, Su YA, Li JT, et al. Early Postnatal Stress
Suppresses the Developmental Trajectory of Hippocampal Pyramidal
Neurons: The Role of CRHR1. Brain Struct Funct (2016) 221:4525–36.
doi: 10.1007/s00429-016-1182-4

55. Liao XM, Yang XD, Jia J, Li JT, Xie XM, Su YA, et al. Blockade of
Corticotropin-Releasing Hormone Receptor 1 Attenuates Early-Life Stress-
Induced Synaptic Abnormalities in the Neonatal Hippocampus.
Hippocampus (2014) 24:528–40. doi: 10.1002/hipo.22254
Frontiers in Endocrinology | www.frontiersin.org 8
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