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The notion of a critical community size (CCS), or population size that is likely

to result in long-term persistence of a communicable disease, has been devel-

oped based on the empirical observations of acute immunizing infections in

human populations, and extended for use in wildlife populations. Seasonal

birth pulses are frequently observed in wildlife and are expected to impact

infection dynamics, yet their effect on pathogen persistence and CCS have

not been considered. To investigate this issue theoretically, we use stochastic

epidemiological models to ask how host life-history traits and infection

parameters interact to determine pathogen persistence within a closed popu-

lation. We fit seasonal birth pulse models to data from diverse mammalian

species in order to identify realistic parameter ranges. When varying the syn-

chrony of the birth pulse with all other parameters being constant, our model

predicted that the CCS can vary by more than two orders of magnitude.

Tighter birth pulses tended to drive pathogen extinction by creating large

amplitude oscillations in prevalence, especially with high demographic turn-

over and short infectious periods. Parameters affecting the relative timing of

the epidemic and birth pulse peaks determined the intensity and direction

of the effect of pre-existing immunity in the population on the pathogen’s

ability to persist beyond the initial epidemic following its introduction.

1. Introduction
The infusion of modern ecological theory into epidemiology was initiated in the

1950s [1–3]. Subsequently, demographic factors controlling the fate of patho-

gens in animal populations have been identified in the context of zoonotic

reservoirs [4–6] and wildlife conservation [1–3]. Two distinct mechanisms of

pathogen extinction have been proposed theoretically and explored in various

natural systems [4–6]. First, invasion thresholds are directly derived from the

basic reproduction ratio (R0): deterministic models predict that a minimum den-

sity or proportion (depending on the mode of transmission) of susceptible

individuals is required for a given infection to spread. However, even above

this threshold epidemics may still fail to occur due to stochastic processes.

A classical prediction from branching process theory is that, given R0 . 1, the

probability that a single infectious individual in a naive population gives rise

to an epidemic is equal to 1 – 1/R0 [7].

Second, stochastic models also predict that even when a pathogen success-

fully spreads in a population, it may not persist indefinitely. A relationship

between population size and probability of extinction for endemic diseases

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2013.2962&domain=pdf&date_stamp=2014-05-14
mailto:alisonpeel@gmail.com
http://dx.doi.org/10.1098/rspb.2013.2962
http://dx.doi.org/10.1098/rspb.2013.2962
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org


rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20132962

2
was first proposed by Bartlett [8]. Combining case reports of

measles in non-naive human populations and stochastic

models with a metapopulation structure, Bartlett proposed

that measles virus was more likely to ‘fade out’ in communities

below a ‘critical community size’ (CCS). Many authors have

subsequently confirmed that measles and other viruses result-

ing in acute infections in humans are more likely to fade out in

smaller communities, but persist at the metapopulation level

through migration [9]. Over time, CCS has become a pervasive

concept through human and wildlife epidemiology. The

abbreviation CCS is now often used as a general term for any

population threshold for disease persistence [4] and its defi-

nition has been broadened to apply variously to population

density or size (e.g. [6,10–12]). However, unlike invasion

thresholds, which are simple functions of R0, the CCS is an

ill-defined quantity. As underlined by Conlan et al. [9], CCS

estimation is sensitive to the chosen measure of persistence as

well as the detailed assumptions of the stochastic model used

for inference; these caveats make it difficult to compare CCS

estimates between studies.

The CCS was originally defined in human populations

with near-continuous birth. Substantial seasonal variation in

human birth rates (for example, in sub-Saharan Africa) was

recently shown to have significant effects on the periodicity,

magnitude and timing of measles epidemics [13]; however,

its effect on CCS has not been explored. Seasonality of life-

history traits and behaviour are important drivers of wildlife

infectious disease dynamics [14], yet also have not been

considered when estimating CCS in wildlife populations. The

timing of birth in wildlife is usually tightly controlled by seaso-

nal cycles in resource availability or climate [14]. Modelling

studies using deterministic frameworks have explored the

effect of seasonal reproduction of wildlife hosts on infection

cycles for a variety of pathogens, including macroparasites

[15], possum tuberculosis [16], house finch conjunctivitis [17],

rabbit haemorrhagic disease [18,19], vole cowpox [18,20] and

raccoon rabies [21,22]. Only one of these models considered

disease extinction [18], but the effect of stochastic fade-out

on persistence and CCS was not explored. Given the impor-

tance of birth pulses in shaping infection cycles in wildlife

populations, we hypothesize that these cycles could result

in pathogen extinction, thus affecting the CCS. Herein, we

use a simple stochastic epidemiological model to investigate

the effects of an annual seasonal birth pulse on pathogen

persistence and extinction.

Specifically, we ask how host life-history traits (lifespan

and shape of the seasonal birth pulse) and infection par-

ameters (infectious period and basic reproduction ratio)

interact to determine the persistence of a pathogen following

its introduction in a closed population. We review published

and unpublished birth pulse data across various species to

motivate the structure of our demographic model. We then

present results of stochastic simulation series over a range

of parameter values and discuss our findings in the context

of the concept of CCS.
2. Material and methods
(a) Birth pulse function and empirical validation
Most species display seasonal variations in mating and births,

often marked by one or two yearly peaks. In humans, births

occur throughout the year and variations can be approximated
well by sine functions [13,23]. By contrast, many wild mamma-

lian species give birth only during a limited period of time

each year, which has led to the common use of a step function

(equal to zero for several months) to describe seasonal birth

rates in mathematical models [15,20,21]. At its most extreme,

all yearly births are assumed to occur simultaneously in an

instantaneous pulse [16,24]. Continuous (double-logit) step func-

tions have also been used to reduce the dynamic artefacts caused

by discontinuous step changes [17]. However, even in species

with a short breeding season, there is temporal variation in

birth rates, so we would expect step and sine functions to be

the two ends of a spectrum. We investigated empirical support

for an alternative mathematical description of birth pulses that

would fill the gap between those two extremes. Mathematically,

a pulse is commonly modelled as a Dirac delta function that

is the limit of the Gaussian function da(t) ¼ 1/a
ffiffiffiffi

p
p

e�t2=a2
when

a! 0. We modified the latter to make it periodic using a

cosine function, leading to the following per capita birth rate:

B(t) ¼ k exp[�s cos2(p t� w)], (2:1)

which has period of 1 time unit (here, 1 year); we refer to this as

the periodic Gaussian function. This function has three par-

ameters, which all have relevant biological interpretations: k is

a scaling factor proportional to the annual per capita birth rate,

w controls the phase (i.e. the timing of the peak of the birth

pulse) and s controls the bandwidth (i.e. the duration of the

birth pulse). Greater values of s result in higher and narrower

peaks, which can be interpreted as more synchronous births in

the population. In the absence of a birth pulse (s ¼ 0), we set

the birth rate to a constant. In the following, we refer to s as

the synchrony parameter. See the electronic supplementary

material, appendix 2.1 for more detail about the function.

To compare this function with the sine and step functions,

we searched the literature for published data on the timing of

births in wild mammals. We collected reports of observed num-

bers of births by day, week or month, covering the whole period

of reproduction for the populations of species considered (elec-

tronic supplementary material, appendix 1). We excluded species

with two or more birth peaks within a year, as well as datasets

that were either too small (fewer than 10 births recorded) or aggre-

gated from diverse locations, resulting in a blurred seasonal signal.

We fitted a total of three birth rate functions to each dataset

by maximum likelihood. The functions chosen were periodic

Gaussian function, cosine function and step function. For a

given model and a given dataset, the likelihood was calculated

as the multinomial probability of the distribution of observed

births, given the expected proportions of births obtained by inte-

grating the birth rate over that time step. For each dataset, the

three fitted models were ranked according to Akaike’s infor-

mation criterion (AIC); we used the second-order variant of

AIC which accounts for finite sample size [25]. See the electronic

supplementary material, appendix 2.2 for more information. All

calculations were performed with the R software version 3.0 [26].

For each dataset i and each model j, we then calculated the AIC

difference Di,j ¼ AICi,j �mink AICi,k, which indicates the relative

support for each model [25].
(b) Dynamic model
We model a hypothetical population with an annual birth pulse

as given in equation (2.1), and assume a constant death rate m. In

order to maintain a stationary population size from year to year,

we re-wrote the scaling coefficient k as a function of m and s, so

that the integral of B(t) over a period of 1 year is equal to m (see

the electronic supplementary material, appendix 2.1). As a result

of this assumption, the value of the death rate m also determines

the birth rate; to reflect this, we will refer to m as the ‘turnover

rate’. Additionally, 1/m represents the average lifespan in the



Table 1. List of symbols used in the model.

symbol description
values
explored

S(t) susceptible individuals —a

I(t) infected individuals in population I(0) ¼ 1

R(t) recovered individuals —a

B(t) birth rate per capita —b

n yearly average population size 102 – 105

p proportion of immune individuals

in population at t ¼ 0

0 – 0.75

m death rate or turnover rate 0.1 – 3 yr21

s birth pulse synchrony 0 – 100

w phase of the birth pulse 2p/2 –p/3

k scale of the birth pulse —c

g recovery rate 1 – 52 yr21

R0 basic reproduction ratio 4

b transmission rate —d

aS(0) and R(0) are functions of n, p and w (see text).
bB(t) ¼ k exp[2S cos2fp t 2 w)].
ck is a function of m and s.
db ¼ R0(m þ g).
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population. Given the values of m and s, the phase of the birth

pulse w and the yearly average of the population size n, we can

calculate the population size at the point in the cycle correspond-

ing to t ¼ 0 to initiate simulations (electronic supplementary

material, appendix 2.1).

At the start of the annual cycle (t ¼ 0), we introduce an indi-

vidual infected with a directly transmitted pathogen. The spread

of infection is assumed to follow a classical SIR (susceptible–

infectious–recovered) model: there is no incubation period, sus-

ceptible individuals get infected by direct contact with infectious

individuals at rate b I/N, recovery occurs at a constant rate g and

recovery results in lifelong immunity. In addition, we assume

that the infection is not lethal, which means that the overall

population dynamics are the same with or without the pathogen.

First, we present a deterministic version of the model,

defined by the following set of differential equations:

dS
dt
¼ B(t)N �mS� bSI

N
,

dI
dt
¼ bSI

N
� (gþm)I

and
dR
dt
¼ gI �mR,

where S, I and R are the densities of susceptible, infected and

recovered individuals respectively, N ¼ S þ I þ R is the total

population density, and B(t) is the seasonal per capita birth rate

from equation (2.1). Table 1 lists the model parameters and the

ranges of values explored in this study. The pathogen’s basic

reproduction ratio is R0 ¼ b/(m þ g). Note that transmission is

modelled as a frequency-dependent function (i.e. proportional

to the prevalence of infection I/N), so R0 is independent of the

population size. We considered two variants on this model.

First, to tease apart the potential importance of increases in over-

all population size versus increases in the susceptible pool, we

considered a model with a seasonal death rate matching the

birth rate that allowed only the susceptible portion of the popu-

lation to increase; it produced results qualitatively similar to

those obtained with the main model (see the electronic sup-

plementary material, appendix 6). Second, in order to tease

apart frequency versus density dependence, we considered a

density-dependent transmission function b’SI with constant

death rate as in the original model (see the electronic supplemen-

tary material, appendix 7).

The deterministic model was solved numerically using the

deSolve package [27] in R. Given the values for m, the initial popu-

lation size N(0) was calculated to ensure a yearly population

average equal to the chosen value n (see the electronic supplemen-

tary material, appendix 2.1). Infection was seeded with I(0) ¼ 1,

and the rest of the population was split between naive, S(0) ¼

(1 2 p) [N(0) 2 1], and immune, R(0) ¼ p [N(0) 2 1], with 0 �
p , 1 representing the fraction of the population immune prior to

pathogen introduction (due to acquired immunity from a previous

outbreak or vaccination).

The core of our study is based on an event-based, stochastic

version of the model, where the three state variables (S, I and R)

can take only integer values. Six types of events (births, deaths in

each state variable, infection or recovery) occur in continuous

time with probabilities proportional to their respective rates in

the deterministic model. However, because of the time-depen-

dent birth rate, we decided not to use the exact Gillespie

algorithm [28] as it can generate long time steps when event

rates are low. Instead, we implemented an adaptive time-step

algorithm [29], with a maximum step size of less than 1 day

(see the electronic supplementary material, appendix 3 for a com-

plete description). During a time step dt, the number of events of

each type i ¼ f1, . . . ,6g is drawn from a Poisson distribution with

mean ridt, where ri is the rate of event type i, for example bSI/N
for an infection. If more events occur than are feasible (e.g. more
recoveries than there are currently infected individuals), the time

step is halved and the new Poisson-distributed random numbers

are drawn.

The stochastic model was implemented in R, using the same

range of parameter values and initial conditions as for the deter-

ministic model and explored a full factorial set of model

parameters. For each set of parameter values and initial con-

ditions, we ran 1000 simulations for a duration of 10 years.

This arbitrary time limit was chosen to allow several seasonal

cycles to occur, while keeping in mind that our assumptions of

constant parameters and closed populations would not be rel-

evant in nature over long periods of time. We estimated the

probability of pathogen extinction as the proportion of simu-

lations that reached the state I ¼ 0, and we recorded the time of

extinction. Combined with average infectious periods of at

most 1 year, this gives us a reasonable measure of pathogen per-

sistence following a single introduction event. Failure of an

epidemic to ‘take off’ (result in sustained transmission), which

is expected to occur with a probability equal to 1/R0 [7], was

recorded separately to post-epidemic extinctions, using a

threshold of five transmission events before extinction. This

value gave results consistent with the theoretical expectation

across the wide range of parameter values. In addition to the

figures in the main text, the electronic supplementary material,

appendices 5, 6, 7 and 9 contain more complete graphs showing

interactions between parameters, as well as a global sensiti-

vity analysis, which confirms statistically the complexity of

these interactions.
3. Results
(a) Empirical validation of birth pulse function
For each of the 18 datasets, we rank our three models using

AIC; the results are shown in the electronic supplemen-

tary material, appendix 1. The periodic Gaussian function
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ranked highest with 17 datasets. For the remaining dataset (2),

the cosine function is ranked first but the periodic Gaussian

function still receives substantial support (DAIC ¼ 2.7). The

step function (which is the most commonly used one in model-

ling studies) receives very little support across all but one

dataset. Plots of the observed and predicted dynamics show

that the periodic Gaussian birth rate generally reproduces the

shape of the birth distribution quite well (figure 1; electronic

supplementary material, figure S2). Discrepancies occur with

datasets that display a small number of births on either side

of the main peak: the fitted model produces a wider and

lower peak as a result (e.g. dataset 9 in figure 1).

Across our 18 datasets, the maximum-likelihood esti-

mates of the synchrony parameter s range from 2.4 to 227,

with a median of 30. To put these values into biological con-

text, electronic supplementary material, figure S3 shows the

duration of the birth pulse, defined arbitrarily as the period

when 95% of yearly births are predicted to take place, as a

function of synchrony s.

(b) Demographic dynamics with periodic
Gaussian birth rate

Using the periodic Gaussian birth rate from equation (2.1)

scaled with the turnover rate m to ensure a stationary popu-

lation size from year to year, the deterministic population

dynamics are given by

dN
dt
¼ m N[Ks e�s cos2(p t�w) � 1 ], (3:1)

where Ks is a normalization factor that depends on s only
(see the electronic supplementary material, appendix 2.1).

Numerical solutions of equation (3.1) show that N(t) follows

asymmetrical annual cycles with the peak N(t) occurring

after the birth pulse peak. A ‘tighter’ birth pulse (increased

synchrony of births occurring over shorter duration, rep-

resented by higher values of s) generates greater amplitude

of population cycles with a shorter time lag (electronic

supplementary material, figure S4). Increasing the turnover

(m) while keeping the average population size constant

also results in oscillations of greater amplitude (electronic

supplementary material, figure S5).

Stochastic simulations of this simple time-forced

birth–death process enable us to assess the probability of a

population crash across the fm, s, ng parameter space. At the

higher end of the relevant parameter region (where higher

amplitude oscillations are expected), with a rapid turnover

m ¼ 2 yr– 1 (equivalent to an average lifespan of six months)

and a tight birth pulse s ¼ 100 (representing 95% of births

occurring within 33 days), average population sizes as low

as n ¼ 100 crash with a frequency of only 1% within 10 years

(electronic supplementary material, figure S6).

(c) Infection dynamics and critical community size
Using our stochastic SIR model, we assess the ability of the

pathogen to invade and persist following the introduction

of a single case into a closed population. We distinguish

between three categories of extinction occurrences: failure to

take off (fewer than five cases in total), epidemic burnout fol-

lowing the first wave of infection (with a cut-off time of two

years post introduction) and endemic fade-out (after the
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pathogen has persisted for at least two seasons). We focus on

the latter two, having confirmed that failure to take off occurs

with a probability of 1/R0, as predicted by branching process

theory (see §2b).

Conditional on successful invasion and in the presence of

a constant birth rate throughout the year (s ¼ 0), the prob-

ability of pathogen extinction is strongly influenced by

demographic turnover m and recovery rate g. In general,

for a given population size n and a given basic reproduction

ratio R0, the probability of extinction increases with the rate of

recovery g and decreases with the turnover rate m (figure 2a).

The population size itself has a clear positive effect on persist-

ence. For the sake of clarity, we follow Bartlett [8] and define

the CCS as the average annual population size with even

odds of pathogen persistence after 10 years. A shorter time

or a greater probability of extinction would result in lower

CCS estimates, but the qualitative trends would remain the

same: basically, the CCS decreases when the turnover m is

higher or the recovery rate g is lower (figure 2a). We then use

these simple patterns as a background to study the effect of

birth pulse synchrony on pathogen persistence and CCS.

All other parameters being fixed, increasing the birth pulse

synchrony (s) concentrates the same number of births over a

shorter time period, which amplifies oscillations in the deter-

ministic model and tends to increase the probability of

pathogen extinction (figure 2b). With more acute infections
(i.e. higher recovery rates), a tight birth pulse (say s ¼ 100)

can increase the CCS by a factor of 40 compared with a constant

birth rate (figure 2a). The quantitative effect of s on the CCS is

generally weaker in longer-lived host species (i.e. with lower

turnover m; electronic supplementary material, figure S7).

A closer look at interactions between parameters and model

dynamics reveals an unexpected pattern. In the presence of a

marked birth pulse, we observe a non-monotonic effect of the

turnover rate m on pathogen persistence (figure 3). As already

mentioned, the low turnover rate associated with longer-lived

species (for example, the primate, ungulate and bat datasets)

favours epidemic burnout, typically within 2–3 years of intro-

duction. However, conditional on survival past the first post-

epidemic trough, endemic persistence is very likely, as the

system settles down to low-amplitude oscillations (as predicted

by the deterministic model; figure 3). Increasing the turnover rate

has two opposite effects. On the one hand, by providing more

naive offspring in the first post-epidemic birth pulse, it reduces

the probability of a rapid burnout. We call this a ‘rescue

effect’, a term borrowed from metapopulation biology [30].

On the other hand, by generating cycles of greater amplitude,

it creates deeper annual troughs (visible in the deterministic

model in figure 3), which in turn increases the probability of

stochastic fade-out. Hence, everything else being equal, persist-

ence is maximum in species with intermediate lifespans (for

example, m ¼ 1, representing an average lifespan of 1 year).
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Figure 3. Effect of turnover rate m on the dynamics and persistence of infection with a birth pulse s ¼ 10. (a) Deterministic dynamics for three values of m (0.2, 1
and 3 yr21 from top to bottom), with the numbers of susceptible S(t) in blue and infected I(t) in red; the dashed line shows the threshold value N(t)/R0 for the
number of susceptible individuals over which the infection spreads (dI/dt . 0); the width of the shaded vertical bars reflects the duration and intensity of seasonal
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the horizontal axis. Red bars show the proportion of simulations with no outbreak (extinction after fewer than five infection events). Parameter values: s ¼ 10,
g ¼ 12 yr21, R0 ¼ 4, n ¼ 50 000.
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An additional factor that can modulate the effect of the birth

pulse on the post-epidemic burnout is the timing of pathogen

introduction in the seasonal cycle (controlled by the phase par-

ameter w in equation (2.1)). By default we assumed that the

introduction of infection took place when births were at their

lowest (six months before the maximum of the birth pulse,

w ¼ 0). However, as shown in figure 2e with an average lifespan

of 2 years and an infectious period of one month, a shorter lag

between pathogen introduction and the next peak of the birth

pulse (e.g. two months, w ¼ –p/3) can result in a dramatic

increase in the CCS. The optimal phase difference for pathogen

persistence (around eight months in figure 2e, w ¼ p/6) varies

with combinations of m and g (electronic supplementary

material, figure S8). Epidemic burnout is most likely (i.e. the

deepest post-epidemic trough) when the initial epidemic

peak coincides with the birth pulse peak, and therefore is

followed by a waning of susceptible individuals entering

the population and maximal time until the ‘rescue effect’

of the next birth pulse. However, conditional to persistence

beyond this first post-epidemic trough, the relative timing of

the birth pulse and introduction of infection had little effect

on long-term persistence.

We also considered pre-existing immunity in the popu-

lation (parameter p) to simulate the effect of reintroduction

of a pathogen after a previous outbreak and extinction, or

after an immunization programme. Prior immunity reduces

the probability of an outbreak, but has a highly variable

effect on the CCS (which we estimated conditionally on out-

break occurrence). By reducing the effective reproduction

ratio of the pathogen, prior immunity slows down the initial

invasion. As a result, the birth pulse occurs earlier in the epi-

demic cycle, which can either shift the epidemic peak closer

to the next birth pulse and rescue the pathogen (figure 2c)

or, on the contrary, shift the epidemic peak from before the

birth pulse to after it, resulting in deeper post-epidemic

trough (figure 2d ). In line with previous points, other par-

ameters that affect the relative timing of the epidemic peak
to the peak of the birth pulse (especially m, g and w) will

affect the intensity and direction of the effect of p on CCS

(figure 2c,d; electronic supplementary material, figure S9).

Taken together, these results suggest that the relative

importance of a parameter for pathogen persistence and CCS

is dependent on the respective variance of other parameters,

which is largely arbitrary in this study. Hence, a sensitivity

analysis will be most informative in the context of specific sys-

tems where more information on parameter values is available.

We have provided an extensive series of plots in the electronic

supplementary material that show more details of parameter

interactions and nonlinear patterns.

(d) Density-dependent model
A model with density-dependent transmission gave results

similar to the frequency-dependent model over the majority

of the parameter space, indicating little overall effect of

density-dependent transmission on persistence (electronic sup-

plementary material, figure S11). However, at extreme values

of m and s, greater fluctuations in total population size resulted

in amplified peaks and troughs of transmission, increasing the

likelihood of endemic fade-out (i.e. a higher CCS; electronic

supplementary material, figure S12).
4. Discussion
Growing concern about emerging zoonotic infections has

stimulated research effort to model the dynamics of pathogen

spillover from wildlife into human populations [31–33].

However, these approaches mostly ignore the dynamics of

infection in the reservoir host. This motivated our study

into factors that drive the persistence and extinction of patho-

gens in wildlife host populations, focusing on seasonal birth

pulses, a feature common to many animal species.

We identified data on seasonal birth rates for a range of

mammalian species. Whereas numerous studies report the
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period over which births take place, few provide the time

series of birth numbers required to calculate birth rates for

such study, even though appropriate data probably exist in

raw form. We assessed alternative mathematical functions

for the birth pulse using 18 datasets. Our results suggested

that the binary step function used in most published

models was not a good representation of real birth pulses

and the ‘periodic Gaussian’ function may be preferable for

this purpose. Estimates of the key parameter controlling the

tightness of the birth pulse (s, for synchrony) across available

datasets of birth pulses have not previously been quantified,

yet span two orders of magnitude and have significant effects

on the infection dynamics.

Our stochastic SIR model with annual birth pulses showed

that tighter birth pulses tend to drive pathogen extinction by

creating large amplitude oscillations in prevalence. In addition,

tighter birth pulses result in the population size being lower for a

greater proportion of the year, leading to an increased likelihood

of stochastic fade-out. The effect of s was stronger in species

with higher demographic turnover, and for pathogens with

shorter infectious periods and density-dependent transmission.

Interestingly, in the presence of a birth pulse, invasive patho-

gens are predicted to be most likely to persist in host species

with intermediate turnover (measured as the average number

of births and deaths per year): long-lived species with small

birth pulses tend to experience a single epidemic, which dies

out; by contrast, short-lived species with a higher birth pulse

can maintain the pathogen for a few seasons but with a pattern

of annual peaks and troughs, which often results in stochastic

extinction of the pathogen. Early, post-epidemic fade-outs are

also affected by the timing of pathogen introduction relative

to the birth pulse, as well as pre-existing immunity in the

population (e.g. from a recently extinct outbreak).

Empirical estimation of CCS in wildlife remains limited

[4]. A few studies have used mathematical models to analyse

the role of wildlife reservoir dynamics in the occurrence of

zoonotic spillover events in humans, highlighting factors

affecting pathogen persistence in reservoir host populations.

In particular, plague outbreaks have been linked to the meta-

population structure of the rat reservoir in Europe [34] and

gerbils in Kazakhstan [35,36]. However, as underlined by

Heier et al. [36], estimating the effect of host abundance on

the persistence of infection is more complicated than deter-

mining thresholds for pathogen invasion. George et al. [24]

showed that seasonal patterns of hibernation and highly syn-

chronous reproduction in American big brown bats (Eptesicus
fuscus) played a crucial role in the persistence of rabies virus in

that host, but their study only considered large populations,

hence offering little insight into CCS. Other ecological factors,

such as contacts between multiple host species, have been pro-

posed to contribute to pathogen persistence in wildlife by

increasing the effective community size [6,37].

Apart from contributing to theoretical understanding of

viral dynamics and persistence, the notion of the CCS has prac-

tical applications in wildlife population management. For

example, vaccination is often difficult or impractical in wildlife,

and it is often recommended in combination with reduction of

population size by culling susceptible animals (discussed in

[38–41]). However, our model suggests that prior herd immu-

nity can increase the CCS in some circumstances. Sufficient

life-history data were not available for all of the seasonal

birth pulse datasets presented here to estimate the CCS

required for pathogen persistence over a range of infectious
periods. However, we provide two specific examples to

demonstrate the real-life utility of this model when data are

available. First, our results indicated that the effect of birth

pulse synchrony on the CCS was more pronounced in

shorter-lived host species (i.e. with higher turnover m), such

as Townsend’s vole (Microtus townsendii, dataset 3, m � 3.3

[42]). Even with a relatively low degree of synchrony (s ¼ 3.3,

representing 95% of births occurring within 7.8 months), the

presence of the birth pulse in M. townsendii increases the

CCS for a pathogen with an infectious period of one month

(g ¼ 12) from less than 200 to almost 10 000 individuals (elec-

tronic supplementary material, figure S13). An even greater

increase in CCS is expected for pathogens with more

acute infectious periods (electronic supplementary material,

figure S7). Second, we consider the grey-headed flying fox

(P. policocephalus, dataset 13), which has a highly synchronous

seasonal birth pulse (s ¼ 130, representing 95% of births within

28 days), but a low turnover rate (m ¼ 0.14 [43]), which

moderates the effect of the birth pulse (figure 2b). Our model

predicts that pathogens with an infectious period of less

than approximately six weeks (g � 8) could not persist in a

naive population with this turnover rate and degree of syn-

chrony (electronic supplementary material, figure S14a). This

raises questions regarding the dynamics of pathogens with

short infectious periods, such as Hendra virus (g � 52) [44]

within populations of this species. The inclusion of pre-existing

immunity at 50% (equivalent to Hendra virus seroprevalence

rates commonly observed in this species [44]) resulted

in greater persistence, though still only to g � 20 (electronic

supplementary material, figure S14b). This suggests that

other factors important in viral persistence in this system are

absent from our model; for example, age-structure, meta-

populations, multi-host systems, within-host persistence and

waning immunity.

Our model provides theoretical insights into the effect

of seasonal birth pulses on pathogen dynamics in wildlife

populations and a basis for further extension. For example,

one extension would be to consider a metapopulation frame-

work, which would allow recurrent introduction of the

pathogen. Interestingly, our model predicts that prior immunity

can favour the persistence of some pathogens by dampening the

secondary outbreak dynamics, a phenomenon related to the

‘epidemic enhancement’ proposed by Pulliam et al. [45] and

applied within a metapopulation framework by Plowright

et al. [44]. There is ongoing debate on the effects of habitat frag-

mentation on the persistence of infectious diseases in wildlife

[46]. A landmark study by Swinton et al. [12] concluded that

the fragmented metapopulation structure of harbour seals

around the North Sea was responsible for the rapid fade-out

of a deadly outbreak of phocine distemper virus in 1988.

Recent examples indicate that existing habitat fragmentation

and variations in population sizes could be used to hinder the

threat from infectious diseases to endangered wildlife, including

rabies in the Ethiopian wolf [47] and chytridiomycosis in amphi-

bians [48]. Our model could also be modified to account for

disease-induced death in order to investigate the role of seasonal

birth pulse on the relative risks of host and pathogen extinction.

Despite growing interest in the environmental and demo-

graphic drivers of pathogen cycles in wildlife [14], the effect

of these cycles on pathogen persistence has been overlooked.

By incorporating an empirically motivated birth pulse func-

tion into a generic infection model, we have provided a

framework to study pathogen persistence in wildlife species
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exhibiting seasonal births. The CCS is sensitive to demo-

graphic and pathogen-related parameters, and should be

considered within an ecological context. Therefore, esti-

mation of CCS values and their subsequent use in wildlife

management practices must be treated with caution as it is

likely to be highly system-dependent.
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