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In the last years the area of health monitoring has grown significantly, attracting the attention of both academia and commercial
sectors. At the same time, the availability of new biomedical sensors and suitable network protocols has led to the appearance of
a new generation of wireless sensor networks, the so-called wireless body area networks. Nowadays, these networks are routinely
used for continuous monitoring of vital parameters, movement, and the surrounding environment of people, but the large volume
of data generated in different locations represents a major obstacle for the appropriate design, development, and deployment of
more elaborated intelligent systems. In this context, we present an open and distributed architecture based on a multiagent system
for recognizing human movements, identifying human postures, and detecting harmful activities. The proposed system evolved
from a single node for fall detection to a multisensor hardware solution capable of identifying unhampered falls and analyzing the
users’ movement. The experiments carried out contemplate two different scenarios and demonstrate the accuracy of our proposal
as areal distributed movement monitoring and accident detection system. Moreover, we also characterize its performance, enabling
future analyses and comparisons with similar approaches.

1. Introduction

The still prevailing world economic crisis heightened various
social problems; some of the more alarming are the ones
relating to the aging of most developed countries [1]. The
reduction in the active force means there is not only less
available income to support the elderly but there are also
fewer people to provide continued care. Instead of decreasing
this problem, it is expected to grow, and by the year 2050
the European population over 65 will have grown from the
current 171% to 30.0% [2]. This leads to the necessity of
finding an economically viable and dignified solution to
support the growing elderly population.

In this context, one area which has gained lots of attention
from academia and commercial sectors is health monitoring.

With the appearance of biomedical sensors and suitable
network protocols, a new generation of wireless sensor
networks has emerged: body area networks (BAN). These
networks can be used for continuous monitoring of vital
parameters, movement, and the surrounding environment.
The data gathered by these networks contributes to improve
users’ quality of life and allows creating useful knowledge
bases.

Related with the scope of this study, the work being done
at the Center for Future Health of the Medical Center of Uni-
versity of Rochester [3] is aimed at answering an important
question. “What can be learned about an individual’s health
state by observing the motion, activity and interactions in
one’s natural environment?” The objective of the research is
to learn what is normal for the person and to detect and
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monitor trends that may indicate developmental or incipient
health issues and hence detect such conditions in the earliest
possible stage.

In this respect, enabling remote monitoring of patients
offers potential advantages like reducing internment and
aftercare costs, as well as providing speedier delivery of
preventive and emergency care, with little to no attention
required from the patient. The patient quality of life can
also be improved by avoiding confinement to the prox-
imity of nonportable medical monitoring equipment. As a
consequence, one interesting application area of BANs to
health monitoring is the continuous supervision of elder
movements, both during activities of their daily living (ADL)
or while being subjected to a specific rehabilitation process.

In the particular case of ADL monitoring, an important
field of research is the development of effective solutions able
to recognize deterioration in movement, help in rehabilita-
tion, and detect accidents, being the identification of falls
a key problem to cope with. Regarding motion and ADL
monitoring, the application of BAN technology is prone to
errors natural to internal monitoring systems. These types
of errors can only be mitigated using complex filtering
algorithms or very sensitive sensors. In the early 1990s, Lord
and Colvin started studying the acceleration sustained by the
human body during an impact using a small triaxial analog
accelerometer [4]. This approach was the one followed by the
majority of latter studies. After a few years (in 1998) the first
prototype of a fall detection device to be used on a telecare
system was developed [5].

These first systems had a sub 90% success rate, suffering
from many false positives. This situation was motivated in
part by the inefficient hardware being used and the way the
problem was being approached. As the system relied on the
energy of the impact to be transmitted through the human
body, the fall could not be detected (or would be confused
with ADL) in case the energy was absorbed by the body.
In 2008, Bourke et al. introduced a very precise solution
for distinguishing falls from ADLs using BANs [6]. Their
work was supported by the research of Wu [7] and their own
previous work [8] which, using image processing equipment,
proved that it was possible to distinguish a fall from an
ADL using the velocity of the torso instead of the force
of the impact. Nowadays, the introduction of more precise
sensors accompanied by powerful and efficient processors has
enabled recent research to advance from distinguishing falls
from ADLs to actually monitoring said ADLs [9].

However, in this area there is still the need of open
architectures that facilitate the design and implementation
of sensor network applications, being able to reduce the
overall message communication and to optimize energy
consumption [10]. In this context, distributed agent-based
architectures provide more flexible ways to move functions
to where actions are needed, thus obtaining better responses
at execution time, autonomy, service continuity, and supe-
rior levels of flexibility and scalability than centralized
approaches. Moreover, sensors’ capabilities can be enhanced
by means of intelligent agents, changing dynamically their
behavior and personalizing their reactions [11]. A multiagent
system possesses mobile, goal oriented, communicative, and
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reactive agents. These characteristics make this approach
suitable for the development of BAN healthcare monitoring
applications, in which agents are mainly advantageous given
their ability to change according to the nature of surrounding.

The solution presented in this work represents the culmi-
nation of a study which started in 2010. The original project
evolved from a single node for fall detection [12] into a
multisensor solution capable of identifying unhampered falls
and analyzing the users’ movement [13]. Although the results
were promising, the architecture of the previous system did
not involve the use of an adaptive model with learning ability
and did not guarantee an efficient analysis of the information
generated. For this reason, in this work we propose a BAN
based on a BDI (belief, desire, and intention) multiagent
system (MAS) with the goal of being more robust, flexible,
and adaptable. Our multiagent system allows the definition
of an open architecture, which is straightforward scalable by
easily adding new agents (with the same or different goals)
that follow the proposed BDI specification. The advantage of
information sharing between agents allows them to correct
errors by their ability to make an explicit coordination. Each
agent is considered an autonomous software process, which is
able to manage its own environmental information and local
state based on the global information. The BDI model enables
to view agents as goal-directed entities that act in a rational
manner.

While this section has introduced and established the
basis of the work, the rest of the paper is structured as follows:
Section 2 describes related studies in the area of wireless
sensor network (WSN), BAN, and MAS applied to healthcare
projects. Section 3 introduces the physical components com-
prising our underlying system used to perform movement
recognition. While Section 4 explains the proposed multi-
agent system architecture, Section 5 gives details about its
implementation and real deployment. Section 6 introduces
the experimental evaluation carried out and discusses the
obtained results. Finally, Section 7 draws the conclusions and
highlights future work.

2. Related Work

Thanks to the significant advances in MEMS (microelec-
tromechanical systems) and CMOS (complementary metal-
oxide-semiconductor), WSN technology has come along way
since it was first used in 1967 project Igloo White [14], with
the purpose of deploying a wireless network of seismic and
acoustic sensors in the Ho Chi Minh trail during the Vietnam
War.

With the emergence of WSNs and the rapid growth of
physiological sensor technology, scientists from various fields
sought to adapt sensor networks for the purposes of health
monitoring applications. In 2006, Yang and Yacoub coined
the term body sensor network (BSN) to refer to that particular
application of WSNs [15]. BAN technology is a natural
refinement of that concept [16], providing more flexibility for
a broader set of applications but with special attention to the
medical sector. BANs, as the name suggests, are networks of
computing entities that have the distinctive characteristic of
being physically linked to a user’s close proximity.
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One of the most referenced projects in the area of BAN
is Code Blue [17]. It employs ad hoc networks of off-the-
shelf motes and medical sensors (e.g., electrocardiogram,
peripheral capillary oxygen saturation, electromyogram, and
motion) in order to give a response in prehospital and in-
hospital emergency care, disaster response triage process,
and stroke patient rehabilitation. The same authors of Code
Blue were also involved in a related project called Mer-
cury [18], which aims to support high-resolution motion
studies of patients with Parkinson’s disease, stroke, and
epilepsy.

Two relevant projects related to the residential health-
care monitoring component of our system are ALARM-
NET [19] and BASUMA [20]. On the one hand, ALARM-
NET implements a home healthcare system that integrates
environmental and physiological sensors in a scalable and
heterogeneous architecture. This development includes an
analysis program called Circadian Activity Rhythm (CAR),
which processes sensor data for learning individual behavior
patterns. On the other hand, the BASUMA project seeks
continuous health monitoring of chronically ill patients in
their own homes in order to detect when the health state
changes to worse. It can alert and recommend actions in a
timely manner before critical conditions occur.

Regarding the combined use of MAS and BANS for the
development of healthcare monitoring applications, Vaidehi
et al. [21] proposed a health care monitoring system based
on WSN which is capable of collecting, retrieving, storing,
and analyzing vital signs of the patient. The proposed MAS
consists of four agents (i.e., admin, control, query, and
data agents) which performs data reduction using Epsilon
approximation. The use of the data agent reduces data traffic
and the requirement for secondary storage space.

From another perspective, the Confidence project [22]
applies a multiagent system to correctly distinguish normal
from abnormal activities. In this case, the agents are all
external to the BAN and the surrounding hardware relies on a
combination of sensors placed in the user and sensors placed
in the user’s home.

Complementarily, Castanedo et al. [23] describe a MAS
based on the BDI model for processing information and
fusing data coming from a distributed visual sensor network.
Their work is more focused on how to fuse a set of tracks
which belong to the same object from different agents. This
information was used to fuse only data which provides
an accurate monitorization, discarding those visual sensors
presenting tracking errors.

As stated in Introduction, the detection of abnormal
movements seems to be conveniently addressed (i.e., there
are methods and algorithms able to effectively process raw
data) but, as evidenced in the related work carried out,
there is still a substantial room for improvement in the
design of open architectures using MAS able to cope with
inherent issues regarding the deployment of distributed
applications (e.g., tracking, data fusion, learning, etc.). In
this context, our proposal brings together both fields: an
underlying physical system for efficiently capturing raw data
(presented in Section 3) and a multiagent implementation for
real deployment (detailed in Sections 4 and 5).

3. Underlying Physical System Architecture

One of the biggest struggles in WSNs has always been how to
balance between processing power and energy conservation.
This problem is even more emphasized in BANs, where
usability is another constraint to balance. When devising
a BAN it is mandatory to carefully take into account this
triangle, or else there is the risk that the system does not fulfill
its objectives or it fails to be accepted by final users.

The first two constraints are easy to phantom as both have
conditions for their acceptance that can be easily defined: a
given BAN is deemed acceptable if (i) it is capable of pro-
cessing the required amount of information in the specified
time and (ii) it is capable of repeating the process during the
defined time period. The third constraint is more dependent
on subjectivity, but the size of the node, the number of nodes,
and their placement are a good common ground. To be able
to balance all three of these constraints some concessions had
to be made, as the technology available would not allow all of
them to be fully satisfied, at least not in an economical viable
way.

If the concession was made in terms of usability or energy
efficiently, it would mean the users would be constrained in
terms of space, movement, autonomy, or even all of the three.
Therefore, these types of adjustments will not be discussed
as their costs would violate the objectives of the proposed
solution. For this reason, our architecture was defined taking
into account the necessary limitations in terms of in-BAN
processing and, at the same time, taking into consideration
the recent advances done in the field of mobile processors,
which enable the use of more advanced and intelligent
algorithms.

In particular, this project has strict rules of using non-
invasive methods to monitor the user, so in no way could
the sensors be physically attached to the human body.
This requirement introduces a variable related to the small
differences in the node position every time the user puts on
the nodes. In order to be possible to precisely evaluate data
between usages and specially to be able to viably compare
data between users, it was mandatory to introduce an external
system capable of correctly evaluating the body part position
against its own known referential. As the external system is
only necessary during the initial setup, it does not introduce
constraints in terms of user’s spatial movement or to the
user’s privacy. For the current version of the architecture the
external module used to setup the whole system was the
Microsoft Kinect SDK (see Figure 1).

In our system, there are four main constituents of its
architecture: (i) the individual node, (ii) the BAN com-
munication medium, (iii) the remote server (RS), and (iv)
the communication medium between the BAN and the RS.
Figure 2 shows a visual representation of all the elements. The
system architecture shown in Figure 2 intends to use a tech-
nological solution to recognize human movement, identify
human postures, and detect harmful activities for preventing
risk situations. To achieve these goals, tiny sensors nodes
with wireless communication, computational and energy
harvesting capabilities are networked around the human
body forming a wireless body area network.
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FIGURE 2: Visual representation of all the parts that make up the physical system architecture.

The final architecture in which our solution relies is
the result of the continuous improvements made to the
BodyMonitor system [24]. While it was initially envisioned
for implementing a fall detection system, energy constrains
had already been taken into consideration being concluded
that it was necessary to divide the processing tasks and relay
some of them to an external system.

In terms of hardware, we developed our own sensor node
so that the platform could be small, lightweight, and very
responsive by using data from an accelerometer, gyroscopes,
and magnetometers, which enable a more precise reconstruc-
tion of human movement [13]. The sensor node is responsible
for the acquisition and processing of information relative to
the respective body area. It stands as the first layer of decision
regarding the importance of the gathered information. In
order for the node to be able to apply advanced filters without
compromising the remaining activities, it was necessary to

use an advanced 32-bit microcontroller instead of a 8-bit
one [25]. However, his option involves that during the active
phase the power consumption would be higher, leading
to lower autonomy. Our solution to this problem was to
develop a sensor node which uses ultralow power and a
basic microcontroller for the collecting tasks, while the main
microcontroller is responsible for carrying out normal system
activities and processing the sensor data in batches instead
of for every sample. The final microcontroller base board
measures 4.8 cm X 3.5 cm X 0.8 cm and weights 11 g while the
sensor board measures 3.6 cm x 3.5 cm x 0.4 cm and weighs
5g.

For intra-WSN communication, the standard that most
closely conforms to the project requisites is the IEEE 802.15.6
body area network, which as of June 2014 is still being drafted
[26]. As the name infers, the standard was specially designed
for communication between devices placed on the human
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FIGURE 3: The two layers comprising the proposed multiagent architecture.

body, being one of the most important aspects its requirement
for ultralow power consumption [27]. For the best of our
knowledge, as of June 2014 there is no communication device
that implements the first draft defined by the IEEE 802.15 task
group 6 (BAN) [28]. In such a situation, a good alternative
sharing some similarities was the IEEE 802.15.4 (Low-Rate
Wireless Personal Area Network) [29]. However, in order to
guarantee a possible future transition the constraints defined
in the BAN draft were also taken into account.

The RS was designed to complement the BAN. It is
responsible for keeping track of the users’ information both in
terms of individual data as well as common patterns sharable
between users. It is also responsible for undertaking heavy
processing tasks that would undermine the WSN’s energy
autonomy such as long term data analyses and agent training,
or those that the BAN would not be able to compute in an
acceptable time frame.

The system actually supports two forms of communica-
tion between the BAN and the RS. The decision on which
type of communication should be used depends on the user’s
location. If the user is inside the home, the communication is
done through 802.15.4 enabled wireless access points, thereby
minimizing the energy consumption necessary to establish
a normal Wi-Fi communication. When out of range, the
communication between BAN and RS is done through a
smartphone using the Bluetooth radio. The use of this type
of communication is more energy efficient and keeps the size
of the node reduced by not incorporating an extra GMS radio.

4. Multiagent Architecture

With the goal of creating a robust, flexible, and adaptable
system, able to take advantage of the capabilities introduced
by our node’s modern processor, the base principles behind
the system architecture shifted from a monolithic design
into a multiagent approach. The different parts comprising
the final architecture and their relation with the hardware
elements are presented in this section.

The multiagent tasks were devised in two main groups:
those related with the management of the individual nodes
and those regarding the supervision of the BAN itself. For
its part, the BAN architecture was also divided in two com-
plementary layers (see Figure 3 for an explanatory diagram).

In Figure 3, the top layer contains multiple groups of agents,
each group being responsible for an individual node. Each
group of agents is in charge of keeping track of the movement
state, orientation states, and preselecting anomalies from the
body part in which the node was placed. This information is
then passed to the lower layer containing an individual agent
group, which is responsible for keeping track of the states,
this time in terms of full body movement and orientation.
Moreover, the bottom layer is also responsible for verifying
if the anomaly detected by a single node could be confirmed
or refuted using the data provided by the BAN as a whole.

In our previous architecture, there was already informa-
tion being exchanged between the nodes in order to correctly
evaluate their own data and the state of the whole BAN.
Therefore, this could already be considered a primitive type
of MAS. However, all the node’s processing was focused
on data immediately available and the functions used were
represented in the format S — A. In intelligent-agent theory,
this conceptualization is defined as purely reactive agents
[30].

In this iteration of the work the initial MAS evolved to
support a more specific architecture, enabling the system to
make decisions based not only in current data but analyzing
the event as a whole taking also into consideration previous
changes.

The main processing cycle of each wireless node is
divided in three blocks: preprocessing, state evaluation, and
anomaly detection. As each block presents different charac-
teristics, they have been implemented using separated agents,
allowing for a more individualized definition, training, and
evaluation.

In order to minimize deployment costs and to create a
straightforward system, the required number of body areas
being monitored must be reduced. In this context, we decided
that the incremental cost and reduced usability necessary
to detect very rare ADLs was not justified. The body parts
finally selected were the upper torso, hip area and leg. On
the one hand, the upper torso and leg were selected in order
to quickly characterize normal orientations (standing, laying,
and sitting positions). On the other hand, the hip was chosen
due to its stability during movement.

Figure 4 shows the relation between node placement and
agent groups, in which NI, N2, and N3 refer to the agents



FIGURE 4: Node placement in different body parts.

responsible for preprocessing, state evaluation, and anomaly
detection, respectively, and M1 and M2 stand for the agents
responsible for merging the information from the different
nodes into full body states (M1) and validating the anomalies
(M2).

5. Multiagent Implementation
and Deployment

In this section, we provide a detailed discussion about the
design, implementation, and deployment of the multiagent
architecture presented in the previous section. The frame-
work finally chosen to carry out the agent definition and
execution was Jadex [31], who was initially created as an add-
on of the widely used JADE platform [32] for giving specific
support to the BDI paradigm. Since then, it evolved into an
independent middleware with its own unique characteristics,
the most notorious being the active component program-
ming model [33] but still keeping complete compatibility with
JADE.

The BDI model provides an appropriate way to both
conceptualize a system and structure its design by using the
concepts of belief, desire, and intention as mental attitudes
that generate human actions. Beliefs capture informational
attitudes, desires motivational attitudes, and intentions delib-
erative attitudes of agents. Rao and Georgeft adopted this
flexible representation and transformed it into a formal
theory and execution model for software agents based on the
notion of beliefs, goals, and plans [34].

In order for each agent to be truly independent, Jadex
interagent communication is based on the service oriented
architecture (SOA) principles of service searching and bind-
ing. This way, the agent does not need to know which other
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agents will provide it with its required external functional-
ities, only needing to know which services are wanted and
announce them at the same time that publishes those services
provided by itself.

With all these features, this framework eases the task of
adding new sensors and different complementary functions
to our system, as the agent’s base stays the same and only
the abstract methods should be implemented. Figure 5 shows
the dependency diagram of beliefs, goals (inner class of the
agents), plans, and services.

The programmatic representation of the beliefs, goals,
plans, and services shown in Figure 5 is as follows.

(a) Beliefs: they were implemented as classes in order
to be easily extended. Agent’s beliefs that consist of
primitive classes were aggregated in new classes.

(b) Goals: as they are very specific and share extensive
information with its related agent, they were imple-
mented as inner classes. Goals are the implementation
of actual desires selected by the agent for active
pursuit.

(c) Plans: given the fact that plans are the part of the
agent suffering more changes, they were implemented
as independent classes in order to facilitate both
subsequent updates and sharing of plans between
agents of different types. Plans also stand for the most
concrete part of intentions, being constituted by the
actions necessary to accomplish a given goal (or a part
of it).

(d) Services: as aforementioned, the communication
between agents is done without the source agent
having to know the specific implementation of the
receiver (target) agent. This is done through the use of
Java interfaces, in which the source registers its need
for the required service interface and the receiver
(or service provider) implements this interface and
listens for service requests.

The following subsections are focused on explaining in
detail each agent used by our proposed system.

5.1. Data Processor (N1): Data Acquisition and Preprocess-
ing. Each Data Processor agent handles the environmental
information gathered from the shared memory space. Data
is initially transformed from its raw representation according
to the conversion table of each sensor, and then, it is filtered
using the Madgwick AHRS algorithm [35] to fuse the inertial
data into a valid node orientation. This type of algorithm,
just like the Kalman filter, is commonly used to minimize
the intrinsic error of evaluating a system from the inside.
After filtering the sensorial data, and once obtained the fused
orientation, the resulting information is passed to the agent
responsible for its evaluation (i.e., the State Evaluator agent).

The previous processes are embedded into the BDI
reasoning cycle, in which beliefs of the Data Processor agent
are continually updated. Those beliefs belonging to the Data
Processor agent are defined as follows.
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FIGURE 5: Dependency diagram of beliefs, goals, plans, and services.

(a) Average quaternion: defined by the stored averaged
initial orientations from both the internal (inertial
sensors) and the external (computer vision) systems.

(b) Fusion filter parameters: corresponding to the filter
configuration data (i.e., the sampling period and, in
the case of the Madgwick AHRS filter, the algorithm’s
gain) together with the internal values of the filter,
which are used and updated for each sample.

(c) Raw sensor data: representing the body part raw
inertial information acquired by the three inertial
Sensors.

(d) Inertial data: standardized representation of the sen-
sor data. The accelerometer uses the g notation
(each g corresponds to 9.812865328 m/s”), the angular
speed from the gyroscope is expressed in rad/s, and
the magnetometer magnetic field is denoted in gauss.

(e) Fused data: it represents the orientation resulting
from fusing the three sensors and its transformation
to the external system’s referential. The filtered accel-
eration is also stored independently.

The Data Processor agent has three main goals.

(a) Obtain external reference: the agent waits and keeps
trying to contact an external system in order to
get an independent representation of its body part’s
orientation.

(b) Obtain sensor data: after being awakened by the 8-bit
processor, the objective of the sensor is to obtain the
inertial data.

(c) Have data fused: once the agent knows the inertial
data, the agent’s objective becomes its fusion.

In order to accomplish its goals, the Data Processor agent
has the following plans.

(a) Calculate external referential: the agent starts col-
lecting and averaging fused orientation data until it
receives the equivalent data from the external system.

(b) Collect data: the agent accesses the shared memory
and retrieves those samples stored by the 8-bit pro-
Cessor.

(c) Process data: raw data is converted to its standardized
representation through each sensor specific conver-
sion table.

(d) Fuse data: data from the three sensors is merged using
the Madgwick AHRS filter (loaded using a dynamic
class factory). The rotation quaternion which would
transform the initial orientation is obtained using
Grot = 9% qor. (With g, being the rotation quaternion,
q the fused orientation quaternion, and g, the
internal system’s average orientation). After that, it is
applied to the external system’s average quaternion
uSing Inorm Gev X qr_olt (Wlth Inorm representing
the normalized quaternion and g, standing for the
computer vision’s average quaternion).

Figure 6 shows a diagram exemplifying the structure of
the Data Processor agent.

5.2. State Evaluator (N2): Asserting Node Orientation and
Movement States. Although the received information from
the Data Processor agent is already fused, it is only relative
to a single point in time. Therefore, the State Evaluator agent
is responsible for transforming this data into a continuous
stream of information. The fused data is then reprocessed
and complementary information is calculated (i.e., velocity,
walking distance, step cadence, and step energy).

After inferring the continuous information, the State
Evaluator agent estimates the current state of the node
regarding its orientation and verifying whether it is in motion
or stationary. In case a change of state is detected, the
node responsible for keeping track of the full body state is
contacted. The inferred data, together with the states, are then
sent to the Anomaly Detector agent. This data is also made
available to the agent responsible for carrying out anomaly
validation.
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As a common BDI agent, the State Evaluator agent has its
own beliefs, goals, and plans, also providing services for other
agents. The specific beliefs belonging to the State Evaluator

agent are defined as follows.

(a) Inferred data: representing data inferred from the data
fused by the Data Processor agent. It is composed by
velocity, activity, step length, walking distance, step

cadence, and step energy.

(b) States: comprising movement states (moving and
stationary) and orientation states (vertical and hori-

zontal).

(c) Personal data: composed by the physical characteris-
tics of the user as well as his/her normal orientation

and movement ratios.

The State Evaluator agent has two main goals.

(a) Obtain inferred data: once received the fused data, the
goal of the agent becomes to infer extra information

from it.

(b) Obtain node state: for keeping the track concerning (b)

the state of each node. This goal is further divided
into two subgoals: (i) obtaining the movement state
and (ii) obtaining the node’s orientation state. The
general goal is accomplished when both subgoals are
achieved.

In order to accomplish its goals, the State Evaluator agent (©)

possesses the following plans.

(a) Infer data: in this plan, the fused data is processed

for obtaining the inferred data. In particular, the
accelerometer’s proper acceleration must be con-
verted into dynamic acceleration using the formula

dayn dprop — g (for a better understanding of

how the gravity’s direction is obtained refer to [36])
and then integrated into velocity using the formula
v(t) = Iﬁdyn(t)dt. For activity detection it is used
the Acceleration Moving Variance Detector (AMVD)
function defined in [37], with the formula being
(1/N) Zszl la, — ﬁkll2 <y where a stands for
acceleration, y is the threshold (in this case 0.0013),
and N represents the window size (in this prototype
the size is 20). If the agent corresponds to the hip
node, the step detection is done using the acceleration
peak-to-peak variation, the step cadence is calculated
by integrating the velocity computed for the duration
of the step, the walking distance is calculated by
adding the multiple step distances, and step cadence
is obtained by averaging the number of steps in
each sample during the walking activity. If the agent
corresponds to the leg node, the step force is also
calculated by multiplying the user’s weight by the
acceleration when the step impacts the ground (step’s
acceleration peak).

Assert node movement state: for each sample, the
movement of the nodes is evaluated based on the
sample’s calculated activity (i.e., the state is set to
moving if the threshold is passed in the AMVD
function).

Assert node orientation state: the possible states of
the node’s orientation are horizontal or vertical, and
for each node and state there is a corresponding
transition interval in the user’s profile. For each
sample the orientation is checked against the current
state’s transition interval, and if the orientation value
lies within that same interval the state is changed,
otherwise the state remains the same.



BioMed Research International

State Evaluator

Beliefs
InferredData ’ ‘ States ’
T A
i y
| ’
i /
Plans ! V4
. ¥ Goals
I /
1 /
LI
InferData I y Z | ObtainInferredData
e
|
ak L
Lo
! ObtainNodeState
AssertNodeMovState i
! IDetected Anomalies
; ObtainNodeMovementState ’
1l
1
AssertNodeOrState |— - | 5 5 5 IMaintainUserState
ObtainNodeOrientationState
|
Services
ISupplyInferredData ] ‘ IProcessFusedData ]

FIGURE 7: State evaluator agent.

Moreover, the State Evaluator agent provides to other
agents the following services.

(a) Process fused data: it provides the capability of pro-
cessing fused data. This service triggers the Obtain
inferred data goal.

(b) Supply inferred data: other agents may request indi-
vidual samples (or complete sampling periods) of data
already inferred.

Figure 7 shows a diagram exemplifying the structure of
the State Evaluator agent.

5.3. Anomaly Detector (N3). This agent is responsible for
ascertaining whether the data coming from the State Eval-
uator agent is normal or it presents any kind of anomaly.
The type of anomalies being investigated depends on the
position of the nodes, but all of them are searched looking
for sudden variations in the inferred data that could have
caused an accident. Due to the fact that each node only
maintains information belonging to its own position, the
degree of filtering done to avoid false positive errors is very
small. Therefore, any suspicious deviation is sent to the node
responsible for verifying full body anomalies.

The specific belief of the Anomaly Detector agent is the
following.

(a) Anomaly history: composed by the log of all possible
anomalies detected by this node.

The Anomaly Detector agent has one specific goal.

(a) Have data checked: triggered by the Detect anomalies
service. Tries to detect if any of the samples contains
suspicious information.

In order to accomplish its goal, the Anomaly Detector
agent has one plan.

(a) Verify inferred data: fused and inferred data belonging
to each sample is compared to the user’s range of
normal values stored in its profile. To do so, the
agent only has to verify if the detected value lies
within the interval defined in the user’s profile. This
interval is defined and updated in the RS and already
includes the necessary threshold tolerances (i.e., the
tolerance is dependent on the deviation of values in
the aforementioned interval and is different for each
individual user and each profile parameter) so that the
BAN node can avoid extra processing. Each sample
that strays from the predefined range is added to the
anomaly log.

Moreover, the Anomaly Detector agent provides to other
agents the following service.
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(a) Detect anomalies: point of communication enabling
the evaluation of inferred data from other agents.

Figure 8 shows the corresponding diagram to exemplify
the structure of the Anomaly Detector ECTOR agent.

5.4. Body State Evaluator (MI). Body State Evaluator is the
first mobile agent of the main agent group, being purely
reactive. The main function of this agent is to keep updated
the state machine which maintains the user movement and
orientation as a whole. For this purpose, the Body State
Evaluator agent uses information already processed by other
State Evaluator agents.

This agent possesses a migratory capability and it is able to
visit a set of nodes while maintaining its present information
state. The specific belief of the Body State Evaluator agent is
the following.

(a) States: comprising both the individual change in the
state of each node state and the movement and
orientation states from the full body itself. Full body
movement states are moving and stationary while
orientation states are standing, lying, and seated.

As in the previous case, the Body State Evaluator agent
has one specific goal.

(a) Obtain node state: this goal is comprised of two
subgoals: obtaining (i) the full body’s movement
state and (ii) the full body’s orientation state. The
general goal is accomplished when both subgoals are
achieved.

In order to accomplish its goal, the Body State Evaluator
agent possesses the following plans.

(a) Assert movement state: as the movement state is
only based on the hip node, whenever it received
a movement state change from this node the plan
automatically defines the full body movement state as
the same as the one just received.

(b) Assert orientation state: the decision of changing the
current orientation is done based on the data received
from individual nodes. As an example, when the leg
node informs that it is in horizontal state, if the last
orientation communicated by the chest’s node was
horizontal then the full body’s current state is laying,
otherwise is sited.

Moreover, the Body State Evaluator agent provides to
other agents the following services.

(a) Supply full body state: on request, this agent provides
other agents with the correct information concerning
the states.

(b) Maintain user state: receives information from the
states of the individual nodes with the goal of main-
taining the full body state.

Figure 9 shows a diagram exemplifying the structure of
the Body State Evaluator agent.

5.5. Anomaly Validator (M2). This mobile agent acts as a final
step between all the detection work done inside the BAN and
the remote server. Each time a node processes information
suspicious of representing an anomaly, this agent is contacted.

The first stage of the validation process consists on collect-
ing information from other nodes and consulting the Body
State Evaluator agent regarding the current orientation and
movement states of the user. Afterwards, data coming from
the three body parts is compared. If a conclusion is taken,
the server is immediately contacted or the rejected anomaly is
simply logged. Alternatively, if the result is inconclusive, the
agent waits for another sampling period. In order to make
a decision in the absence of a definite result, the server is
contacted and only just data is sent to it. As an example, in
the majority of the hampered falls no node will return an
impact that will cause (by itself) an immediate alert, but if
the following samples show no user movement, the server is
contacted to guarantee that no fall is missed.

The specific belief of the Anomaly Validator agent is the
following.
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(a) Confirmed anomalies: containing a list of anomalies
that were confirmed by this agent.

As in the previous case, the Anomaly Validator agent has
one specific goal.

(a) Have anomalies validated: the only objective of this
agent is to verify if all the possible anomalies detected
by individual body part nodes are actually true
anomalies.

In order to accomplish its goal, the Anomaly Validator
agent has one plan.

(a) Verify anomaly: the agent contacts other agents in
order to verify if the data belonging to the anomaly
verification request is actually a true anomaly or just a
rare data occurrence. The request-and-evaluate cycle
continues until a decision can be taken.

Moreover, the Anomaly Validator agent provides to other
agents the following service.

(a) Validate anomalies: service that enables those nodes
belonging to different body parts to process their
anomalies using full body information.

Figure 10 shows the corresponding diagram to exemplify
the structure of the Anomaly Validator gent.

5.6. Agent’s Communication. In order to facilitate the com-
prehension of our system, this section summarizes the com-
munication process carried out by all the agents comprising
the proposed approach.

In summary, the data analysis cycle starts when the Data
Processor agent is awaken by the external processor, which

promptly proceeds to filter and fuse available signals. The
resulting data is then sent to the State Evaluator agent, so
that extra information can be extracted from the orientation
and acceleration data. At this point, it is also verified if the
movement and orientation states have changed. If it is the
case, the Body State Evaluator agent is informed in order to
track the full body state in a central location. Both the inferred
information and the fused data are then aggregated and sent
to the Anomaly Detector agent for testing the presence of
anomalous data. If such data is found, then the Anomaly
Validator agent is contacted. With the goal of correctly
verifying if the data actually represents an anomaly, this
agent may request extra information from both the remaining
State Evaluator agents and the Bogy State Evaluator agent.
In case an anomaly is actually detected, the remote server is
subsequently notified.

Figure 11 introduces the complete communication dia-
gram with the goal of illustrating the interaction inside the
multiagent system and between the MAS and the external
devices.

6. Results and Discussion

To assert the validity of our proposal, two different scenarios
were conceived. The first one consists of tests specifically
designed to verify the correct movement recognition and
accident detection capabilities of our system. The second
one was defined taking into account the inner working of
the multiagent system, together with the objectives behind
the migration to an agent-based platform. This section first
describes both case studies and latter discusses the results.

6.1. Case Study Number 1: System Accuracy for Movement
Monitoring and Accident Detection. While the algorithms in
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TaBLE 1: Chidamber and Kemerer metrics analyzed in our system.

Metric Description
Weighted methods Measures the complexity of the each class based on the sum of the cyclomatic complexity of each of class’s
per class (WMC) methods.
. . Measures the inheritance level of each class. A high DIT number means class extension is more prone to

Depth of inheritance . . . .

error as each intermediate class introduces new methods and variables whose access must be controlled.
tree (DIT)

Faults also become harder to detect.
Number of children It counts the number of immediate child classes each class has. A class with a high NOC is very hard to
(NOCQC) change (or update) due to the number of classes reusing it.

Measures the relationship between classes and how dependent they are of each other. A high coupling rate is
Coupling between unwanted in a very modular system such as the presented in this work.
object classes (CBO) Additionally, two submetrics of CBO can be also computed: afferent couplings (Ca) that measures the number

by each class.

of classes that use each class and efferent couplings (Ce) that indicates the number of other classes being used

Response for a class
(RFC)

Stands for the potential number of methods that can be called when one of the class’s methods is invoked. In
this test, a special importance is given to remote methods, as they not only increase the complexity of the
class but also augment class coupling.

use were already tested in our previous research, it was still
mandatory to corroborate if they were correctly implemented
in their respective agents and how they perform.

The following experiments were repeated ten times by
each volunteer of the testing group. The group consisted of six
members (three female and three male) being their average
height and weight 173.50 cm and 75.33 kg, respectively, with
a standard deviation of 5.02 and 11.18. The average age was
of 27.33 years with a standard deviation of 3.64. All the
volunteers participating in this study gave their informed
permission for the use of the data collected during the proofs.

Movement recognition tests were conducted in two
phases. The first one acted as a control stage with all the
actions being conducted without mishaps. During the second
phase, the volunteers were asked to simulate a problem
associated with the specific movement being studied. In
particular, the movement recognition experiment tested the
following situations.

(a) Standing: the control phase consists of standing
straight and immobile for ten seconds. In the second
stage the volunteer was asked to move the body
without leaving the initial position, again for ten
seconds. The objective of this try is to verify if the
MAS is able to correctly differentiate between a body
part movement and locomotion.

(b) Walking: in the control phase the volunteer was
asked to walk in an “L” shaped pattern, stopping in
the end of each sequence before continuing. In the
problem simulation stage, the volunteer was asked to
carry out one of the following actions: (i) simulate a
small hump while walking or (ii) walk with a very
different stepping cadence from the one used in the
control phase. Both subcases were repeated 10 times
individually.

(c) Sitting: in the control phase the volunteer sited down
correctly (with his back strait), while in the second

stage he carried out this activity with an excessive
longitudinal or lateral inclination.

Regarding accident detection evaluation, the objective
was to verify (i) if unhampered falls continued to be correctly
detected and (ii) if by using our agent-based system it was
possible to obtain a better ADL differentiation inside the
BAN. The fall tests consisted of the volunteer falling into a
mattress both from a stationary position and while initially
walking. As the ADL responsible for triggering false fall
events is rough sit-down actions, the volunteer was asked
to sit down by letting his body drop into a chair instead of
completely bending his knees.

In terms of hampered falls (i.e., those with an initial
deceleration before the impact with the ground), it was also
tested if the added internal data evaluation allowed for a
higher detection rate. The experiment involved asking the
volunteer to initially impact with a vertical mattress and then
falling to a mattress placed at ground level, being immobile
after the final impact.

6.2. Case Study Number 2: Multiagent Performance. There
are several reasons why it was selected the Jadex framework
for migrating the existing architecture to a MAS approach:
its modularity, the ability to easily introduce new agents,
and the facility to include new system capabilities and/or
change/upgrade existing ones. However, in order to guaran-
tee that core functionalities of the base system are correctly
implemented and object-oriented programming rules are
tully respected, we used the CKJM extended [38] testing tool
to calculate Chidamber and Kemerer object-oriented metrics.
Table 1 shows a summary briefly describing the purpose of
each selected metric.

To the best of our knowledge, there is no MAS created
with the same objectives as ours, so there are no defined
metrics to compare to. Nevertheless, in order to be possible
to evaluate future iterations of this project and also to allow
that different projects can compare their results with ours, we
further computed and collected the following parameters.

(a) Number of false state changes but corrected at least
in the next sample. This situation implies that there is
still an error in the state analyses, but a very low value
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TABLE 2: Result of the movement recognition tests.
Group Test Accuracy
0,
Standing Control 100%
Problem 98.33%
Control 100%
Walking Problem (hump) 81.67%
Problem (step cadence) 100%
0,
Sitting Control 100%
Problem 90%
TABLE 3: Result of the fall tests.
Fall type Accuracy
Unhampered 100%
Hampered 83.33%

might also mean a very low sensibility, where actual
states changes might be ignored.

(b) Number of internal false anomalies but correctly
verified by the Anomaly Validator. Even if anomalies
are correctly verified, extra energy was spent for intra-
BAN communication.

(c) Number of internal false anomalies during an ADL
but correctly verified by Anomaly Validator. Some
ADLs tend to be confused with accidents, so an
adequate balance must be found for guaranteeing that
any accident is ignored and, at the same time, the
number of unnecessary communications does not
impair system autonomy.

(d) Number of internal false anomalies while resting but
corrected by Anomaly Validator. In this case, even a
moderate value implies that node agents are correctly
executing the anomaly filtering task.

(e) Number of different events triggered during an acci-
dent. It is important to understand how the node
reacts during an accident and also how a high/low
value impacts the algorithm performance.

6.3. Results. We will start by describing the results from
case study number 1, more specifically the tests concerning
the movement recognition component of the agents. These
results are presented in Table 2.

As expected, results shown in Table 1 do not present any
statistical difference from those obtained by our previous
system, as the changes done to this component of the
architecture were related to efficiency and not accuracy. It is
important to notice that in the case of walking with a small
hump, what was being tested was the distortion in the walking
pattern, so the alerts of the anomalous inclination were only
considered during the actual walking phase, otherwise the
accuracy would have been 100%.

The second part of the algorithm evaluation tests con-
sisted on studying their efficiency regarding fall detection.
The results from these experiments are shown in Table 3.
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In terms of unhampered fall detection, the conducted
tests did not present results statistically different from the
ones belonging to our previous system, being all the falls
correctly detected.

Regarding the detection of unhampered falls and its
differentiation from ADLs, the new algorithm revealed a clear
increase in accuracy (83.33% against the precious 59%). This
increment is due to both the analysis of more parameters
(not only the acceleration but also the final full body state of
the users) and the analysis of multiple sources of data (the
sudden deceleration from one node may not be high enough
to trigger an alert but two or more high values from different
sources are).

After interpreting the data from the not detected falls, it
was concluded that it was due to one of the two following
reasons. The primary cause, and the one that was not possible
to smooth out of the algorithm, is related to the falls where
the distance between the beginning of the movement and the
impact is so small it would not even harm the user (visually
explained in Figure 12). The problem of these falls not being
detected is not relative to the injury of the fall itself, but the
fact that they might imply another type of health problem. If
the algorithm is modified to encompass these types of falls,
even the most basic ADL may trigger an alert.

The second cause for misclassifications is related to
the similarities between a hampered fall and the sit-down
action. This type of falls stays undetected when the sudden
decelerations of the multiple impacts are similar to the
decelerations of a rougher sit-down action. In a first testing
stage, part of this limitation was corrected by taking into
account the user’s final orientation state. In this line, if the
user was lying down or sitting, but in an incorrect sit-down
position, the alert is sent. In the event the acceleration is
very similar to a rougher sit-down action, and the user final
orientation is consistent with a normal sitting position, the
fall stays undetected (although the information is still sent
to the remote server). Figure 13 shows some examples of the
aforementioned after fall positions.

With reference to the results from case study number
2, the outcomes belonging to the Chidamber and Kemerer
metrics are presented in Table 4.

The very high standard deviation of the majority of
the metrics is due to the big different between the more
supporting classes (utility classes, abstract classes, or even,
the beliefs and plan classes) and the actual agent classes.
The agents were the only classes with high WMC, coupling,
or RFC values, the remaining classes presented very low
values, which helps to demonstrate the great scalability of the
proposed system.

Finally, with respect to the tests concerning the proper
operation of our system, Table 5 shows the obtained values.
Results were very satisfactory, with the number of unnec-
essary node-to-node and node-to-server communications
being kept low. However, there were some situations of
unnecessary communication present in the system, as will be
discussed below.

In regard to incorrect state transitions (i) the number is
low, being mainly related to the transition between active
and inactive periods primarily during slow walks, and very
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FIGURE 12: Demonstration of the distance to the initial contact. In (a) the distance is not enough for the impact to cause harm or to trigger
an alert; in (b) the distance is enough to cause harm and to trigger the alert.

FIGURE 13: Examples of how the body stays after a hampered fall. In (a) the body fully slid of the wall ending in a laying position; in (b) the
user ended in a sitting position but his posture is incorrect; in (c) the user slid to a sitting position fully supported by the wall.

TaBLE 4: Chidamber and Kemerer metrics for the proposed system.

TABLE 5: Results of movement recognition tests.

Metric Average Std. deviation Min Max Test Summary Result
WMC 8.72 719 1 28 i False state changes 0.67
DIT 0.83 0.47 0 2 ii Internal false anomalies 0.11
NOC 0.17 0.62 0 3 iii False anomalies during an ADL 0.06
CBO 5.73 5.49 0 29 iv False anomalies while resting 0.00
Ca 1.98 2.41 0 9 v Events per accident 0.33
Ce 3.79 5.33 0 27

REC 13.79 11.45 1 64

rarely lead to node-to-node communication. In the case of
related to the misclassification of body orientations during
posture transitions. As these anomalies are not maintained
for more than a few samples, there is no node-to-node

communication. Regarding anomalies which may imply acci-
dents (iii), as expected the only ADL that triggered this type
of anomaly was the rougher sit-down action. In terms of false
anomalies while stationary (iv) there were none detected.
The normal events that took place during an accident were
full body activity change, full body orientation change, and
high acceleration alert. The number of individual alerts was
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conditioned by the final body orientation and the force of the
individual impacts.

7. Conclusions

In this paper, a multiagent system for recognizing human
movements, identifying human postures, and detecting
harmful activities is presented. Using the proposed multia-
gent architecture, we have focused on how to fuse informa-
tion from different agents which belong to the same objective,
allowing them to correct errors by their ability to make an
explicit coordination.

Experimental results on two different scenarios demon-
strate that the designed architecture can successfully evaluate
the user’s movement and posture. The accuracy achieved
enables a long term study and the detection of both beneficial
and harmful changes. The performance finally obtained
also represents an improvement over our previous system
with respect to hampered fall detection. This gain was only
possible by enabling individual nodes to work as a group
instead as a set of isolated individuals.

In addition to these results, the use of a multiagent
architecture for a BAN applied to healthcare monitoring
brings several advantages with respect to traditional systems.
In this context, one of the primary benefits is the scalability
of the whole system, since it could be possible to increase the
monitoring area by adding more agents without decreasing
the performance of each agent. Complementarily, the use of
agent-based standard communication protocols enables the
system to achieve a higher abstraction level of interoperation
with other systems.

Mobile agents, with migratory capabilities for visiting sev-
eral nodes, are able to accumulate information corresponding
to the user movement and orientation as a whole. Benefits
include low overall computational costs, as no more than
one node is active at the same time instant. Since a single
transmission and reception event is required from an individ-
ual node to facilitate the agent’s migration, communication
is routinely low. Moreover, simplicity is another important
advantage, since the agent manages both the task of collecting
data and its visitation route.

Future work will consider the introduction of new
machine learning algorithms into the Anomaly Detector and
Anomaly Validator agents in order to more precisely detect
hampered falls. The goal is to be able to detect those falls
whose difficulty comes not from the fall itself, but from other
health conditions (e.g., stroke, seizure, and/or fainting). We
are also interested in improving the remote server for better
exploiting the advantages brought by the proposed MAS,
enhancing its capacity to carry out long term evaluation of
the user’s condition. Finally, we intend to run long term tests
of the new architecture alongside the previous one in order to
better evaluate the practical benefits of the final stage of the
new architecture.
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