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Abstract

Motivation: Currently there are no tools specifically designed for annotating genes in phages.

Several tools are available that have been adapted to run on phage genomes, but due to their

underlying design, they are unable to capture the full complexity of phage genomes. Phages have

adapted their genomes to be extremely compact, having adjacent genes that overlap and genes

completely inside of other longer genes. This non-delineated genome structure makes it difficult

for gene prediction using the currently available gene annotators. Here we present PHANOTATE, a

novel method for gene calling specifically designed for phage genomes. Although the compact na-

ture of genes in phages is a problem for current gene annotators, we exploit this property by treat-

ing a phage genome as a network of paths: where open reading frames are favorable, and overlaps

and gaps are less favorable, but still possible. We represent this network of connections as a

weighted graph, and use dynamic programing to find the optimal path.

Results: We compare PHANOTATE to other gene callers by annotating a set of 2133 complete

phage genomes from GenBank, using PHANOTATE and the three most popular gene callers. We

found that the four programs agree on 82% of the total predicted genes, with PHANOTATE predict-

ing more genes than the other three. We searched for these extra genes in both GenBank’s non-

redundant protein database and all of the metagenomes in the sequence read archive, and found

that they are present at levels that suggest that these are functional protein-coding genes.

Availability and implementation: https://github.com/deprekate/PHANOTATE

Contact: deprekate@gmail.com or redwards@sdsu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

Introduction

Phages, viruses that infect bacteria, provide unique challenges for bio-

informatics. There is a limit to how much DNA can be packaged in a

capsid, and therefore phage genomes are generally short, typically in

the range 20–100 kb. By necessity, their genomes are compact: phage

genes are shorter than their bacterial homologs are frequently co-

transcribed, and adjacent open reading frames (ORFs) often overlap

(Kang et al., 2017). In a few cases, phage genes are encoded within

each other (Cahill et al., 2017; Summer et al., 2007). In contrast,

bacterial genes generally are longer, separated by intergenic spacers

and frequently switch strands (Kang et al., 2017). There are no bio-

informatics tools specifically designed to identify genes in phage

genomes, so algorithms designed to identify bacterial genes are typical-

ly used (McNair et al., 2018). For example, from 31 phage genomes

published between October 14, 2016 and August 1, 2018, the genes in

ten phage genomes were identified by GeneMark software (GeneMark/

GeneMarkS/GeneMark.hmm), the genes in 10 phage genomes were

identified by RAST, the genes in 7 phage genomes by Glimmer, 3
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phage genomes each by Geneious, the NCBI ORF Finder, PHAST

(which uses Glimmer as a gene caller; Arndt et al., 2016), PROKKA

(which uses Prodigal as a default gene caller; Seemann, 2014), 2 phage

genomes by Prodigal and 1 phage genome by MetaVir, RASTtk,

SerialCloner or SnapGene (Supplementary Table S1; note that in many

publications several different tools were used to identify genes in phage

genomes). Each of these algorithms relies on information that is not

available and calculations that are not possible with short genomes.

For example, there are no conserved genes in phage genomes that can

be used to build universal training sets (Rohwer and Edwards, 2002),

fewer genes means the statistics used to identify start codons are less ac-

curate (Wu et al., 2003), and because many phage genes or the proteins

they encode have no homolog in the databases, similarity searches are

unreliable (Roux et al., 2015). There are alternate gene calling

approaches, such as using positional nucleotide frequency (Besemer

and Borodovsky, 1999), or the multivariate entropy of amino acid

usage used by Glimmer (Ouyang et al., 2004), but these are designed

for complete bacterial genomes and have not been optimized for use

with phage genomes.

Here, we introduce a novel method for gene identification that is

specifically designed for phage genomes. We make several presump-

tions based on studying hundreds of phages genomes. First, we

noted that since phages have physical limits on their genome sizes

they contain minimal non-coding DNA. Second, we showed that

phage genes are usually on the same strand of the DNA, presumably

because they are co-transcribed (Akhter, 2012; Kang et al., 2017).

Based on these observations, we designed a completely novel ap-

proach to phage gene identification, tiling opening reading frames to

minimize non-coding DNA bases and strand switching. We treat a

phage genome as a network of paths in which ORFs are more favor-

able, and overlaps and gaps are less favorable. We solved this

weighted graph problem using the Bellman-Ford algorithm

(Bellman, 1958; Ford, 1956), and by optimizing the parameters for

phages genomes we are able to enhance phage gene prediction algo-

rithms. In the absence of supporting data to confirm our new predic-

tions, we turned to high-volume sequence similarity searches to

explore the predicted proteins. Regions of the genome that encode

proteins are more likely to be conserved at the amino acid level than

regions that encode regulatory regions, replication regions, sites of

integration and other, DNA-based, information components of the

phage genome (Badger and Olsen, 1999). These searches showed

that the predicted phage genes might encode novel proteins that

have been missed by existing gene callers designed to annotate bac-

terial genomes.

2 Materials and methods

2.1 The PHANOTATE algorithm
The first step PHANOTATE takes in identifying the genes in a

phage genome is creating a weighted graph from the ORFs in that

genome. By default, we allow for three start codons (codonsstart ¼
{ATG, GTG, TTG}), and three stop codons (codonsstop¼ {TAA,

TAG, TGA}), and the default minimum length of an ORF is 90 nt.

The directed weighted graph consists of nodes that represent start

and stop codons, and edges that represent either an ORF if the edge

connects a start codon to a subsequent stop codon in the same read-

ing frame; a gap if the edge connects a stop codon to a subsequent

start codon in any reading frame on the same strand, or if the edge

connects a stop codon to a subsequent stop codon on the alternate

strand; or an overlap if the edge connects a stop codon to a preced-

ing start codon in any other reading frame on the same strand, or to

a preceding stop codon on the alternate strand. Since phages rarely

have >300 bp of untranslated DNA, and to reduce computational

burden, we only connect ORFs within 6300 bp of each other. When

there is a very large span without an ORF, we connect ORFs on

each side of the region with a linear penalty.
For each edge, we calculate a weight depending on the feature

type: ORF, overlap, or gap. To calculate the weight of an ORF

(worf), we use an adjusted likelihood of not finding a stop codon in

an ORF of this length. We count the fraction of each base in each

ORF, and use that to determine the overall probability encountering

a stop codon over the entire ORF:

PðstopÞ ¼ PðTAAÞ þ PðTAGÞ þ PðTGAÞ (1)

We then calculate P(not stop) to obtain the probability of NOT

encountering a stop codon:

Pðnot stopÞ ¼ 1� PðstopÞ (2)

Using P(not stop) alone to calculate the path through the genome

is sufficient for genomes with an average GC content; however high

GC content genomes have extremely long, spurious, ORFs caused

by their bias of generally having a G or C in the third codon position

of their protein-encoding genes, which then forces a C or G in the

first position in the opposite strand, limiting the options for includ-

ing stop codons in the genome. To overcome this we incorporated

two GC frame plot scores into our final calculation. The initial GC

frame plot (GCFP) score was inspired by Prodigal, but we have

adapted that and we also include both minimum GC frame plot and

maximum GC frame plot. We start by reading the three frames of

the genome one base at a time, looking at the codon starting at that

base, and calculating the %GC content over a 120 bp window for

each of the three reading frames. Taking the set of ORFs that start

with ATG, we iterate through the codons of those ORFs and deter-

mine which position (first, second or third) has the maximum GC

content, and maintain a running total for that position. Similarly,

we calculate a GC frame plot minimum score by recording the min-

imum GC content (pseudocode is provided in Supplementary

Material). This gives us a count of the frequency of the three posi-

tions in all ORFs that start with ATG and can be used to estimate

the preferred reading frame at any location. We translate these three

numbers into scores by dividing each by the counts for the position

with the highest count, bringing the preferred maximum GC pos-

ition to 1, and the others to <1. This yields a set of three position

scores that range between 0 and 1, with 1 being the maximal or min-

imal GC frame. For instance, if the input genome had a bias where

half of its max GC frame was in the third frame, and the other half

split evenly between the first and second frame, once normalized,

the GCFPmax scores would be [0.5, 0.5, 1]. The GC frame plot

scores are used to exponentiate the P(not stop) score. For example,

if a codon’s GCFPmax score was 1, which would match the pre-

ferred frame, then P(not stop) is unchanged. However, if a codon’s

GCFPmax score is less than 1, indicating that the current ORF is in

a different frame to the preferred GC frame at that location in the

genome, then that codon’s P(not stop) value is reduced in the final

calculation.
Scores for ORFs are modified by a weighted ribosomal-binding site

(RBS) score. Since little is currently known about the diversity of RBSs

in phages, we employed a similar likelihood-based Shine-Dalgarno

RBS system used previously (Hyatt et al., 2010). We plan to add a

more rigorous non-Shine-Dalgarno RBS motif finder in subsequent ver-

sions of PHANOTATE. In addition, we adjust the ORF score based on

the likelihood that the first codon is a start. We created a normalized

frequency of start codons based on all genes predicted in GenBank in
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2133 phage genomes. Finally, the weight is negated to denote these

edges as favorable in the network.

The calculation to generate a weighted score worf for each ORF

in the graph is shown in Equation (5).

When continuing from a stop codon either in a gap or an over-

lap, the next ORF maybe on either strand of the DNA sequence.

However, phage genes are usually on the same strand, and unlike

bacterial genes, they rarely switch strands (Kang et al., 2017). If a

strand switch occurs, then a strand switch penalty is included in the

weight of the gap or overlap, where P(switch) is equal to 0.05,

otherwise no penalty is added: P(switch) ¼ {0, 0.05}. This penalty is

the multiplicative inverse of the probability of a strand switch occur-

ring, which was calculated from our set of annotated genes derived

from the 2133 phage genomes to occur at a rate of �5% per

protein-encoding gene (in contrast, the rate per bacterial protein-

encoding gene is �25%).

Since gap weights (wgap) need to be proportionally scaled to

ORF weights, we use a similar weight as ORFs (worf). They are not

corrected for GC frame plot, and use a genome-wide average prob-

ability of not finding a stop codon P (not stop) that is exponentiated

by the length of the gap, and then the positive multiplicative inverse

is taken and combined with P(switch) (Equation 3).

wgap ¼
1

ðPðnot stopÞlenÞ
þ 1

PðswitchÞ (3)

Overlap weights (woverlap) also need to be proportionally scaled

to ORF weights, so they are calculated by finding the average of the

two coding weights of the ORFs in the overlap, and then exponenti-

ating by the length, n, of the overlap (Equation 4). If a strand switch

occurs, then a penalty is added to the gap weight as noted above.

woverlap ¼
1�

Pðnot stopÞ1þ Pðnot stopÞ2
2

�len
þ 1

PðswitchÞ (4)

In order to use these weights in with the Bellman-Ford algorithm,

they must be transformed into ‘distances’, so for each of the above

weights, we take the multiplicative inverse of the probabilities to

create a weighted graph network. Our novel C-based implementa-

tion of the Bellman-Ford algorithm is then used to find the shortest

path through the network.

2.2 Comparison with other gene callers
We compared gene identification between PHANOTATE and the

three most popular gene callers used to identify genes in phages

(Supplementary Table S1): GeneMarkS, Glimmer, and Prodigal

using a set of 2133 complete phage genomes, which were down-

loaded from the GenBank FTP server (Benson et al., 2017). We did

not include nine Mycoplasma and Spiroplasma phages, which use an

alternative genetic code. We ran PHANOTATE and each of the

three alternative gene callers with default (or ‘phage’ if available)

parameters on each phage genome, as is done for most phage gen-

ome annotation projects (Supplementary Table S1). In addition, the

‘meta’ option was used to allow Prodigal to run on genomes smaller

than 20 kb.

worf ¼�
1Qcodons

c¼1 ðPðnot stopÞGCFPmaxmaxGCframe cð ÞGCFPminminGCframe cð Þ Þ
�RBS � START

(5)

To mask out functional, but non-protein-coding regions of the

genomes, we used the program tRNAscan-SE to find the tRNA

genes in each genome. To compare the algorithms, we counted the

number of ORFs predicted by each respective algorithm and com-

pared those predictions to the corresponding genes in GenBank.

2.3 Statistical analyses
All analyses were performed in Python using the statsmodels and

scipy modules (scipy.org) (Jones et al., 2001; Seabold and Perktold,

2010). ANOVA, Tukey’s honest significant difference test, Levene’s

test, Cohen’s f2 test and t-tests were performed on ln(x þ 1)-normal-

ized length or count data.

2.4 Validation against the sequence read archive
In the absence of direct protein measurements, we used conserved simi-

larity to test whether ORFs are likely to encode proteins. To create a

positive control set, we combined the 223 385 ORFs that were pre-

dicted to encode proteins by one or more of Glimmer, GeneMarkS or

Prodigal. To create a negative control set, we identified the 1 122 336

ORFs over 90 nt that were not predicted to encode proteins by any

software (Glimmer, GeneMarkS, Prodigal or PHANOTATE). Finally,

we also identified the 15 105 ORFs that were unique to PHANOTATE

(Fig. 1). We previously developed partie (Torres et al., 2017) to identify

the random community genomes (metagenomes) in the NCBI

Sequence Read Archive (SRA) (NCBI Resource Coordinators, 2016).

We used lastal (Kiełbasa et al., 2011; Sheetlin et al., 2014) to compare

six-frame translations of a 100 000 read sample of the sequence reads

from these metagenomes in the SRA to the predicted protein sequences

from the ORFs. Sequences with an expect value <1 � 10�10 were con-

sidered significant. The differences in means were compared using a

one-way ANOVA followed by a post hoc Tukey’s test to identify the

variables driving any difference. Normality was tested using Levene’s

test (Fowler et al., 1998). Cohen’s f2 test was used to determine effect

size.

These datasets are uneven and large and therefore direct compar-

isons may lead to small effects being found to be significant. To

overcome this we measure both Cohen’s f 2 and d values to measure

effect size (Cohen, 1988; Nakagawa and Cuthill, 2007). In addition,

we subsample 1000 proteins with replacement at random from the

entire pool of ORFs and use those in the ANOVA. We repeat this

Fig. 1. Number of genes predicted by each of four different gene prediction

algorithms and the combinations thereof. Orange background: predicted by a

single algorithm; green background: predicted by two algorithms; blue back-

ground: predicted by three algorithms; pink background: predicted by all four

algorithms
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calculation 1000 times to determine whether the PHANOTATE pre-

dictions are similar to either the set of positive predicted proteins or

the negative control set of ORFs that were not predicted to encode

proteins.

The Git repository contains a detailed description of the ap-

proach used to compare the SRA reads to the predicted ORFs, con-

tains a link to the alignment data, and contains Jupyter notebooks

with the statistical analysis reported below.

https://github.com/deprekate/PHANOTATE

3 Results

PHANOTATE is a novel gene caller designed explicitly to identify

phage genes. We used the Bellman-Ford algorithm to treat the gen-

ome like a path, and parameterized the search by calculating the

weights from 2133 phage genomes in GenBank. To test

PHANOTATE, we calculated the number of genes predicted by our

algorithm and compared that to the genes predicted by those algo-

rithms typically used to call genes in phages (Supplementary Table

S1), namely Glimmer (Ouyang et al., 2004), GeneMarkS (Besemer

and Borodovsky, 1999) and Prodigal (Hyatt et al., 2010). In total,

we identified 239 072 genes from 2133 phage genomes (Table 1).

There was no statistically significant difference in the mean

lengths of the genes predicted Glimmer or Prodigal, while the mean

lengths of the genes predicted by PHANOTATE and GeneMarkS

were statistically significantly different to those called by the other

algorithms [F(3, 861 779) ¼ 440.45, P ¼ 0.0]. However, the effect

size of the difference was very small (d < 0.1 in every pairwise

comparison).

The Jaccard index (J) calculated from these results show that

Prodigal and GeneMarkS are the most similar in their predictions

(J(Prodigal, GeneMarkS) ¼ 0.94); Glimmer is similar to both

Prodigal and GeneMarkS (J(Glimmer, Prodigal) ¼ J(Glimmer,

GeneMarkS) ¼ 0.92); while PHANOTATE is the most different be-

cause of the large number of ORFs that it predicts as proteins that

the others do not (see below; J(PHANOTATE, Prodigal)) ¼ 0.88;

J(PHANOTATE, Glimmer) ¼ J(PHANOTATE, GeneMarkS) ¼
087).

Each of the tools identified a set of predicted genes that were not

identified by any of the other software. PHANOTATE version 1.0

predicted 15 105 genes (6% of the total number of genes predicted

by all software) that were not predicted by other gene prediction

algorithms. An ANOVA comparison between the lengths of the

genes identified by 1, 2, 3 or 4 gene callers identified significant vari-

ation [F(1, 861 781) ¼ 21 312.85, P¼0.0], but the effect size was

very small (d ¼ 0.02). A post hoc Tukey’s test showed that there

was no difference between the lengths of genes identified by a single

gene caller or two gene callers (P > 0.05), but that all other pairwise

comparisons were different. When we consider just the unique genes

that were identified by each algorithm the ANOVA comparison

identified significant variation in the lengths of the genes [F(3,

20 856) ¼ 56.6, P¼0], but again the effect size was very small (d ¼
0.01). The post hoc Tukey’s test showed that there were two groups

that were significantly different between groups but not within

groups (P<0.05). Glimmer (M¼217 nt, SD ¼ 174.35) and

Prodigal (M¼226 nt, SD ¼ 151.58) had indistinguishable mean

lengths of unique genes, while the mean lengths of PHANOTATE

(M¼210 nt, SD ¼ 245.94) and GeneMarkS (M¼183 nt, SD ¼
109.06) were indistinguishable.

We cannot simply rely on the GenBank annotations to be cor-

rect. First, the proteins annotated in GenBank are typically predicted

by the gene callers used in this comparison (Supplementary Table

S1). Second, many of the current phage genome annotations in

GenBank are filled with false positives. For example, in the Shiga

toxin-converting phages (NC_004913 and NC_004914), every ORF

longer than 160 bp has been annotated as a protein-coding gene.

There are also abundant examples of false negatives, protein-coding

genes present in the genome that were not identified by the annota-

tion software. The most obvious false negatives are genes shorter

than 100 bp, since this is an often-used arbitrary minimum cutoff.

Small genes that do not show strong coding signals, such as shared

homology to known or hypothetical genes in the databases or shared

codon usage, are often excluded by other gene annotators in an ef-

fort to minimize false positives.

The best experimental approach to determine whether these

genes encode proteins would be to identify the proteins via proteo-

mics. However, there are few published phage proteomics studies

(Fagerquist et al., 2014; Pope et al., 2014), and in those studies, the

raw proteomics data are not provided. Rather the authors only indi-

cate which ORFs were matched, frequently using proprietary soft-

ware and typically using gene calls made using the algorithms

discussed here. This precludes our ability to use proteomics data to

validate gene identification in phages.

In the absence of third-party validation datasets and experimen-

tal datasets, we turned to evolution to test whether the genes we pre-

dict in these phages may encode proteins. We hypothesized that

protein-encoding genes are more likely to be evolutionarily con-

served than ORFs that are not translated into proteins. Protein-

encoding genes are constrained by the function of the protein. A

variant of this approach has previously been used to identify genes

in bacterial genomes (Badger and Olsen, 1999). When we compared

the genes that PHANOTATE predicted to the proteins in the

GenBank non-redundant (nr) protein database (Benson et al., 2017),

there was significant similarity to 23% of the predicted proteins (ex-

pect value < 10�10). This is similar to the 1–30% of phage proteins

that typically have similarity to the GenBank nr database, and the

remained is often called the ‘phage dark matter’ (Mokili et al.,

2012). The mean lengths of the predicted genes that did not match

to GenBank (243 nt) was significantly shorter than the mean length

of those genes that matched GenBank (229 nt) [t(1000) ¼ 3.02, P <

0.005] but the effect size was small (d ¼ 0.19). This may suggest

that shorter proteins are under-represented in the database because

of arbitrary lower limits on gene callers, shorter proteins have less

statistical significance in similarity searches, or PHANOTATE is

identifying more, shorter, ORFs and incorrectly suggesting they are

proteins. We, therefore, sought an additional assurance of the genes

predicted by PHANOTATE.

For a more rigorous analysis of the ability of sequence similarity

to discriminate between coding and non-coding genes, we turned to

the largest repository of sequence data, the NCBI SRA (NCBI

Resource Coordinators, 2016). Specifically, we extracted 94 652

random community metagenomes we previously identified (Torres

et al., 2017). We constructed two control datasets: a set of presumed

Table 1. Numbers and lengths of the genes predicted by the differ-

ent gene callers

Gene caller Number

of genes

Mean

length (nt)

SD of gene

length (nt)

PHANOTATE 225 518 603 708

GeneMarkS 213 101 628 719

Glimmer 211 278 631 719

Prodigal 211 886 631 720
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positive predictions comprised of all ORFs predicted by Glimmer,

GeneMarkS and/or Prodigal (but not those only predicted by

PHANOTATE), and a set of known negative annotations of ORFs

that are longer than 90 bp and not predicted to encode proteins by

any of the software used here, including PHANOTATE. We mapped

the reads from the SRA to the ORFs using the translated search algo-

rithm lastal (Kiełbasa et al., 2011; Sheetlin et al., 2014). When we

compared the number of reads that mapped for all ORFs that had at

least one read map, significantly more reads mapped to the ORFs

predicted to be proteins (mean 1871.5 reads mapped; standard devi-

ation 15 933.2), than our negative control set (mean 136.0 reads

mapped; standard deviation 1316.9) (Fig. 2) [F(2, 149 770) ¼
37 900, P¼0.00]. There was a large effect size for this comparison

(d ¼ 0.9), as can be seen in Figure 2. This analysis confirms that we

are more likely to find reads mapping to ORFs if they encode pro-

teins than if they do not encode proteins, and therefore we can use

this approach to determine whether the ORFs predicted by

PHANOTATE alone are likely to encode proteins.

When we compare the ORFs that are only predicted by

PHANOTATE and not predicted by the other ORF callers (�6% of

all the ORFs identified) with the two control sets, 72% of the time

the ORFs predicted by PHANOTATE had mean read abundance

that was indistinguishable from the mean abundance of the true pro-

teins, but 79% of the time the mean read abundance was similar to

the ORFs that were not predicted to be proteins. Similarly, the me-

dium effect size suggests that similarities to ORFs identified by

PHANOTATE lie between those predicted by any gene caller (d ¼
0.42) and those not predicted by any caller (d ¼ 0.47) as can be seen

in Figure 2. The PHANOTATE predictions, therefore, lie between

the ‘true positives’ from the other software and the ‘true negatives’

of all other ORFs, suggesting, but not confirming that they may en-

code real proteins.

One of the unique features of PHANOTATE is that it is essen-

tially reference free. Other programs, such as Prodigal, GeneMark

and Glimmer, use hidden Markov models that require either a priori

knowledge of the composition of protein-encoding genes or the

identification of sufficient protein-encoding genes in the genome to

build a training set. This is problematic when annotating phage

genomes since most potential ORFs do not have homology to any

known gene and the small phage genomes do not provide enough

candidates to create a robust training set. In addition, many phage

genes are horizontally transferred, and thus have different properties

and signals from each other. Future versions of PHANOTATE will

include the option to use these various gene properties, including

hexamer frequency, codon bias and non-Shine-Dalgarno RBS detec-

tion, and will also provide a mechanism to mask functional noncod-

ing bases, such as those in RNAs, repeats, and att sites to further

increase the accuracy of the gene calls.
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