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Abstract
Among the rhythms of the brain, oscillations in the beta frequency range (�13–30 Hz) have been considered the most
enigmatic. Traditionally associated with sensorimotor functions, beta oscillations have recently become more broadly
implicated in top-down processing, long-range communication, and preservation of the current brain state. Here, we
extend and refine these views based on accumulating new findings of content-specific beta-synchronization during
endogenous information processing in working memory (WM) and decision making. We characterize such content-
specific beta activity as short-lived, flexible network dynamics supporting the endogenous (re)activation of cortical
representations. Specifically, we suggest that beta-mediated ensemble formation within and between cortical areas
may awake, rather than merely preserve, an endogenous cognitive set in the service of current task demands. This
proposal accommodates key aspects of content-specific beta modulations in monkeys and humans, integrates with
timely computational models, and outlines a functional role for beta that fits its transient temporal characteristics.
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Introduction

Beta-band oscillations: beyond motor control
Oscillations in the beta frequency range (�13–30 Hz)

have traditionally been associated with sensorimotor pro-

cessing (Hari and Salmelin, 1997; Pfurtscheller and Lopes
da Silva, 1999). During preparation and execution of
movements, beta oscillations in sensorimotor cortex
show marked power decreases (assumed to reflect local
desynchronization), followed by a “rebound” of power
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Significance Statement

Brain oscillations at frequencies of 13–30 Hz (the beta rhythm) are traditionally associated with sensory and
motor processing, but are increasingly implicated in various cognitive functions, such as working memory (WM)
and decision making. Here, we review new evidence that beta activity in these domains can be content specific,
that is, it can reflect the very information that is currently being processed. Going beyond previous accounts that
link beta to maintenance of the current brain state, our review highlights the dynamic, often short-lived nature of
beta modulations during endogenous information processing. We integrate these findings in a dynamic network
view where beta-synchronization supports the internally driven (re)activation of neuronal ensembles to represent
currently task-relevant contents.
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(i.e., synchronization) after movement (Kilavik et al., 2013).
A similar sequence of beta power changes is observed in
somatosensation, with desynchronization in anticipation
of and during stimulation, followed by (re)synchronization
after stimulus offset (Bauer et al., 2006; Spitzer et al.,
2010; Van Ede et al., 2010). The dynamics of beta activity
in sensorimotor cortex often resemble and/or parallel
modulations of alpha band activity (�8–12 Hz), in that
power decreases with active engagement, for instance
during spatial attention (Bauer et al., 2006; Schubert et al.,
2009; Jones et al., 2010; Van Ede et al., 2011; but see
Haegens et al., 2012). However, whereas alpha oscilla-
tions are widely linked to the inhibition of task-irrelevant
areas (Klimesch et al., 2007; Jensen and Mazaheri, 2010;
Haegens et al., 2011a), the precise functional role of sen-
sorimotor beta-synchrony remains unclear. Initially believed
to reflect cortical idling (Pfurtscheller et al., 1996; Neuper and
Pfurtscheller, 2001), more recent views suggest a role in
maintaining the current sensorimotor set, or “status quo”
(Engel and Fries, 2010; cf. Jenkinson and Brown, 2011).

Beyond its established role as a sensorimotor rhythm,
beta activity has been observed in various different corti-
cal areas and is increasingly implicated in a wider range of
cognitive functions (Engel and Fries, 2010). Modulations
of beta oscillatory activity in nonsomatomotor areas (e.g.,

frontal, parietal, visual; Fig. 1A) have been associated with
visual perception (Donner et al., 2007; Piantoni et al.,
2010; Kloosterman et al., 2015), language processing
(for review, see Weiss and Mueller, 2012), working mem-
ory (WM; Tallon-Baudry et al., 1998; Deiber et al., 2007;
Axmacher et al., 2008; Siegel et al., 2009), long-term
memory encoding and retrieval (Sederberg et al., 2006;
Hanslmayr et al., 2009; Spitzer et al., 2009; for review, see
Hanslmayr et al., 2016), decision making (Pesaran et al.,
2008; Wimmer et al., 2016; Wong et al., 2016), response
inhibition (Jha et al., 2015), and reward processing (for
review, see Marco-Pallarés et al., 2015). In some of these
contexts, beta-band modulations occur in a relatively low
frequency band (“lower” beta, �13–20 Hz) and in tandem
with alpha (Hanslmayr et al., 2009). In other cases, beta-
band rhythms of varying frequencies (including “upper”
beta, �20–30 Hz) behave in ways more similar to gamma
activity (�30 Hz) and increase, rather than decrease, with
task-related engagement (Tallon-Baudry et al., 1998;
Marco-Pallarés et al., 2015; Kornblith et al., 2016).

While a unifying theoretical account of cortical beta
oscillations is currently lacking, some mechanistic as-
pects have been tentatively identified. In particular, beta
oscillations are mostly associated with endogenous, top-
down-controlled processing (Buschman and Miller, 2007;
for review, see Engel and Fries, 2010; Wang, 2010; Fries,
2015). Furthermore, in line with a “communication through
coherence” view (Fries, 2005, 2015), oscillations in the
beta frequency range are assumed to facilitate long-
range interactions on a cortical network level (Kopell et al.,
2000; Varela et al., 2001; Benchenane et al., 2011; Kilavik
et al., 2013). Both these aspects have been integrated in
a predictive coding framework, where gamma-synchro-
nization serves feedforward (bottom-up) communication,
whereas beta-synchronization affords feedback commu-
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Figure 1. Beyond motor control. Schematic overview of oscillatory beta-band effects across cortex. A, Overall beta activity changes
(in-/decreases) associated with different cognitive functions (NB, nonexhaustive schematic). B, Content-specific modulations of
beta-band activity; see text for details. For convenience, findings from human- and nonhuman primate studies are illustrated on a
common template. Unless specified (L, left; R, right; C, contralateral), effects were not systematically lateralized.
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nication of top-down predictions (Arnal and Giraud, 2012;
Bastos et al., 2012; Bastos et al., 2015; Michalareas et al.,
2016). One of the many persistent puzzles regarding beta,
however, remains its unclear relation to neuronal activity
as measured in spike firing rates and/or blood-oxygen-
level dependent (BOLD) signals. Whereas oscillations in
other frequency bands are known to correlate either pos-
itively (e.g., gamma) or negatively (e.g., alpha) with these
activity measures, findings for beta have been mixed (e.g.,
Michels et al., 2010; Hanslmayr et al., 2011), with some
studies showing no correlation at all (e.g., Whittingstall
and Logothetis, 2009; Rule et al., 2017).

Perhaps surprisingly in light of the above, an increasing
number of findings indicate that in some task contexts,
beta oscillatory activity can be content specific, that is, it
can reflect the very information that is currently being
processed (Fig. 1B). Across human and monkey species,
content-specific beta activity was found to carry informa-
tion about internalized task rules (Buschman et al., 2012),
stimulus categories (Antzoulatos and Miller, 2014, 2016;
Stanley et al., 2016), scalar magnitudes (Spitzer et al.,
2010; Spitzer and Blankenburg, 2011; Spitzer et al.,
2014a) and other stimulus properties (Salazar et al., 2012;
Mendoza-Halliday et al., 2014; Lewis et al., 2016; Wimmer
et al., 2016), as well as subjective comparison outcomes
(Haegens et al., 2011b; Herding et al., 2016). Such
content-specific beta activity has in particular been ob-
served during endogenous information processing in WM
and decision making. Before considering these two do-
mains in greater detail, we briefly discuss by which neu-
rophysiological mechanisms beta oscillations might be
generated.

Generation of cortical beta oscillations
Two main views exist in the literature, suggesting that

(1) beta is generated in cortex (Jensen et al., 2005;
Roopun et al., 2006; Kramer et al., 2008; Kopell et al.,
2011; Sherman et al., 2016), or (2) that beta is generated
in the basal ganglia and propagated to cortex via the
thalamus (Holgado et al., 2010; McCarthy et al., 2011).
Within the view of cortically generated beta, one class of
models suggests that beta is generated by local spiking
interactions among cells, either consisting of pyramidal cell-
interneuron loops (Jensen et al., 2005; Kramer et al., 2008;
Kopell et al., 2011; Lee et al., 2013) or layer 5 pyramidal
cells coupled via gap junctions (Roopun et al., 2006). A
more recent proposal (Sherman et al., 2016) suggests an
intermediate model, with beta being generated in cortex
but depending on a (laminae-specific) exogenous drive
originating from subcortical and/or cortical influences (see
also Schmiedt et al., 2014, suggesting cortical beta gen-
eration driven by thalamic and/or top-down cortical in-
puts).

Based on local generator models, it has been sug-
gested that beta is ideally suited for flexibly and dynami-
cally forming cell assemblies (Roopun et al., 2008; Kopell
et al., 2011), and for long-distance inter-area communi-
cation (Kopell et al., 2000). These models rely on local
spiking interactions between excitatory and inhibitory
neurons, and on intrinsic currents of the underlying pyra-

midal cells (e.g., h-currents or m-currents, determining
the cell’s rebound after hyperpolarization), defining the
time constants for spike firing, thereby contributing to
beta rhythmogenesis (Roopun et al., 2008; Kopell et al.,
2011). Kopell et al. (2011) suggest that beta-synchronized
cell assemblies are robust as they are self-sustaining after
a long, decaying excitatory input [contrary to pyramidal-
interneuron gamma (PING)-based networks, which need
ongoing input; PING, a model of local circuit gamma
generation], and can concurrently exist with other cell
assemblies (again, contrary to PING assemblies which
compete with one another as they rely on the same
inhibitory interneurons). The sustained nature of these cell
assemblies, spiking at a low beta rate (�15 Hz), would
allow maintaining of neuronal activity patterns, i.e., a
mechanism for WM, and the linking of past and present
inputs.

More recently, Sherman et al. (2016) proposed a model
building on prior work (Jones et al., 2007; Jones et al.,
2009; Sacchet et al., 2015), where cortical beta is gener-
ated in the apical dendrites of large populations of spa-
tially aligned pyramidal neurons, which span several
layers. Specifically, this model produces transient beta
activity (�150 ms) by the integration of simultaneous
(subthreshold) excitatory drives to the proximal (closer to
the soma) and distal apical dendrites of pyramidal cells
located in supragranular (layers 2/3) and infragranular
layers (layer 5). The weaker proximal drive (of �100-ms
duration) arrives via granular (layer 4), the stronger distal
drive (�50 ms) via the supragranular layers, with both
extrinsic drives arising from thalamic or potentially higher-
order cortical areas. The model accurately generates beta
“burst” events (�150 ms), with a nonsinusoidal wave form
as observed in spontaneous human, monkey and rodent
recordings (Sherman et al., 2016). Moreover, within this
framework, when both drives arrive nearly synchronously
at a 10-Hz rate, a sustained beta rhythm can be pro-
duced. Note that a beta-rate input is neither required nor
sufficient for this model to produce realistic beta events
(contrary to models that assume generators in the basal
ganglia), nor do individual cells fire at a beta rate (in
contrast with other local generator models). Rather, beta
oscillatory activity arises from net subthreshold dendritic
fluctuations, relying on integration of feedforward (to
granular layer) and, critically, feedback inputs (to supra-
granular layers).

Beta-band oscillations in WM
Numerous studies have reported beta power increases,

concomitant with modulations in other frequency bands,
during WM maintenance of visual (Tallon-Baudry et al.,
1998; Liebe et al., 2012; Lara and Wallis, 2014; Wimmer
et al., 2016), verbal (Deiber et al., 2007), or temporal
information (Chen and Huang, 2016). Such effects occur
in frontal, parietal, and/or temporal areas, and can vary
with WM load, i.e., the amount of to-be-maintained infor-
mation (Deiber et al., 2007; Honkanen et al., 2015; Chen
and Huang, 2016; see also Palva et al., 2011; Kornblith
et al., 2016). In addition, several studies have shown that
WM demands can alter the degree to which beta oscilla-
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tions are phase synchronized, both within and between
cortical areas (Tallon-Baudry et al., 2001; Babiloni et al.,
2004; Tallon-Baudry et al., 2004; Axmacher et al., 2008;
Salazar et al., 2012; Dotson et al., 2014).

Findings of enhanced beta activity in WM tasks appear
consistent with a role in actively maintaining the current
cognitive set, i.e., the status quo (Engel and Fries, 2010).
However, overall changes of oscillatory activity during
WM processing can depend on various task factors and
are also often found in frequency bands other than beta,
especially theta (4–7 Hz), alpha, and gamma (for review,
see Fell and Axmacher, 2011; Roux and Uhlhaas, 2014).
While overall activity changes may reflect involvement in
WM, more direct insights into the mechanisms of WM stor-
age can be gained from delay activity that reflects the cur-
rent memory content, in terms of the task-relevant stimulus
information that is to-be-maintained on a given trial (Chris-
tophel et al., 2017). Such content-specific delay activity has
traditionally been observed in persistent neuronal spiking
(e.g., Kubota et al., 1974; Miller et al., 1996), local gamma-
band activity (Pesaran et al., 2002), as well as BOLD activity
patterns (Harrison and Tong, 2009). However, a growing
body of recent literature indicates that WM contents can
also be reflected in oscillatory brain signals, particularly in
the beta frequency range (Spitzer et al., 2010; Spitzer and
Blankenburg, 2011; Salazar et al., 2012; Mendoza-Halliday
et al., 2014; Antzoulatos and Miller, 2016; Rose et al., 2016;
Wimmer et al., 2016).

Content-specific modulations in scalar WM
One line of evidence for content-specific delay activity

in the beta-band comes from studies of WM for scalar
magnitudes, such as the speed, intensity, or duration of a
stimulus. The neural basis of scalar information process-
ing has been studied in great detail in a classic somato-
sensory task (Mountcastle et al., 1967; Romo and de
Lafuente, 2013), where monkeys were trained to memo-
rize the frequency of a brief tactile vibration (f1) for de-
layed comparison against a second vibration (f2; Fig. 2A,
top). As a seminal finding in this task, the trial-specific f1
frequency is encoded parametrically, i.e., in a monotoni-
cally graded fashion, in neuronal firing rates throughout
the cortical processing hierarchy (Romo and de Lafuente,
2013). During the WM delay after f1, such parametric
coding prevails in prefrontal cortex (PFC) and premotor
cortex, with different cell populations either positively or
negatively tuned to the frequency of f1 (Romo et al., 1999;
Hernández et al., 2002; Barak et al., 2010). In subsequent
human EEG experiments, similar effects were observed in
prefrontal beta activity, with parametric modulations of
oscillatory power as a function of f1 frequency (Spitzer
et al., 2010; Spitzer and Blankenburg, 2011; Ludwig et al.,
2016). Further studies showed that such beta power mod-
ulations are not specific to vibrotactile frequency informa-
tion, but can also be observed for other analog continua,
like stimulus intensity, motion speed, or approximate
number (Spitzer et al., 2014a,b; Wimmer et al., 2016). A
general picture emerging from this line of work is that at
least some of the computations underlying scalar WM are
supramodal (Spitzer and Blankenburg, 2012; Vergara

et al., 2016; see also Nieder, 2012), potentially reflecting
high-level abstractions of the task-relevant magnitude,
rather than concrete sensory information (Spitzer et al.,
2014a,b; see also Christophel et al., 2017).

Content-specific (de)synchronization within and
across areas

The modulations of beta activity in scalar WM tasks
were observed in power measures, which are thought to
reflect the local (de)synchronization of neuronal ensembles
within a brain area (Pfurtscheller and Lopes da Silva, 1999).
However, using more complex stimuli, content-specific WM
activity in the beta-band has also been observed on a larger-
scale cortical network level. For instance, in simultaneous
recordings from prefrontal and parietal cortex in behaving
monkeys, information about memorized visual objects could
be decoded not only from sustained spiking in either region,
but also from the level of beta-band synchronization be-
tween regions (Salazar et al., 2012) (Fig. 2E). Similarly, beta-
synchronization of prefrontal networks was found to reflect
currently relevant task-rules (Buschman et al., 2012) (Fig. 2F,
4C) and stimulus categories (Antzoulatos and Miller, 2014,
2016; Stanley et al., 2016). In another recent study,
memory-coding neurons in monkey lateral PFC were
found to be synchronized via beta oscillations to motion-
sensitive area MT, in which the memorized motion infor-
mation was also reflected in local field potential (LFP)
power but not in spiking activity (Mendoza-Halliday et al.,
2014). The latter findings were interpreted as evidence for
top-down signaling from PFC to lower-level visual areas,
in line with the emerging notion of beta oscillations as a
communication channel for top-down and feedback infor-
mation across cortex (Buschman and Miller, 2007; Bastos
et al., 2015).

A role in (re)activating WM content
Several lines of evidence suggest that content-specific

beta oscillations do not reflect a persistent memory trace
per se, but rather, a class of endogenous processes that
are auxiliary to WM processing. For instance, content-
dependent beta activity is typically not sustained through-
out entire memory delays (of several seconds), but
relatively short lived, often lasting only several hundreds
of milliseconds (Spitzer and Blankenburg, 2011; Salazar
et al., 2012). Furthermore, unlike WM codes in neuronal
spiking (Romo et al., 1999; Barak et al., 2010), prefrontal
beta modulations are usually absent during stimulation,
and seem to emerge only at particular times during WM
retention (Fig. 2A-D). More specifically, in standard delay
tasks, beta modulations are mostly found late in the delay
(Spitzer et al., 2010; Salazar et al., 2012; Spitzer and
Blankenburg, 2012; Wimmer et al., 2016), when WM in-
formation might be endogenously (re)activated or “re-
freshed” (Johnson, 1992) in preparation for the imminent
comparison task (Spitzer et al., 2010; Myers et al., 2015;
Wimmer et al., 2016). In contrast, when participants were
explicitly (retro)-cued to update WM with one of two
previously presented stimuli for further maintenance,
prefrontal beta was modulated early after the cue, and
therein selectively reflected the cued stimulus information
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(Spitzer and Blankenburg, 2011; Spitzer et al., 2014b).
Similarly, in tasks where the scalar magnitude of a stim-
ulus could only be assessed after integration over time
(e.g., the number of pulses in a sequence), beta modula-
tions occurred promptly after the accumulation period, as
if the task-relevant scalar was “activated” in WM as soon
as it was internally computed (Spitzer et al., 2014a,b).
Taken together, rather than a substrate of persistent
memory storage per se, prefrontal beta modulations seem
to reflect the momentary updating, or (re)activation, of
WM content in the service of the task at hand.

To our knowledge, content-specific beta activity in WM
has thus far only been observed during single-item main-
tenance (Salazar et al., 2012; Dotson et al., 2014;
Mendoza-Halliday et al., 2014), and several findings sug-
gest that the capacity of beta-associated WM updating

might be limited to a single piece of information in the
current focus of attention (Spitzer and Blankenburg, 2011;
Spitzer et al., 2014b; Antzoulatos and Miller, 2016; Wim-
mer et al., 2016; cf. Oberauer, 2002). However, one recent
study showed that an additional, currently unattended
memory item can be pushed into an active WM state by
transcranial magnetic stimulation (TMS) of WM-coding
areas (Rose et al., 2016). Interestingly, whereas the cur-
rently attended memory information could be decoded
from various EEG frequency bands, the TMS-induced
reactivation of the unattended memory item was exclu-
sively evident in content-specific beta activity. In other
words, beta activity specifically marked the transition of
“latent” WM contents (see below; Mongillo et al., 2008;
Stokes, 2015) into an active memory, consistent with a

Figure 2. Content-specific beta activity during WM processing. A, During WM maintenance of vibrotactile frequency information,
prefrontal EEG beta power is parametrically modulated by the frequency of the to-be-maintained stimulus (f1). Adapted with
permission from Spitzer et al. (2010). B, Similar beta power modulations were found in LFP recordings in monkey PFC during
WM maintenance of visual motion information. Adapted with permission from Wimmer et al. (2016). Note that in standard delay
tasks, beta modulations occurred mostly late in the WM delay period. C, In contrast, when participants were retro-cued to focus
on a given WM content for further maintenance, beta was modulated early after the cue. Adapted with permission from Spitzer
and Blankenburg (2011). D, Similar transient modulations were observed during WM processing of the approximate number of
previously presented inputs (three to eight pulses in rapid sequence, illustrated in purple). Adapted with permission from Spitzer
et al. (2014a). E, Content-specific fronto-parietal beta-synchronization during WM maintenance of visual object information in
monkeys. As in A–D, these effects were absent during stimulus encoding. Adapted with permission from Salazar et al. (2012).
Reprinted with permission from AAAS. F, Rule-dependent beta-synchronization in monkey PFC at the time of the to-be-
evaluated stimulus (see also Fig. 4C). Adapted with permission from Buschman et al. (2012). Reprinted with permission from
Elsevier.
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role of beta in updating, or reactivating, information in the
current focus of WM.

Neurocomputational perspectives on beta
oscillations in WM

A role of beta oscillations in WM has also been put
forward in computational modeling work (Kopell et al.,
2011; Lundqvist et al., 2011; Dipoppa and Gutkin, 2013).
Simulations by Kopell et al. (2011), for instance, showed
beta oscillations to be uniquely suited to form and coor-
dinate cell assemblies for sustained stimulus processing
in the absence of further input, eventually permitting the
coexistence of past and present stimulus information in
the same network. In this view, beta rhythms may scaffold
functional assemblies for active WM processing. Another
line of modeling studies, with a focus on multi-item WM,
suggests a sequential replay of individual WM items (see
also Lisman and Jensen, 2013), in terms of alternations
between “ground” and “active” states (see below), where
the former is dominated by alpha/beta and the latter by
gamma (Lundqvist et al., 2010; Lundqvist et al., 2011).
Corroborating this idea, Lundqvist et al. (2016) reported a
dissociation between beta and gamma during multi-item
WM in monkey PFC, where gamma bursts were associ-
ated with stimulus encoding and decoding in spikes,
whereas beta bursts prevailed during memory mainte-
nance. However, it was not analyzed whether beta and/or
gamma bursts themselves carried information about the
WM contents, leaving the question of content-specific
beta activity in multi-item WM to future research (but see
Siegel et al., 2009, for a potential role of beta phase in
multi-item WM).

Beta-band oscillations in decision making
Given the well-documented involvement of beta-band

oscillations in movement preparation (Murthy and Fetz,
1992; Sanes and Donoghue, 1993; Crone et al., 1998;
Pfurtscheller and Lopes da Silva, 1999), it seems not
surprising that sensorimotor beta effects are routinely
observed in decision-making tasks where choices are to
be communicated via a motor response (Kaiser et al.,
2007; Zhang et al., 2008; Bidet-Caulet et al., 2012). During
perceptual discrimination of auditory stimuli, for instance,
the latency of preparatory beta power modulation was
found to mimic response time differences across varying
levels of task difficulty (Kaiser et al., 2007). Such effects
typically manifest as sensorimotor power decreases con-
tralateral to the to-be-moved limb, and are commonly
assessed using lateralization indices (e.g., contrasting
left- vs. right-hemispheric activity associated with right/
left hand choices; Donner et al., 2009; Gould et al., 2012;
Wyart et al., 2012). A traditional view is that beta oscilla-
tions in decision-making reflect motor preparation only,
i.e., a serial processing view where the effector-specific
motor plan is the final step, after higher-order areas have
reached a decision based on sensory input. However, as
will be outlined below, accruing evidence points to a more
direct involvement of beta oscillations in decision forma-
tion, which may or may not be linked to a specific motor
plan.

Dynamic accumulative updating
Several recent studies suggest that lateralized beta

activity during decision-making tasks may not only reflect
terminal movement preparation, but a dynamic process of
accumulatively updating a motor plan as a decision
evolves (Donner et al., 2009; Gould et al., 2012; O’Connell
et al., 2012; Wyart et al., 2012; Kubanek et al., 2013;
Wyart et al., 2015). For instance, analyzing human MEG
activity in a visual motion-detection task, Donner et al.
(2009) reported a slowly evolving, gradual beta power
lateralization in (pre)motor cortex that tracked the current
state of evidence accumulation, as inferred from the tem-
poral integral of gamma activity in motion-sensitive area
MT (Fig. 3A). Similar observations were made in human
EEG studies where participants integrated sequential
samples of decision information over extended periods of
time (Gould et al., 2012; Wyart et al., 2012; Kubanek et al.,
2013; Wyart et al., 2015). In these studies, sensorimotor
beta was found to reflect the integral of accumulated
decision information in the form of a gradual response
preparation signal, downstream to the encoding of
sample-level decision information in parietal EEG signals
(Gould et al., 2012; Wyart et al., 2012; Kubanek et al.,
2013).

Together, these studies support a role for beta in dy-
namic updating of the decision outcome as mapped onto
a motor response. However, a key point in the above
studies is that they a priori operationalized beta activity as
a response-related signal. More specifically, they used a
fixed mapping between decision outcomes and motor
responses (usually left/right hand action), and assessed
sensorimotor beta activity in terms of lateralization in-
dices, relying on the contra-lateralized nature of sen-
sorimotor activity. Critically, this approach disregards
choice-related activity that might occur independent of
the associated left/right response mapping. In fact, when
the fixed link between decision outcomes and left/right
effectors is removed, the effects in sensorimotor beta
lateralization typically disappear (O’Connell et al., 2012;
Twomey et al., 2016).

A content-specific decision signal?
Several recent studies go beyond this approach, and

demonstrate a role for beta oscillations in perceptual
decision tasks that appears independent of motor-
response mapping (Haegens et al., 2011b; Herding et al.,
2016; Stanley et al., 2016; Wimmer et al., 2016). Haegens
et al. (2011b) used a variant of the somatosensory fre-
quency discrimination task described earlier (Mountcastle
et al., 1967; Romo and de Lafuente, 2013). As outlined
above, during the retention period of such tasks, the first
stimulus frequency (f1) is reflected parametrically in (pre-
)frontal areas, both in terms of single-cell firing rates
(Romo et al., 1999; Barak et al., 2010; Vergara et al., 2016)
and in upper beta activity (Spitzer et al., 2010). Notably,
during the ensuing decision period (i.e., after f2 is pre-
sented), Haegens et al. (2011b) found that the level of beta
power in monkey sensorimotor cortex (including somato-
sensory, premotor and motor areas) signaled the categor-
ical outcome of the f1-f2 comparison (i.e., “f2 � f1” or
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“f1 � f2”). This effect proved independent of the absolute
frequencies of f1 and f2 (or their exact numerical differ-
ence) and reflected the monkey’s categorical choices
even on error trials (Fig. 3B). Importantly, this choice-
related beta activity was not merely related to motor
planning, as all choices were reported with the left hand,
and the effect disappeared in a control condition in which
the same motor response but no f1-f2 comparison was
required. These findings complement previous reports
on spike firing rate modulation in the same paradigm:
during the comparison period, firing rates of sensori-
motor and prefrontal cells gradually reflected a cate-
gorical response, corresponding to the decision
outcome (Hernández et al., 2002; Romo et al., 2002;
Hernández et al., 2010). Therein, similar to the “para-
metric” WM ensembles described earlier (Romo et al.,
1999), decision-coding cells fall into two complemen-
tary classes, with one group of cells positively tuned
(i.e., increasing its firing) to the f2 � f1 choice and
another negatively tuned (Hernández et al., 2002).

A beta-band effect replicating and extending the mon-
key findings by Haegens et al. (2011b) was recently ob-
served in human EEG recordings (Herding et al., 2016).
Here too, during vibrotactile frequency discrimination, the
level of nonlateralized beta power in premotor areas was
modulated according to participants’ decision outcomes
(f2 � f1 or f2 � f1) in a categorical fashion (Fig. 3C). Again,
this effect reflected subjective choices, including errors,
as inferred from Bayesian modeling of f1-f2 choice be-
havior. Furthermore, capitalizing on a larger subject sam-
ple, this effect was found to be invariant across motor
response mappings: even when the response scheme
(index or middle finger of the right hand) was flipped
(across participants), the beta modulations remained un-
changed (Herding et al., 2016). In a follow-up study, vir-
tually identical beta patterns were observed when
saccades rather than button presses were used to com-
municate the decision. Now decision-selective beta ac-
tivity was localized to more lateral premotor areas
(including the frontal eye fields), suggesting a degree of

Figure 3. Content-specific beta activity during decision making. A, Source reconstruction showing lateralized, effector-selective beta
activity (left- vs right-hand response) before button press, in human subjects performing a visual motion detection task (left panel).
Time courses of lateralized beta activity in motor cortex indicate accumulative updating of the motor plan as a decision evolves (right
panel). Adapted with permission from Donner et al. (2009). Reprinted with permission from Elsevier. B, Beta power modulation in
monkey medial premotor cortex before motor response in vibrotactile discrimination task reflects binary decision outcome, also on
error trials. Spectra on the right are averaged over the time window indicated by dashed box in the left panel, per stimulus class
(sorted by f2-f1 difference), for correct and incorrect trials separately. Adapted with permission from Haegens et al. (2011b). C,
Remarkably similar observation as in B, in human EEG recordings using the same paradigm. Adapted with permission from Herding
et al. (2016). © 2016 by the Massachusetts Institute of Technology, published by the MIT Press.
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effector specificity in terms of areas involved, but with a
consistent role for beta (Herding et al., 2017).

Combined, these studies suggest that in scalar com-
parison tasks, sensorimotor beta oscillations can reflect
the categorical, potentially abstract content of a decision,
even independent of a concrete motor plan. One possi-
bility is that such nonlateralized, content-dependent beta
activity relates to the endogenous activation of categori-
cal, conceptual information before local translation into an
effector-specific response. This interpretation is in line
with a recent study recording LFPs in lateral PFC of
macaques performing a visual categorization task, which
reported different patterns of beta coherence for different
categories of morphed stimuli (ranging for instance from
cat to dog), “as if low-beta coherence was helping to form
the neural ensembles that represented the categories”
(Stanley et al., 2016). In further support of this view, when
macaques had to judge random-dot motion stimuli, beta
activity in lateral PFC signaled the categorical decision
outcome (here, “same” or “different”), with beta modula-
tion in different recording sites corresponding to the dif-
ferent outcomes (Wimmer et al., 2016). As for the
somatosensory studies discussed above, this observation
complemented findings from single unit spike recordings
in the same paradigm (Hussar and Pasternak, 2012): dif-
ferent cells increased their firing rate either for same or for
different choices. Thus, there appear to be parallels be-
tween modulations of local beta activity and single unit
firing rates, in that both signal the emergence of a cate-
gorical decision outcome.

Decision circuits
The role of beta oscillations in decision making might be

extended to include long-range interactions, again in line
with WM findings discussed earlier. The decision effects
observed by Haegens et al. (2011b), for instance, included
a distributed network of somatosensory and (pre)motor
areas. More direct support for a role in network-level
processing comes from a reach-planning study, demon-
strating higher beta-band spike-field coherence (SFC; the
synchronization of spikes to oscillatory phase) between
premotor cortex and the parietal reach region when mon-
keys were freely making choices as compared to in-
structed choices (Pesaran et al., 2008). The authors
proposed that here, beta coherence reflected a decision
circuit between frontal and parietal cortex, which was
more activated under free choice conditions. Similarly,
beta-band SFC in posterior parietal cortex reflected de-
cisions in a reward-guided choice task (Hawellek et al.,
2016). In this study, information about movement choice
in firing rates was quantified and related to the phase of
beta and gamma oscillations. While for gamma, peak
firing rate and maximum information content coincided,
for beta the highest spike count preceded maximum in-
formation. These differences in temporal alignment were
linked to the idea that gamma reflects local, bottom-up
processing, while beta links distributed ensembles for
computations on a larger scale. Further evidence for beta
facilitating long-range communication was obtained in a
recent auditory perceptual decision-making study, in

which large-scale network dynamics in the beta-band pre-
dicted decision speed (Alavash et al., 2017).

To summarize, a growing body of evidence suggests
that content-specific beta oscillations can signal the
endogenous activation of a categorical decision out-
come before translation into a concrete motor re-
sponse. Several studies show that such content-
specific decision activity in the beta-band can be
observed beyond sensorimotor regions, both within
and between distributed cortical areas.

A role for beta oscillations in endogenous
content (re)activation

In the previous sections, we have discussed research in
the domains of WM and decision making, showing that
beta activity can be modulated in a content-specific man-
ner. Here, we outline a framework for beta oscillations in
endogenous (re)activation of cortical content representa-
tions (Fig. 4A). We presume that active cortical represen-
tations of task-relevant information are reflected in the
(spiking) activity of content-specific neuronal ensembles
(Fig. 4A, first panel). We further assume that in the ab-
sence of stimulation or endogenous prioritization, repre-
sentations of task-related information can persist without
sustained ensemble spiking, for instance, in patterns of
synaptic weights (Jonides et al., 2008). Such dormant, or
latent memory representations (Fig. 4A, second panel)
may for instance be characterized by short-term synaptic
facilitation (Mongillo et al., 2008; Stokes, 2015) for just
presented stimuli, and/or by long-term synaptic potentia-
tion (Hebb, 1949) for overlearned (e.g., abstract/categor-
ical) contents. A general assumption in this framework is
that latent memory information can be endogenously re-
stored into an active (i.e., spiking) cortical representation
(Fig. 4A, last panel), for instance by top-down attentional
prioritization (Warden and Miller, 2007; Jonides et al.,
2008; Jacob and Nieder, 2014; Watanabe and Funahashi,
2014; Sprague et al., 2016). The mechanisms by which
such endogenous (re)activation might occur, however,
have thus far remained unclear. Here, based on the ac-
cumulating evidence reviewed above, we propose that
this role is filled by content-specific beta-band activity.
More specifically, we suggest that episodes of content-
specific beta-synchronization support the endogenous
transition from latent to active cortical representations
(Fig. 4A, third panel), in the service of current task de-
mands.

Oscillatory synchronization is associated with fluctua-
tions in local network excitability (Bishop, 1932), and
faster rhythms (�15 Hz) in particular are proposed to
support flexible information routing by providing windows
of efficient inter-areal communication (Fries, 2015; Palmi-
giano et al., 2017). Oscillations in the beta-band seem
particularly well suited to fill these roles during endoge-
nously driven information processing, given (1) their as-
sociation with top-down processing (Engel and Fries,
2010; Wang, 2010) and (2) long-range communication
(Kopell et al., 2000; Varela et al., 2001; Sherman et al.,
2016), (3) their burst-like temporal dynamics (Jones,
2016), (4) their presumed role in the flexible formation and
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manipulation of functional cell assemblies (Roopun et al.,
2008; Kopell et al., 2011), and (5) their capacity to mod-
ulate impact of neuronal firing (Buzsáki and Draguhn,
2004; Wang, 2010). While several of these characteristics
may also apply to other rhythms, the combination of all
these aspects appears unique to beta.

Mechanistically, the association of endogenously driven
ensemble activation with beta oscillations is in line with
models of beta generation that rely on integration of con-
current inputs along the proximal and distal locations of
the apical dendrites of pyramidal cells (Jones et al., 2009;
Sherman et al., 2016). This integration includes both feed-
forward (lemniscal thalamic) input via the granular layer,
and, critically, feedback (higher-order cortical and/or non-
lemniscal thalamic) drives to the supragranular layers (es-
sential for beta emergence in the model), permitting top-
down driven synchronization of a cell assembly, mitigated
via cortico-(thalamo)cortical drives. Furthermore, based
on models that rely on beta-rate spiking-interactions
within local cortical circuits (Kopell et al., 2011), it has
been argued that beta-synchronized ensembles are less
susceptible to competition (unlike PING/gamma net-
works). In the present context, this property of beta might
permit endogenous content activation to operate in a
“protected” oscillatory regime that is relatively robust to

distractor interference, e.g., from concurrent sensory in-
puts.

We may further speculate that beta is an ideal “transit”
band for endogenously driven (re)activation, bridging the
frequency space between alpha, which is commonly as-
sociated with top-down inhibition (Klimesch et al., 2007;
Haegens et al., 2011a), and gamma, which is positively
linked to population spiking (Whittingstall and Logothetis,
2009). Relatedly, previous modeling work (Lundqvist
et al., 2010; Lundqvist et al., 2011) has characterized
(WM-) reactivation as a transition from a low-frequency
(alpha/beta) oscillatory regime (associated with a noncod-
ing ground or “default” state) to a higher frequency/
gamma regime (associated with active stimulus coding),
similar to our conceptualization of latent and (re)activated
representations (Fig. 4A, second and fourth panels). Su-
perficially, the association of beta with a default state
(Lundqvist et al., 2016; see also Engel and Fries, 2010)
appears inconsistent with a role in content (re)activa-
tion. However, the two perspectives can be reconciled
when considering that content specificity (in terms of
experiment-related information; which might be disso-
ciable from less specific, ongoing beta rhythmicity, see
Future perspectives below) emerges only during the crit-
ical transition between representational states (Fig. 4A,
third panel).

Figure 4. A framework for content-specific beta activity. A, Content-specific beta-synchronization as endogenously driven transition
from latent to active cortical representation. Left, Active cortical representations (e.g., of currently perceived, task-relevant informa-
tion) are characterized by spiking activity (symbolized in red) in content-specific neuronal ensembles. Second from left, In the absence
of perceptual input and/or attentional prioritization, information can be retained in latent memory representations, without spiking
activity in the content-specific ensemble, e.g., in patterns of synaptic weights. Second from right, Endogenously driven (re)activation
of a content-coding ensemble is characterized by a brief period of beta-synchronization, involving both local and long-range
(top-down) interactions (see text for details). Right, (Re)activated content representations may again be characterized by spiking
ensemble activity, similar (but not necessarily exactly identical) to representations of just perceived information (compare with left).
B, Local beta activity appears content specific when population-level recordings register the synchronization of individual subpopu-
lations (symbolized in blue and red) with differential sensitivity (e.g., red � blue, by spatial proximity to recording site). C, Transient
network-level beta coherence in monkey PFC during application of different task rules (Fig. 2F, dashed rectangle). Adapted with
permission from Buschman et al. (2012). Reprinted with permission from Elsevier.
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Our proposal captures various hallmarks of content-
specific beta activity in the domains of WM and decision
making. First, under this framework, content-specific beta
episodes are expected to be relatively short lived (see also
Jones, 2016; Sherman et al., 2016), since they would
reflect neither latent nor active representations per se, but
only a (presumably brief) transition period between the
two (Fig. 4A). Consistently, content-specific beta modu-
lations in WM tasks are typically observed in circum-
scribed time windows, in which participants should bring
back past information into the focus of attention (Spitzer
and Blankenburg, 2011; Spitzer et al., 2014b; Wimmer
et al., 2016). Similarly, beta-oscillatory representations of
task rules in monkey PFC (Fig. 4C) were short lived (Fig.
2F) and appeared only while a stimulus was to be evalu-
ated according to the current rule (Buschman et al., 2012).
Notably, in the Buschman et al., study, rules were only
switched between blocks of trials, likely leading to a
(latent) memory of the current rule that persisted across
trials. A representation of such memory in beta-synchrony
was indeed absent throughout large portions of the trial,
and emerged only shortly before the to-be-evaluated
stimulus, as if the current rule was endogenously (re)ac-
tivated for task-oriented processing. Before and after this
brief episode, prefrontal firing rates, but not beta-syn-
chrony, encoded just-presented cues, consistent with our
differentiation of purely endogenous (re)activation pro-
cesses in the beta-band from active neuronal represen-
tations per se (Fig. 4A).

In a similar vein, the proposed framework can explain
findings of content-specific beta activity during categori-
zation and decision making, in dissociation from tradi-
tional indices of motor preparation. In categorization
tasks, subjects are asked to select one of two (or more)
internalized prototype concepts, which in our framework
entails the endogenous activation of a stored content
representation. Indeed, category-selective beta-synchro-
nization during stimulus categorization was found only
after extensive category learning (Antzoulatos and Miller,
2014, 2016), corroborating the idea that beta is especially
involved in reactivating cortical representations. Likewise,
modulations of beta activity according to categorical de-
cision outcomes, such as in the vibrotactile frequency
comparison tasks described earlier, can be understood in
terms of endogenously activating an abstract concept
representation, e.g., “higher” (f2 � f1) or lower (“f2 � f1”).
Indeed, on any given trial in the above tasks, the concepts
or categories in question may coexist in form of latent
representations, one of which will be activated at the time
of choice, as reflected in content-specific beta activity.

Our framework is further consistent with a nontrivial
relationship between beta oscillations and spiking activity
(Whittingstall and Logothetis, 2009; Rule et al., 2017).
Conceiving of content-specific beta activity as a transition
period (Fig. 4A), temporal correlations with spike firing
can be weakly negative or positive, depending on how
strongly beta episodes overlap in time with (still) dormant
or (already) activated representations. Furthermore, rather
than in- or decreases of net firing rates in a given area, we
assume a (content-specific) distribution of neuronal firing

within and/or between functional ensembles. This idea is
in line with the spatio-temporal coincidence of local beta
modulations with a shifting of firing rates between oppo-
sitely tuned cell populations (Romo et al., 1999; Hernán-
dez et al., 2002; Barak et al., 2010; Spitzer et al., 2010;
Haegens et al., 2011b; Hussar and Pasternak, 2012; Wim-
mer et al., 2016). In these contexts, beta activity may
appear content specific to the extent that population-level
recordings (such as M/EEG or LFP) register the oscillatory
signatures of individual subpopulations with different sen-
sitivity (Fig. 4B). As a corollary of this view, the sign of
content-dependent beta modulations (e.g., whether local
beta activity in- or decreases for a given content) might be
noninformative and dependent on the particular recording
setting. However, the precise relation between beta os-
cillations and spiking ensemble activity remains specula-
tive and awaits further investigation.

Based on the available findings across primate species,
endogenous content (re)activation can include modula-
tions of beta activity both locally and in terms of long-
range synchronization between distant regions (Fig. 1B).
Modulations of local beta power have mostly been ob-
served for low-dimensional information, such as scalar
stimulus attributes (Spitzer et al., 2010; Haegens et al.,
2011b; Wimmer et al., 2016). Higher-dimensional con-
tents, such as object identity or task rules, have been
associated with sophisticated patterns of beta-synchroni-
zation between multiple recording sites, potentially re-
flecting the activation of more distributed cortical repre-
sentations (Buschman et al., 2012; Salazar et al., 2012;
Antzoulatos and Miller, 2016). In all of these cases, beta
seems to provide a flexible scaffolding that sets up func-
tional neuronal ensembles through temporary synchroni-
zation of content-coding cell populations. The demand for
flexibility in ensemble formation may be particularly high
in regions with “mixed selectivity” cells (Rigotti et al.,
2013), such as the prefrontal and parietal cortices, where
single neurons respond to a multiplicity of task variables
(for review, see Fusi et al., 2016). It might be especially
in communication within and with these regions that
frequency-specific synchronization finesses the active
representation of internally stored information alongside
current input, in potentially overlapping functional net-
works.

Future perspectives
An open question remains whether transient content

specificity of beta emerges from a modification of ongoing
beta rhythmicity (cf. Engel and Fries, 2010; Lundqvist
et al., 2016), or whether the two reflect functionally dis-
sociable phenomena in overlapping frequency ranges. It
is possible that the beta-band encompasses several
rhythms, including a potentially “inhibitory” rhythm that is
functionally more similar to alpha and which seems espe-
cially prevalent in somatomotor context (for review, see
Kilavik et al., 2013). Indeed, the possibility that beta is not
a unitary phenomenon but covers several roles may help
to reconcile seemingly disparate observations, such as
WM-load-related beta-power increases in some studies
(Deiber et al., 2007; Kornblith et al., 2016), but decreases
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in others (Siegel et al., 2009; Lundqvist et al., 2011).
Relatedly, several authors divide the beta-band into a
lower (�20 Hz) and a higher (�20 Hz) subrange (Roopun
et al., 2006; Kopell et al., 2011), with potentially distinct
functional roles (see Introduction). In the literature re-
viewed here, however, we found only a weak, if any,
tendency for content-specific effects (Fig. 1A, right) to
occur in a higher beta frequency than overall, task-related
modulations (Fig. 1A, left), with considerable variability
across experiments, leaving the question of potentially
distinct beta rhythms (and the determinants of their pre-
cise frequencies across cortical areas) to future targeted
study.

A more general open question is the very nature of la-
tent representations that are amenable to beta-mediated
reactivation. As one possibility, content-specific beta ac-
tivity might reflect a direct drive to reactivate activity-silent
(e.g., synaptic) representations, as schematically illus-
trated in Figure 4A. In an alternative scenario, dormant
memory representations are kept “silent” by actively in-
hibitory mechanisms, for instance, by content-matching
“inhibitory engrams” (Ramaswami, 2014; Barron et al.,
2017). Under this view, cortical reactivation may result
from a release from inhibition, by suppression of inhibitory
engrams, a scenario in which beta-mediated reactivation
might indeed operate via inhibitory processes (“inhibition
of inhibition”; Pfeffer et al., 2013). A related issue is the
extent to which beta-mediated reactivation relies on the
contents or concepts in question being familiar and con-
solidated in long(er)-term memory (which we assumed to
be the case in most of the above reviewed studies). It
remains to be shown empirically whether content-specific
synchronization plays a role also in reactivating represen-
tations of entirely novel, just encountered information, a
silent memory of which might persist only in transient
patterns of short-term synaptic plasticity (Mongillo et al.,
2008; Stokes, 2015).

Lastly, a key question for future work is how burst-like,
transient beta events are temporally organized. One
possibility is that temporal context is provided by other
(lower) frequency rhythms that modulate beta via cross-
frequency interactions. For instance, � oscillations (1–3
Hz) are thought to tap into the temporal structure of behav-
iorally relevant events (reviewed in Merchant et al., 2015; cf.
Lakatos et al., 2008; Schroeder and Lakatos, 2009), with
faster oscillations “nested” in these slower rhythms. Such
interactions might manifest in phase-amplitude coupling,
where the phase of � provides “windows-of-opportunity” for
beta to burst. Indeed, there are indications that beta power
can be modulated by � oscillations in the context of WM
(Siegel et al., 2009) and temporal prediction (Arnal et al.,
2015; Herrmann et al., 2016). Such temporal structuring
could be implemented via corticothalamocortical, and/or
cortico-basal ganglia loops (cf. Merchant et al., 2015). For
example, beta could be timed by bursting thalamic inputs
(cf. Sherman et al., 2016), which in turn could be gated via
the basal ganglia. Albeit speculative, these ideas are in
line with studies showing that beta oscillations in the
basal ganglia are associated with interval timing (Bartolo

et al., 2014), providing promising avenues for future re-
search.

Conclusion
To summarize, we propose that content-specific beta-

synchronization provides a mechanism for the formation
of functional neuronal ensembles during endogenous (re-
)activation of cortical representations. This framework is in
line with the emerging view that beta facilitates network-
level communication (Kopell et al., 2000; Varela et al.,
2001; Siegel et al., 2011) and specifically endogenous,
top-down driven interactions (Engel and Fries, 2010;
Wang, 2010; Arnal and Giraud, 2012; Bastos et al., 2012;
Sherman et al., 2016). However, beyond a static role in
maintaining the status quo (cf. Engel and Fries, 2010), we
characterize content-specific beta-synchronization as a
dynamic and highly flexible mechanism, one that can
“wake up” (see also Fries, 2015), rather than merely
preserve, an endogenous cognitive set. This proposal
accommodates accumulating findings in animals and hu-
mans and outlines a functional role for beta that may fit its
“burst-like” temporal characteristics (Jones, 2016). An
intriguing question for future research is whether and how
the beta-band dynamics discussed here interact with sen-
sorimotor rhythms when (re)activated content representa-
tions are translated into concrete action plans.
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