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IntRoductIon

During the last decade, carbapenem resistance has been 
increasingly reported in Klebsiella pneumoniae strains and is 
largely attributed to the production of carbapenem‑hydrolyzing 
enzymes.[1,2] Carbapenem‑hydrolyzing β‑lactamases 
belonging to Ambler classes A, B, and D have been 
reported worldwide among Enterobacteriaceae.[3‑5] The 
most clinically significant types are the K. pneumoniae 
carbapenemase (KPC)‑type (Class A), the imipenem (IMP) 
and Verona integron‑encoded metallo‑β‑lactamase 
types (Class B), and the OXA‑48 type (oxacillin‑hydrolyzing, 
Class D), mostly identified in K. pneumoniae as a source of 
nosocomial outbreaks.[6] In China, production of KPC is the 
main cause of carbapenem resistance in K. pneumoniae[7‑9] 

and ST11 is the dominant clone of KPC‑producing 
K. pneumoniae (KPC‑KP).[10]

In our previous studies, from 2011 to 2013, the prevalence of 
carbapenem‑resistant K. pneumoniae (CR‑KP) isolates was 
very low (about 3%) in our hospital. However, the number 
of CR‑KP isolates increased dramatically (9.1%) in 2014 
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as an outbreak of CR‑KP isolates was detected (data not 
shown). Between 2010 and 2011, Jian et al. reported that 
strains producing the IMP‑type carbapenemase were the 
main cause for the carbapenem resistance in K. pneumoniae 
in our hospital.[11] However, in our previous studies, CR‑KP 
isolates collected during the outbreak were all shown to 
produce KPC and to be resistant to all antimicrobial agents 
tested except for colistin and cotrimoxazole. Thus, these 
isolates were found to be extensively drug‑resistant strains 
with limited treatment options for infections due to these 
strains. Taken together, these data prompted us to investigate 
the epidemiology and molecular characteristics of these 
KPC‑KP isolates.

Methods

Bacterial strains
Nonduplicate CR‑KP isolates were recovered from August 4, 
2014, to March 17, 2015, from a 3500‑bed teaching hospital 
in China. The isolates were screened for the blaKPC‑2 gene 
and the positive isolates were re‑identified by the VITEK 
2 microbial identification system (BioMérieux, France). 
Salmonella enterica strain H9812 was used as the molecular 
size marker for pulsed‑field gel electrophoresis (PFGE) and 
was obtained from the respiratory laboratory of infectious 
diseases in China. The outbreak was defined as the 
occurrence of congeners’ infection more than three cases 
during a short time in medical institutions or departments.

Antimicrobial susceptibility testing
The minimal inhibitory concentration (MIC) of ten 
antibiotics, including aztreonam, IMP, ertapenem, 
ceftazidime, cefepime, piperacillin, ciprofloxacin, amikacin, 
piperacillin‑tazobactam, and cotrimoxazole, were measured 
using the Agar dilution method according to the Clinical 
and Laboratory Standards Institute (CLSI, M100‑S24) 
and by concurrent testing of two quality control strains, 
Escherichia coli ATCC25922, and Pseudomonas aeruginosa 
ATCC27853. The MIC results were analyzed and interpreted 
according to CLSI. Colistin MICs were determined by Etest 
strips (BioMérieux). Following the European Committee 
on Antimicrobial Susceptibility Testing (EUCAST) 
breakpoints (http://www.eucast.org/), isolates with a colistin 
MIC of ≤2 μg/ml were categorized as susceptible, while 
those with MICs of >2 μg/ml were considered to be resistant.

Detection of genes encoding antimicrobial resistance 
determinants
To amplify genes encoding antimicrobial resistance 
determinants (RDs) in a polymerase chain reaction (PCR), 
the  genomic  DNA templa te  was  ob ta ined  by 
incubating bacterial suspensions at 95°C for 10 min 
followed by centrifugation for 10 min at 12,000 ×g to 
remove cellular debris. Genes encoding carbapenem 
β‑lactamases (blaKPC, blaSME, blaGES, blaIMP, blaVIM, blaGIM, 
blaSIM‑1, blaSPM, blaNDM‑1, and blaOXA‑48), extended‑spectrum 
β‑lactamases (ESBL) (blaCTX‑M, blaTEM‑1, and blaSHV‑1), 
AmpC β‑lactamases (blaMOX, blaFOX, blaDHA, blaCIT, and 

blaEBC), aminoglycoside‑modifying enzymes (aac(3)-IIa 
and ant(2’’)-Ia), and 16S‑RMTases (armA, npmA, rmtA, 
rmtB, rmtC, rmtD, and rmtE) were detected by PCR using 
previously described primers.[12‑16] All amplified DNA 
fragments were sequenced and then analyzed using the 
Basic Local Alignment Search Tool (BLAST, www.ncbi.
nlm.nih.gov/BLAST).

Molecular typing
The GenePath System from Bio‑Rad Laboratories (Hercules, 
CA, USA) was used for PFGE analysis, and the genomic 
DNA was prepared according to the manufacturer’s 
instructions. In brief, the genomic DNA was prepared 
in agarose blocks, digested with the restriction enzyme 
XbaI (Promega, USA) for 3 h, and embedded into a 1% 
PFGE agarose gel. The PFGE was performed for 18.5 h at 
5.5 V/cm and 12°C, with a pulse angle of 120°, and a switch 
time from 6 to 36 s. Genomic DNA from S. enterica strain 
H9812 was used as the molecular size marker. The gel was 
stained with ethidium bromide for 20 min and photographed 
with the Gel Doc 2000 Imaging System from Bio‑Rad. The 
band patterns were analyzed by the BioNumerics software 
platform (Applied Math, Sint‑Maten‑Latem, Belgium) 
using the dice similarity coefficient. Isolates were classed 
in the same PFGE group if they possessed ≥85% genetic 
similarity.[17]

Multilocus sequence typing (MLST) was performed 
with primers l is ted in the online database for 
K. pneumoniae (http://bigsdb.web.pasteur.fr/klebsiella/
klebsiella.html). The resultant PCR products were purified 
and sequenced. Sequence types (STs) were assigned using 
online database tools (http://pubmlst.org/). To determine 
the clonal relatedness of the novel ST1883, the  eBURST 
software eBURSTv3 (http://eburst.mlst.net/) was used to 
compare the ST1883 strain with the K. pneumoniae ST11 
isolates and K. pneumoniae ST strains with five or more of the 
same housekeeping genes as that of the ST1883 strain type.

Conjugation and plasmid analysis
Conjugation assays were performed as previously 
described.[18] In brief, the 17 isolates were used as donors 
and an azide‑resistant E. coli J53 strain was used as the 
recipient. Sodium azide (150 mg/L from Sigma Chemical 
Co., St. Louis, MO, USA) and meropenem (12.5 mg/L 
from Oxoid) resistance were used to select for E. coli 
transconjugant strains.

Plasmid DNA was extracted using an E.Z.N.A. BAC/PAC 
DNA Kit (OMEGA, USA) according to the manufacturer’s 
instructions. The plasmid DNA was then used in a PCR‑based 
replicon typing method with previously described primers 
and conditions[19,20] to determine the plasmid incompatibility 
groups including F, FIA, FIB, FIC, HI1, HI2, I1‑Ic, L/M, N, 
P, W, T, A/C, K, B/O, X, Y, and FII.

Genetic organization of blaKPC gene locus
PCR mapping was used to analyze the genetic organization 
of the blaKPC locus. Amplifications were performed using 
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previously described primers and conditions.[21] All 
amplification products were sequenced.

Results

Clinical  features of  Klebsiel la pneumoniae 
carbapenemase‑producing Klebsiella pneumoniae 
isolates
In this study, strains were defined as nonduplicated strains only 
if they were isolated from different patients or from different 
tissues within the same patient. In total, 17 nonduplicated 
KPC‑KP strains were isolated from 15 patients. Ten 
of these patients were localized in the Intensive Care 
Unit (ICU) and the remaining patients were localized in 
other wards: Gastrointestinal surgery (GS) (n = 2), epilepsy 
specialist (ES) (n = 1), cardiothoracic surgery (CS) (n = 1), 
and integrative medicine (n = 1). The type of patient specimen 
from which the isolates were collected and the number of 
strains collected from each specimen were as follows: Wound 
secretions (n = 4), lower respiratory tract (n = 4), drainage 
of pleural fluid or biliary drainage (n = 3), blood (n = 2), 
cerebrospinal fluid (CF) (n = 2), ascites (n = 1), and 
urine (n = 1) [Figure 1].

Outbreak description
Strain number 1 was the first KPC‑KP isolate identified and 
was isolated from a drainage sample on August 4, 2014, 
from a male patient (patient 1) that was admitted to a 10‑bed 
ICU 22 days after admission into the hospital. The KPC‑KP 
isolate was assumed to have been transmitted within the 

ICU environment. On the same day, the second KPC‑KP 
strain (strain number 4) was isolated from the CF of the same 
patient from which strain number 1 was isolated. Thereafter, 
patients infected with a KPC‑KP strain from other wards 
were at some point during their hospitalization transferred 
to the ICU or were hospitalized during overlapping periods 
of time in the ICU with the index patient. Infection control 
measures were improved to include the reinforcement of 
diligent hand hygiene prior to and after patient handling, the 
use of disposable gloves, and the disinfection of inanimate 
surfaces related to the patients in question. Despite these 
precautionary measures, a KPC‑KP outbreak occurred again 
on February 7, 2015. All clinical isolates were isolated 
15–26 days following the admission of the patient and were, 
therefore, characterized as a hospital‑acquired isolate.

Antimicrobial susceptibilities
Antimicrobial susceptibility testing showed that the 
isolates were resistant to all antimicrobial agents tested 
including the third and fourth generation cephalosporins, 
quinolones, aminoglycosides, and carbapenem. In addition, 
all the isolates were only sensitive to cotrimoxazole and 
colistin [Table 1].

Prevalence of resistant determinants
A wide range of resistant genes was detected and four or more 
genes were coharbored in all KPC‑KP isolates. Among the 17 
KPC‑KP strains, 15 carried rmtB and 17 produced the ESBLs 
TEM‑1 and SHV‑1. Two genes, aac(3)-IIa and ant(2’’)-Ia, 
encoding two types of aminoglycoside‑modifying enzymes 

Figure 1: Clinical features, molecular characterization, and clonal relatedness of the 17 Klebsiella pneumoniae carbapenemase‑producing 
Klebsiella pneumoniae isolates. The dendrogram was developed using the BioNumerics software platform. key: Klebsiella pneumoniae 1‑17; 
P1‑P15: Patient number; IM: Integrative medicine; ES: Epilepsy specialist; GS: Gastrointestinal surgery; CS: Cardiothoracic surgery; WS: Wound 
secretion; CF: Cerebrospinal fluid; LRT: Lower respiratory tract; Ss: Specimens; RDs: Resistance determinants; PFGE: The pulsed‑field gel 
electrophoresis Types A and B and Subtypes A1–A3; ST: Sequence types ST11 and ST1883, which is a novel sequence type.
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were detected in 11.8% and 88.2% of KPC‑KP isolates, 
respectively. Figure 1 lists the antibiotic resistance genes 
detected in each isolate.

Pulsed‑field gel electrophoresis and multilocus 
sequence typing analysis
Using PFGE, the 17 KPC‑KP strains were divided into 
two types, Type A and Type B [Figure 1]. Type A strains 
predominated and accounted for 94.1% (16/17) of the 
strains. Type A included three Subtypes, A1, A2, and A3, 
while Type B was a nonsubtype. Subtype A1 accounted 
for 70.5% (12/17) of the strains and was found in the ICU, 
as well as other hospital wards, including GS, ES, and CS. 
Two strains (1 and 4) were isolated from the same patient 
but belonged to two different subtypes. Strain number 1 
belonged to Subtype A3, while strain number 4 belonged 
to Subtype A1.

To characterize the STs of the 17 KPC‑KP strains, MLST 
was performed. The PFGE Subtype A1, Subtype A2, and 
Type B strains all grouped with K. pneumoniae ST11 and 
account for 94.1% (16/17) of the KPC‑KP strains. Notably, 
the Subtype A3 strain (strain number 1), on the other 
hand, formed a novel K. pneumoniae ST, ST1883. The 
relationship of the novel ST1883 strain to the predominant 
ST11 hospital isolates and to K. pneumoniae ST strains 
with five or more of the same housekeeping genes as that 
of the novel ST1883 strain type were further analyzed using 
eBURST. ST11 was shown to be the founding genotype 
and ST1883 had a single locus variant to ST11. Only the 
rpoB housekeeping gene was different between ST11 and 
ST1883. Thus, ST11 and ST1883 belong to the same clone 
complex.

Conjugation and plasmid analysis
The blaKPC‑2 and rmtB genes were transferred by conjugation 
from the 17 isolates into a recipient E. coli J53 strain 
indicating that these resistance genes are located on a 
transferable plasmid. For all strains, only an IncFIB type 
plasmid was detected.

Genetic organization of blaKPC gene locus
The genes flanking the blaKPC‑2 gene in most KPC‑KP isolates 
were consistent with the genetic organization of the blaKPC‑2 
gene locus on the plasmid pKP048.[21] For strain 6 (Type B), a 
245‑bp insertion in a truncated blaTEM was detected upstream 
of the blaKPC‑2 gene [Figure 2].

dIscussIon

The first KPC‑KP isolate was reported from a North Carolina 
Hospital in the United States in 2001. Since then, KPCs 
have spread internationally among Gram‑negative bacteria, 
especially K. pneumoniae. Now, KPC‑KP isolates are major 
hospital pathogens worldwide.[3,6,18,22‑25] In China, a KPC‑KP 
isolate was first identified in 2004 from a 75‑year‑old 
ICU patient in Zhejiang Province. Thereafter, KPC‑KP 
isolates have been reported in numerous hospitals.[8,9,21] 
KPC‑2 has become the most common carbapenemase in 
China, and K. pneumoniae is the predominant host species. 
Before 2014, KPC‑KP isolates were rarely detected in our 
hospital. However, an outbreak of KPC‑KP isolates, which 
also displayed extensive drug resistance, was detected 
from August 4, 2014, to March 17, 2015. Importantly, the 
KPC‑KP isolates were resistant to aminoglycosides agents, 
which were previously effective against KPC‑KP isolates,[26] 
leaving few choices for the treatment of KPC‑KP infections. 

Table 1: Antibiotic susceptibilities of the 17 KPC‑KP isolates

Isolate MIC (μg/ml)

ATM IMP ETP CST CAZ FEP PRL CIP AMK TZP CTZ
1 ≥64 ≥16 ≥4 0.25 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
2 ≥64 ≥16 ≥4 0.5 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
3 ≥64 ≥16 ≥4 0.5 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
4 ≥64 ≥16 ≥4 0.5 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
5 ≥64 ≥16 ≥4 1 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
6 ≥64 ≥16 ≥4 1 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
7 ≥64 ≥16 ≥4 1 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
8 ≥64 ≥16 ≥4 0.5 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
9 ≥64 ≥16 ≥4 0.25 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
10 ≥64 ≥16 ≥4 0.5 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
11 ≥64 ≥16 ≥4 1 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
12 ≥64 ≥16 ≥4 1 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
13 ≥64 ≥16 ≥4 0.5 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
14 ≥64 ≥16 ≥4 0.5 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
15 ≥64 ≥16 ≥4 0.5 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
16 ≥64 ≥16 ≥4 0.5 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
17 ≥64 ≥16 ≥4 1 ≥64 ≥32 >256 ≥4 ≥64 ≥32 ≤20
1–17: Number of isolate; ATM: Aztreonam; IPM: Imipenem; ETP: Ertapenem; CST: Colistin; CAZ: Ceftazidime; FEP: Cefepime; PRL: Piperacillin; 
CIP: Ciprofloxacin; AMK: Amikacin; TZP: Piperacillin/tazobactam; CTZ: Cotrimoxazole; KPC: Klebsiella pneumoniae carbapenemase; KP: Klebsiella 
pneumoniae; MIC: Minimal inhibitory concentration.
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Therefore, in this study, the molecular characterization and 
clonal relatedness of the clinical KPC‑KP isolates were 
investigated.

Recently, coproduction of KPC and 16S‑RMTase, 
including KPC‑ArmA,[27] KPC‑RmtB,[28] KPC‑RmtD,[29] 
and KPC‑RmtG,[29] was detected in Enterobacteriaceae 
isolates and most of the genes encoding these RDs were 
located on plasmids. In China, isolates coproducing 
KPC and ArmA/RmtB have been detected and the 
genes encoding these resistance factors are located on a 
single plasmid.[30] In addition, a KPC‑2‑RmtB‑positive 
K. pneumoniae displayed more severe resistance phenotype 
showing sensitivity to only colistin and tigecycline than 
strains that produced only the KPC‑2 carbapenemase. 
KPC‑2‑RmtB‑positive K. pneumoniae strains are widespread 
and have replaced KPC‑KP strains in some hospitals.[28,31] 
Similarly, coproduction of blaKPC‑2 and rmtB was detected 
in most of the 17 KPC‑KP isolates in our study, and these 
isolates displayed resistance to all antimicrobial agents 
tested except for colistin and cotrimoxazole. Furthermore, 
blaKPC‑2 and rmtB were located on a transferable plasmid 
and were transferred by conjugation into a recipient E. coli 
J53 strain, indicating that these genes may be mobilized into 
bacterial strains that lack these genes. These data indicate 
that coproduction of blaKPC‑2 and rmtB in K. pneumoniae may 
lead to the emergence of a new pattern of drug resistance.

The genetic relatedness of the KPC‑KP isolates revealed 
that most isolates were of the same ST type. In addition, 
most of the isolates coharboring the blaKPC‑2 and rmtB 
genes belonged to ST11, which is the prevalent ST type in 
KPC‑producing K. pneumoniae in China[10,31,32] and which is 
partially similar to the clonal complex 258 (ST258, ST512, 
and ST101) found in Europe and the USA.[33,34] Notably, 
the MLST analysis showed that the Subtype A3 strain is a 
novel ST, ST1883.

Transposon elements are considered to be responsible 
for the rapid spread of blaKPC.[21,35,36] Tn4401 is regarded 

as the origin of blaKPC‑like gene acquisition and 
dissemination.[37] Until now, seven isoforms of Tn4401 
have been identified (a through f, with two isoforms called 
Tn4401d).[38‑40] In China, a distinct genetic organization of 
the blaKPC locus was detected by Shen et al. The genetic 
locus contains Tn3, ISKpn8, and an ISKpn6‑like element 
and is located on the plasmid pKP048.[21] Further studies 
have shown that the genetic organization of blaKPC locus 
is similar in other isolates (ISKpn8, blaKPC‑like gene, 
and ISKpn6‑like element) but is found on different 
plasmids.[27,41,42] In the present study, the genes flanking the 
blaKPC‑2 gene in most of the isolates were consistent with 
that of plasmid pKP048, further suggesting that the blaKPC‑2 
gene in China has a common origin and that the spread 
of the blaKPC‑2 gene between K. pneumoniae strains may 
be due to horizontal transmission. Nevertheless, recently, 
kinds of variants of the surrounding of blaKPC‑2 gene were 
detected, and most of which were mainly due to the insertion 
of a truncated blaTEM gene sequence between ISKpn8 and 
blaKPC gene with different sizes.[32] A novel variant was 
also detected in our study, strain 6 (Type B) with a 245‑bp 
insertion in a truncated blaTEM at the upstream of the blaKPC‑2 
gene, indicating that the new variants are emerging.

In conclusion, we have reported that the KPC‑KP isolates 
in this study appear to be clonal and that the K. pneumoniae 
ST11 was the predominant clone attributed to the outbreak. 
Most of the KPC‑KP isolates were further shown to coharbor 
blaKPC‑2 and rmtB, which were located on a transferable 
plasmid that may facilitate the spread of these resistance 
genes to other bacteria. These observations, together with 
the fact that few therapeutic options are available for these 
infections, compelled us to take urgent actions to control 
this outbreak and the persistent spread of KPC‑RmtB 
co‑producing K. pneumoniae in our hospital setting.
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