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Abstract

Intrinsically disordered proteins (IDPs) perform a wide range of biological func-

tions without adopting stable, well-defined, three-dimensional structures. Instead,

IDPs exist as dynamic ensembles of flexible conformations, traditionally thought to

be governed by weak, nonspecific interactions, which are well described by homopoly-

mer theory. However, recent research highlights the presence of transient, specific

interactions in several IDPs, suggesting that factors beyond overall size influence their

conformational behavior. In this study, we investigate how the spatial arrangement of

charged amino acids within IDP sequences shapes the prevalence of transient, specific

interactions. Through a series of model peptides, we establish a quantitative empirical

relationship between the fraction of transient interactions and a novel sequence met-

ric, termed effective charged patch length, which characterizes the ability of charged

patches to drive these interactions. By examining IDP ensembles with varying levels of

transient interactions, we further explore their heteropolymeric structural behavior in

phase-separated condensates, where we observe the formation of a condensate-spanning
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network structure. Additionally, we perform a proteome-wide scan for charge-based

transient interactions within disordered regions of the human proteome, revealing that

approximately 10% of these regions exhibit such charge-driven transient interactions,

leading to heteropolymeric behaviors in their conformational ensembles. Finally, we

examine how these charge-based transient interactions correlate with molecular func-

tions, identifying specific biological roles in which these interactions are enriched.

Intrinsically disordered proteins (IDPs) are involved in a wide array of cellular pro-

cesses.1,2 These include transcription and signaling transduction,3 formation of membrane-

less organelles,4–6 and functional or pathological aggregates.7,8 However, their lack of a well-

defined three dimensional structure and flexible conformations pose significant challenges

in their biophysical characterization.9,10 IDPs challenge the traditional sequence-structure-

function paradigm typically applied to folded proteins.11,12 In those cases, structure often

serves as an important intermediate, simplifying the high-dimensional sequence space into

a more manageable low-dimensional structural representation,13 which facilitates the ex-

ploration of functional relationships. Instead, IDP sequences give rise to an ensemble of

conformations which still contains many degrees of freedom.14–18 This means it is often un-

clear exactly which ensemble properties are functionally relevant. One major challenge for

biophysicists is therefore to look for key structural properties that capture these conforma-

tional ensembles,19–23 decode the sequence grammar of these structural properties,24–26 and

finally address how these features contribute to IDP functions.27,28

Thanks to advancements in a variety of experimental technologies, a wealth of struc-

tural properties of IDPs can now be directly measured.29 These properties can be classified

into global conformational, site-specific, or pairwise amino-acid properties. Global confor-

mational properties include radius of gyration from small-angle X-ray scattering (SAXS),30

hydrodynamic radius from dynamic light scattering (DLS)31 pulsed-field gradient nuclear

magnetic resonance (PFG-NMR),32 and end-to-end distance from Förster resonance energy

transfer (FRET).33 These global conformational properties are useful for probing overall
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structural changes in response to varying environmental conditions, such as temperature,

ionic strength, denaturants, and crowding.34–37 Consequently, they are often integrated with

physics-based amino acid properties in computational models to decode sequence gram-

mars.23,38,39 Site-specific properties rely on labeling or assignments, and various nuclear

magnetic resonance (NMR) methods are often used. For example, secondary structure

chemical shifts provide site-specific secondary structure preferences,40 while hydrogen ex-

change,41 hydroxyl radical protein footprinting,42 solvent paramagnetic relaxation enhance-

ment (sPRE),43 and NMR relaxation parameters44 offer insights into the solvent exposure of

specific amino acids. Additionally, chemical shift perturbation, when coupled with mutations

and/or varying environmental conditions, is a powerful tool for understanding site-specific

conformational changes.45 Pairwise amino acid properties are assessed by introducing pairs of

site-specific labels. These include metrics such as distances from FRET33 or paramagnetic

relaxation enhancement (PRE),46 and relaxation dynamics from nanosecond fluorescence

correlation spectroscopy (nsFCS)47 or photoinduced electron transfer (PET).48

Each of these experimental methods often excel at probing one type of structural prop-

erty, which might not always be functionally significant. In practice, one can only formulate

a hypothesis about the most functionally relevant structure property from within the avail-

able space of experimental observables. For instance, one of the most common experimental

observables across various IDP sequences is the overall size of an IDP, quantified by either

the radius of gyration or the hydrodynamic radius.49 The polymer scaling exponent, based

on homopolymer theory, which adjusts the radius of gyration and hydrodynamic radius in

relation to protein chain length, is a valuable structural property for characterizing various

IDPs.50,51 This scaling exponent has been successful in interpreting a range of experimen-

tal measurements52,53 and in explaining phenomena such as liquid-liquid phase separation

(LLPS) of IDPs.54 The underlying assumption for using this scaling exponent is that IDPs

behave like homopolymers and are dominated by nonspecific, weak interactions. This as-

sumption is accurate in some cases because IDPs often have low complexity sequences, that
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is a small number of amino acids constitute a large fraction of the sequence and/or the se-

quence contains repeated fragments. In these cases, conformational and functional behaviors

can be explained using only the overall sequence properties. The fraction of aromatic amino

acids, for example, has been shown to be important for predicting LLPS behavior.55

However, emerging evidence indicates that IDPs are not solely governed by nonspecific,

weak interactions, and that their overall size alone is insufficient to fully capture their confor-

mational behavior. In fact, specific interactions between pairs of amino acids or fragments

with long sequence separations are often observed in PRE measurements.56 Such behav-

ior has also been reported by FRET36 and PET,57 with multiple pair labeling positions

used to check deviations from a homopolymer model. The challenge in recognizing these

interactions arises from their transient nature. They may exist only in a small fraction of

conformations within the ensemble and/or have short lifetimes. These interactions can be

caused by either charged36,57 or hydrophobic amino acids.58,59 They can also be either in-

tramolecular, occurring between different regions or segments within the same protein,28,60 or

intermolecular, occurring between multiple proteins.61–63 The strength of these transient in-

teractions is expected to be highly sensitive to environmental conditions or post-translational

modifications,28 providing a flexible means of adjusting interactions according to the envi-

ronment. Their presence in various transcriptional activation domains suggests a functional

role in transcriptional regulation,28,60,61,64 for example, by regulating the binding of the tran-

scriptional activation domain with the coactivator or adjusting the solvent exposure of the

DNA binding domain. Furthermore, transient interactions may influence the microstructures

within IDP condensates, potentially providing fine-tuning for the formation of membraneless

organelles.65,66

Site-specific labeling experimental measurements can directly probe these transient, spe-

cific interactions, but these come with two primary concerns. First, the label itself might

perturb the interactions, as transient interactions are often sensitive to variations in the

chemical environment. Second, site-specific labeling requires good empirical knowledge of
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the interaction sites and often requires the introduction of multiple labeling positions. Com-

putational methods can assist in both aspects: first by testing the impact of a given label67

and second by generating an ensemble that best matches experimental data, even in the

absence of direct measurements between sites with transient interactions.14–16,18,59 However,

due to the many degrees of freedom involved, generating an ensemble that matches lim-

ited experimental data can involve significant uncertainties. The choice of the physics-based

model used for guiding ensemble fitting is critical for accurate ensemble generation and

data interpretation. Direct interpretation of specific contacts with low presence in an IDP

ensemble using either all-atom or coarse-grained (CG) models still suffers from issues re-

lated to model accuracy (e.g., force field or potential energy function) and requires further

experimental validation.

To understand the structural and functional relevance of transient interactions, we pursue

a novel approach in this work. We focus specifically on transient interactions originating from

charged amino acids, particularly between charged patches, as previous studies suggest that

charge-based transient interactions can create a two-state (i.e., open and closed) behavior in

a conformational ensemble.68,69 We simulate a series of model peptides at various temper-

atures and ionic strengths using a CG model to generate conformational ensembles with a

broad range of transient interaction levels. Typically, the end-end distance distribution func-

tion exhibits two peaks: the first peak indicates the presence of transient interactions and

suggests that the charged patches are in contact, while the second peak reflects the overall

size of the protein. An adjusted polymer model enables us to quantitatively assess the frac-

tion of transient interactions from the distance distribution function in each conformational

ensemble.69 With this extensive database of conformational ensembles showing different lev-

els of transient interactions, we establish an empirical relationship between sequence metrics

and the fraction of transient interactions. This relationship allows us to search for transient

interactions across all IDPs within the human proteome. We then explore the structural

and functional relevance of these transient interactions, investigating whether they might
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represent a missing structural property within the sequence-structure-function paradigm for

IDPs.

Modulation of transient interactions through sequence and envi-

ronmental factors

Our first goal was to establish a model system so that we could quantitatively modulate the

presence of transient interactions inside an IDP. In our previous work,69 we examined the

fraction of transient interactions in a model peptide, DR-N , which comprises N aspartic acid

residues at the C-terminal end and N arginine residues at the N-terminal end. The linker

connecting the two charged patches was composed of glycine residues. The chain length of

the peptide was set to be 100, which is adequate for analysis using polymer theories. CG

simulations using the HPS model38 showed that the conformational ensemble of the model

peptides consists of two inter-converting states: an open state where the peptide behaves

similar to an IDP without any specific interactions, and a closed state where the two charged

patches are in close contact with each other. This behavior is apparent in the patch-to-patch

distance distribution function calculated by the distance between of the center of the two

patches, as shown in Fig. 1a. The two peaks within the distance distribution function

corresponds to the two primary conformational states.

We found that this bimodal behavior in the distribution function can be described by a

combination of two distance distribution functions,69

P (r) = ftPt(r) + (1− ft)Ppolymer(r, ν). (1)

The first term is a Gaussian distribution function to match the short-distance peak,

Pt(r) =
1

σt
√

2π
exp(−r − rt

2σ2
t

), (2)
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N=6

fc=2/3

𝑃 𝑟 = 𝑓𝑡𝑃𝑡 𝑟 + 1 − 𝑓𝑡 𝑃𝐼𝐷𝑅(𝑟, ν)a)

b) c)

d) e)

f) g)f) g)

e)d)

Figure 1: a) Schematic diagram of the series of model peptides characterized by two param-
eters, charged patch length (N) and fraction of charged amino acids within each patch (fc).
The resulting patch-to-patch distance distribution can be modeled by an adjusted polymer
model as shown in the equation, in which ft is the fraction of transient interactions and ν
is the polymer scaling exponent. b) ft and c) ν values obtained from fitting Eq. 1 as a
function of N and fc at 300 K and 0.1 M salt concentrations. d) ft with respect to ionic
strength, I, at T=300K e) or temperature, T , at I=0.1 M, for multiple model peptides with
different charged patch length N contents and fc=1 as shown in the legend. f) Polymer
scaling exponent, ν, with respect to for the same cases as ft with respect to I g) and T .
Cases where ft=1 do not display any value for ν.
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in which the parameters rt and σt in the Gaussian function were fit empirically via CG

simulations of a series of DR-N peptides to be 1.18 and 0.41 nm, respectively. The second

term is a self-avoiding walk model with a varied scaling exponent ν (SAW-ν model) to match

the long-distance peak. The distance distribution function of the model was initially devel-

oped to interpret the experimental measurements of an IDP in relation to its conformational

properties,52 as shown below

Ppolymer(r, ν) = a1
4π

R
(
r

R
)2+gexp[−a2(r/R)δ], (3)

in which g = (γ − 1)/ν 70 and γ=1.1615 in three dimensions,71 δ = 1/(1− ν),72 and a1 and

a2 are normalization factors so that
∫∞
0
Ppolymer(r, ν)dr = 1 and

∫∞
0
Ppolymer(r, ν)r2dr = R2.

The combined model therefore contains two free parameters: the fraction of transient in-

teractions, ft, which characterizes the weight of the short-distance peak, and the polymer

scaling exponent ν, which characterizes the size of the peptide matching the long-distance

peak. Our model reflects the metastable nature of transient interactions by considering the

final p(r) function to be built from two statistically weighted parts. ft then characterizes

the probability of finding the two charged patches in contact with one another and ranges

from zero to one. For scenarios with low ft, the open state is still prominent in the overall

ensemble. We expect that the conformational ensemble should be relatively undisturbed by

the presence of transient interactions and well described by a homopolymer model, like the

SAW-ν model.52 The scaling exponent ν for such an IDP ranges roughly from 0.45 to 0.65,73

serving as a valuable structural property for examining its functional correlates. However,

when increasing the number of amino acids in the charge patch, ft begins to increases. The

conformational ensemble of such a peptide can be thought as occupying a hybrid ensemble,

switching between a homopolymer-like open state and a collapsed state. This often results in

non-monotonic scaling behavior when examining the relationship between pairwise distances

between amino acids and their sequence separations, indicating that ν alone is insufficient
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to fully characterize the structural properties of the IDP. For cases with large ft, the ho-

mopolymer interpretation and the ν value become completely irrelevant as the two charged

patches will most likely be in contact.

For this work, we extended the DR-N model to include patches of non-consecutive

charged amino acids since such a segment is more commonly seen in a biologically rele-

vant IDP sequence. The charge content is characterized by two free parameters: the total

patch length N and the fraction of charged amino acids within the patch fc. This allows

the DR-N peptides to sample the sequence space in which fc is smaller than 1. To generate

a series of such peptides, we generated non-consecutive patches by, for example, swapping

every certain charged amino acid with a glycine residue to achieve a fraction in fc. For

instance swapping every third charged amino acid will result in a new peptide with fc=2/3,

as shown in Fig. 1a. In order to capture better the role of patch separation (s), the number

of amino acids between the center of two charged patches, we also simulate peptides with

different overall lengths rather than the fixed 100 residues from the previous work.69 This is

motivated by the sequence descriptor sequence charge decoration (SCD),20,74 which includes

sequence separation between two charged amino acids in its formula and has been shown in

multiple previous works to be important to characterizing the conformational properties of

IDPs.21,36,75,76

We first performed single-chain simulations on a series of DR-N peptides with different

charged contents (i.e. N and fc) and a fixed s=100 over a variety of temperatures T and salt

concentrations I, as shown in Table S2. The resulting data set includes 1242 combinations

of sequence parameters N and fc, and environmental parameters T and I. In order to

conduct simulations efficiently for such a large combinations of variables, we used a CG

simulation model, the HPS model,38 which has been used to characterized the liquid-liquid

phase separation (LLPS) of IDPs.38,54 The simulation details are included in Supporting

Method A. For each case we obtained the patch-to-patch distance distribution by measuring

the distance between the center of each charged patch. We then minimized the difference
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between the observed distribution and the adjusted polymer model via four free parameters:

ft the fraction of transient interactions, ν the scaling exponent, rc the center of the short

range Gaussian distribution, σc representing the width of the short range peak (see Fig.

S1 for fitting representative cases). We would like to note in most cases a initial guess of

ft=0.5 for fitting is robust. However for extreme cases in which only one peak exists in the

distance distribution function, fitting to a two-peak model is ill-defined. For such cases, we

manually adjust the initial guess of ft and the bounds of minimization process to be either 0

or 1 based on the peak position. If the peak position occurs below the empirically observed

cutoff distance of 2 nm, we adjust the initial guess of ft to be 1 and the allowed values of

ft to be close to 1. This ensures that only short-distance function (Eq. 2) dominates the

fitting. If the peak position occurs above the cutoff, we adjust the initial guess ft to be 0

and the allowed values of ft to close to 0 so that only the SAW-ν polymer model (Eq. 2) is

present.

This process returned a comprehensive data set for ft and ν as a function of the sequence

parameters characterizing charge patches (i.e. N and fc) and environmental conditions (i.e.

T and I). We first looked at the fraction of transient interactions, ft, with respect to the

charge content parameters. Understandably, ft approaches one for sequences with larger N

or fc as they have higher charge content (Fig. 1b). The transition of ft from zero to one

happens rapidly, occurring with the addition of only a few charged amino acids. In other

words, even small variations in N and fc can sample the entire range of ft, indicating that

ft is highly sensitive to the charge content in the sequence. This is also confirmed when

checking the relation between ft and environmental parameters like T and I. ft is more

responsive to variations in ionic strength than to changes in temperature (Fig. 1d and e),

due to the electrostatic screening effect. However, when investigating variations in the scaling

exponent ν, we observe a much weaker dependence, with nu ranging from approximately

0.5 to 0.54 across a broad spectrum of N and fc (Fig. 1c). This suggests that ν is less

influenced by specific charged patches and therefore variations in ionic strength (Fig. 1f).
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We would like to emphasize that for conformational ensembles where ft=1, only a single

short-distance peak is present. This prevents us from determining ν, and scaling exponent

values are not displayed for these cases. Conversely, temperature has a greater impact on ν

values, influencing the long-distance peak and the overall size of the peptide (Fig. 1g). Since

ft is primarily dependent on N , fc and I rather than T , it should be feasible to establish

an empirical relationship between these sequence parameters and the observed ft without

concern for variations in T .

Empirical estimation of transient interactions driven by sequence

factors

As shown previously, the fraction of transient interactions ft rapidly changes from 0 and 1

for slight variations in the sequence factors N and fc (Fig. 1b). We therefore propose to

quantitatively model ft as a sigmoid-shaped function based on a sequence metric combining

these sequence factors. From Coulomb’s law, the most obvious sequence metric would be

the number of charged amino acids q = fcN within each of the charge patches. This

way the strength of the electrostatic interaction scales with the product of q+, number

of positively charged amino acids, and q−, the number of negatively charged amino acids,

or here equivalently q2. We evaluated the first option by fitting the the relation between

ft and q at different temperatures and ionic strengths using a sigmoid-shaped function, as

illustrated below

ft = 1− exp[b1(q
2 − b2)]−1 (4)

in which b1 and b2 are free parameters. A shown in Fig. S2 at three representative tem-

peratures, we minimized the difference between Eq. 4 and the values of ft obtained from

simulations described in the previous section. The fitting works reasonably well for extreme

values of ft=0 or 1 but we see clear deviations in the transition region when ft varies rapidly.

Quantifying the strength of electrostatic interactions using q assumes that all oppositely
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a) b)

c) d)

e) f)

Figure 2: a) Effective charge patch length (lcp = fcN
β) underlies ft in a sigmoid-shaped

function. Open shapes indicate data from simulations while dashed lines represent the global
fitting to Eq. 6. The ionic strength I is shown in the figure legend. b) β as a function of
T obtained by fitting data at individual T independently. The dashed line indicate the β
value determined from a global fitting of data at all T . c) ft as a function of lcp and T . d)
ft as a function of lcp and I. e) ft as a function of lcp at a patch separation of s=30. Open
circles indicate simulated data, while the dashed line displays best fit results using Eq. 6.
f) ft as a function of s for sequences with different lcp. Open dots come from simulations,
while dashed lines indicate fitting results from Eq. 7.
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charged amino acids are always in contact without obstruction through the simulations.

This might be possible for a fully rigid rod, however this is not the case for an IDP since

the charged patches exhibit flexible conformations. The effective number of charged amino

acids contributing to the attractive electrostatic interactions might be smaller than the real

number of charged amino acids q within the patch. To improve the fitting shown in Fig.

S2, we need to introduce a correction on q. Since the deviation comes from the flexible

conformation of the charge patch, we borrowed an idea from the scaling concept in the

polymer theory by introducing a scaling exponent β on N when calculating the effective

number of charged amino acids, as shown in the equation below

lcp = fcN
β. (5)

This new metric will be referred to as the effective charge patch length (lcp). We performed

a global fitting of the ft curves for all simulation results, replacing q with l2cp, as

ft = 1− exp[b1(l
2
cp − b2)]−1 (6)

In terms of the free parameters in the fitting, b1 and b2 in Eq. 5 are permitted to vary

independently for each curve, but the β value are kept the same across all curves. This

global fitting returned an optimal scaling parameter of β = 0.76. The representative fitting

curves for simulations at 300K are shown in Fig. 2a and the curves for simulations at all

other temperatures are shown in Fig. S3. Even for large salinity (i.e. 0.5M), in which

transient interactions did not form, the sigmoid function can still capture the variation of ft.

This demonstrates that a single β value is sufficient to fit all ft curves for any environmental

conditions. An optimal β value of 0.76, compared to 1 in the case of q (Fig. S2), suggests the

conformation of the charge patch is less rigid than a rod but more rigid than a random coil

with a scaling exponent of 0.5. This may by due to electrostatic repulsion within the patch.

One remaining question before using the new sequence charge metric lcp is whether β is robust
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enough to varying environmental factors. We found that β is minimally affected by ionic

strength if we fit the simulations of multiple sequences with independent β values at different

ionic strengths and the same temperature. This is as expected since ionic strength only

affects the electrostatic interactions that can be quantified by lcp. However when applying

the same test by fitting the data independently at each temperature as shown in Fig. 2b, we

did observe slight variation of β at different temperatures. This is mainly due to the impact

of temperature on the overall size or ν of the peptide, which will slightly affect the balance

between the short- and long-distance peaks in the patch-to-patch distance distributions (Fig.

1a). Since varying β does not significantly improve the fitting, and the optimal β for each

temperature falls within a narrow range of approximately 0.7 to 0.8, we have chosen to use

a constant β=0.76 for all temperatures moving forward.

We further investigated the role of charge content on transient interactions using the new

sequence charge metric lcp. This metric effectively consolidates the two original sequence

metrics (N and fc) into a single parameter. Thus we can simultaneously monitor three

different variables: lcp, T and ft (Fig. 2c ), or lcp, I and ft (Fig. 2d). In both figures that

include T and I, we observed a rapid transition of ft as a function lcp, which aligns with

our assumption of employing a sigmoid-shaped function (Eq. 4) to capture this behavior.

Across the range of temperatures we simulated, the point at which ft begins to transition

shifts from roughly lcp=2 to lcp=4. In contrast, I induces a very significant shift in the onset

of transient interactions, changing from roughly 2 to 7.5. A more quantitative analysis of

the threshold lcp values that drive certain ft at different T and I is presented in Fig. S4.

Ionic strength emerges as a more significant environmental factor, influencing both the onset

and speed at which ft transitions. T meanwhile primarily regulates the overall size of the

peptide and has a limited influence on ft. Notably, we discovered that a small threshold

lcp value of approximately 3 is sufficient to achieve 50% of transient interactions at 300K

and 0.1M, corresponding to a modest charged patch consisting of three consecutive charged

amino acids. Furthermore, the required threshold lcp values are sensitive to small variations
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in I, suggesting that ft can be fine-tuned through minor sequence adjustments.

The other sequence metric that is expected to influence the prevalence of transient inter-

actions is the patch separation s, defined as the number of amino acids between the centers

of the two charged patches. To characterize this, we conducted additional simulations at a

fixed temperature of 300K and an ionic strength of 0.1M, varying s from 30 to 300 residues

(Table S3). The ft values were analyzed by the same method as shown in the previous

section. It is important to note that obtaining ft from the simulated P (r) at extremely low

patch separations is not feasible, as the peak representing the open state significantly over-

laps with the peak corresponding to the closed state in the patch-patch distance distribution

function. This overlap complicates the fitting process, making it challenging to determine ft

and ν simultaneously using Eq. 1. Therefore the smallest s in our database is 30. As shown

in Fig. 2e for s=30 and in Fig. S5 for all the other s, the globally determined scaling value

β=0.76 can still be utilized to fit ft for these new sequences. We observed that, for a fixed

value of lcp, ft decreases as a function of s. This trend holds true only for sequences where

ft is less than one; otherwise, transient interactions remain robust across the range of s that

we investigated. This indicates that beyond a certain level of charge content, it becomes vir-

tually impossible for contacts between the two patches to break once formed, resembling the

stable native contacts found in folded proteins. Motivated by this observation, we introduce

an exponential function to fit the relation between ft and s, as shown below

ft = ft,30 exp[−c(1− ft,30)(s− s30)] (7)

in which c is a shared free parameter for simulations at all s, s30=30 is our reference patch

separation and ft,30 is the fraction of transient interactions at s=30 as shown in Fig. 2e. Eq.

7 recapitulates ft for simulations at a wide range of patch separations tested, seen in Fig 2f.

Together with Eq. 6, whose free parameters were obtained by fitting ft for s=30, ft for any

sequences can be predicted by these two empirical equations using the two sequence metrics
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lcp and s.

At this point, we have identified several key principles regarding the fraction of transient

interactions ft driven by charged amino acids. First, ft can be characterized by an effective

charge patch length lcp with a scaling parameter less than one to the charge patch length.

Second, transient interactions are diminished by increasing ionic strength and electrostatic

screening. Third, transient interactions become slightly less favorable with raising temper-

ature due to the overall increase in peptide size. Fourth, ft decay exponentially with patch

separation s. And finally, ft can be quantitatively predicted using the empirically derived

Eqs. 4 and 7.

Influence of transient interactions on conformational behaviors

With the sequence sources of ft thus characterized, we moved on to understand the effect

these transient interactions have on single- and multi-chain structural behaviors. We intro-

duced two additional classes of simulations: slab coexistence and cubic box simulations. The

slab simulation protocol is described in Supporting Method B and in a previous work.38 All

simulations were performed at 280 K, slightly below the critical temperature for most DR-

N . This temperature was selected in order to observe co-existence of the two phases, across

the same range of ionic strengths as the single-chain simulations described in the previous

section. The sequence and environmental factors of all the slab simulations are shown in

Table S4. In order to further understand the conformational behaviors of the peptides in

the high-density phase, we performed additional cubic box simulations at a concentration

slightly larger than concentration of the high-density phase (Table S5). Such cubic box sim-

ulations reduce the complexity of assigning chains within and without of the slab during

the analysis. These new simulations allowed us to characterize the effect of transient inter-

actions on phase separation, and more interestingly, the inner structural behaviors of the

resulting liquid droplets. For illustrations of structural observables in this section, we use

a unified color code along the new sequence metric lcp introduced in the previous section,
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a) b) c)

d)

e)
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Figure 3: Snapshots from each of the three simulations types (single-chain, coexistence slab,
cubic box), with the corresponding information for each type of simulation aligned in the
respective columns. Blue lines indicate the positions of the periodic box. a) ft as a function
of lcp for T = 280 K and I = 0.1 M. lcp is represented by the same color code in the remaining
subfigures. b) I-dependent phase diagrams from slab coexistence simulations. c) Histogram
of number of peptides in each cluster per frame from cubic box simulations. d) Radius of
gyration for each simulation case. e) Intra-chain patch-patch distance distribution function
in each simulation type. f) Relaxation time for the three simulation classes. Circular marks
display the relaxation time from intra-chain patch-patch distances while triangular marks
indicate the relaxation time from inter-chain coordination numbers.
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which correlates with the fraction of transient interactions ft, as shown in Fig. 3a.

First, we obtained the density profiles from the coexistence slab simulations as shown in

Fig. S6. Only sequences with lcp greater than values ∼ 3.8 formed stable condensates at

T=280K and I=0.1M, in which two phases coexist. The concentrations of the two phases

will be further referred to as the saturation concentration, which is the concentration of the

low-density phase and the threshold concentration to observe LLPS, and the dense phase

concentration, which is the protein concentration inside the liquid droplet. We plotted these

two concentrations at different I onto a phase diagram, as shown in Fig. 3b. Interestingly,

ft is already fully saturated for these sequences in single-chain simulations, seen in Fig. 3a,

while dense phase concentration continues to increase with lcp. The critical ionic strength

Ic, below which LLPS is possible, can then be obtained by fitting the phase diagram via

the equations shown in Supporting Method B. As shown in Fig. S7, Ic and the dense phase

concentration increase similarly when increasing lcp whereas the saturation concentration

drops. Such behavior appears to be a result of more favorable interactions towards phase

separation. While higher lcp and charge content contribute to phase separation, electrostatic

screening due to higher ionic strength effectively reduces interactions between charged amino

acids and therefore, above a certain threshold, converts the two phases into one.

Our next task was to see whether any microscopic structures exist within the condensate,

such as a network connecting multiple peptides. This phenomenon is often referred to as per-

colation coupled phase separation.65,77 The analysis of the formation of the peptide clusters

cannot be easily applied to a coexistence slab simulation due to existence of two phases. We

therefore followed a framework previously introduced by Das et. al.66 by analyzing peptides

clusters in a cubic box simulation. A cluster consists of all peptides that share common

contacts within their oppositely charged patches (see Supporting Methods C). For example,

if two chains have at least one pair of residues from their oppositely charged patches within

a certain cutoff distance and a third chain is also in contact with one of them, then all the

three belong to the same cluster. For each frame of a simulation, we identify multiple clusters
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containing a certain number of peptides C, and obtain the distribution of C throughout the

simulation, shown in (Fig. 3c) using a cutoff distance of 0.7 nm. This process was tested

using a range of contact cutoff distances, as displayed in Fig. S8, and qualitatively similar

results were observed. For low lcp values, we observed a broad distribution of cluster sizes

although the largest peak occurs close to C = 1, which represents chains without a clus-

ter. This indicates that connections are forming but specific transient interactions are not

strong enough to bridge the entire condensate. For higher lcp sequences, the population of

the middle C-value region disappears. Here, charge interactions become strong enough to

connect most chains in the system, although unclustered chains still remain. This might be

due to the similarly increasing intra-chain interactions which make it difficult for a chain to

join the condensate network. This behavior is consistent with previous publications65,66,77

that show how multivalent interactions between peptides lead to such microscopic network

structure and therefore percolation coupled phase separation within the condensate. Here in

our model, these multivalent interactions come from specific transient interactions between

charged patches and are well characterized by lcp.

We would like to further explore how other structural features correlate with lcp and

consequently the network structures within the condensates. Intuitively, these structural

features should be primarily controlled by charge-patch-driven intra- and/or inter-chain in-

teractions. To see if this was the case, we investigated the properties of individual peptides

from monomer simulations to those in the dense phase beginning with radius of gyration

(Rg). In the single chain case, Rg is largely shaped by the presence of transient interactions.

As shown in Fig 3d, Rg collapses with respect to lcp as ft saturates. This observation is

straightforward, as peptides sampling only the closed conformation will have a lower Rg. In

the slab and box cases, we realized two interesting observations. The first observation is

that Rg is significantly higher and become less sensitive to the variations in lcp compared to

the single chain cases. This behavior, where Rg is less affected by environmental conditions

or amino acid sequences in the condensate, has been previously reported both computation-
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ally78,79 and experimentally,80 as peptides strive to maximize favorable interactions with one

another.

However, the second observation that Rg even slightly increases and scales linearly with

lcp is counter intuitive. We interrogated this possibility by first obtaining patch-to-patch

distance distributions from each case. Single chain distributions (Fig 3e) P (r) shift from the

open, polymer-like state to the closed state with increasing charge content. Corresponding

distance distributions within the condensate in slab and cubic box simulations do just the

opposite. In less dense condensates (lcp ∼4), the closed state is still prevalent, although

these may be attributed to chains in the dilute phase. For the highest values of lcp, the

closed state disappears almost entirely and gives way to a large open state peak. However,

this open state differs from that observed in the single-chain case, as the width of this peak

ranges from approximately 4 to 12 nm. This suggests that, while patch-to-patch contacts

are forming between peptides, they do not necessarily constrain the ends of each peptide

within a narrow range. We further explored the the relation between inter- and intra-

chain interactions raised by charged amino acids, movtivated by two recent work.78,81 Intra-

and inter-chain contacts are calculated as the average number of positive to negative patch

contacts per frame, where contacts are determined using the same criteria as in the clustering

analysis (Fig. S8). Regardless of the cutoff distance applied, contact propensities behave

qualitatively the same with respect to lcp. Not just intra- but also inter-chain contacts

increase linearly with respect to charge content, roughly doubling over the range of lcp values

considered. Thus, in addition to promoting the formation of large, condensate-spanning

clusters observed previously, stronger inter-chain contacts contribute to a more expanded Rg

that is less influenced by environmental conditions or amino acid sequence variations.

Finally we performed two types of dynamics analysis (see Supporting Method D) to

quantify the rigidity of the condensate network structure. Intra-chain distance correlation

was calculated for chains within the slab and compared to those for single chains, shown

in Fig. 3f. For freely moving chains, the relaxation time τ is controlled by the transition
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between the open and closed state. This is evident from the large peak in τ as a function of

lcp for the region where ft is close to 50%. For sequences where one state dominates (i.e. ft=0

or 1), τ is contributed by the relaxation within each conformational state and is therefore

smaller than the τ for the transition between the two states. Intra-chain motions relax much

slower for chains within a condensate in both co-existence slab simulation and in the cubic

box simulation. Even for the least dense slab, τ is two fold larger than the maximum single-

chain value. Increasing lcp slows down intra-chain relaxation due to the increasing population

of the open-state conformations and slow relaxation of the transitions between the two states.

Evidently, intra-chain motions are not fully restrained even for the largest lcp values visited in

our simulation. We further investigated the impact of lcp on the inter-chain relaxation. Since

one charge patch might interact with several other oppositely charged patches at the same

time, it is not possible to simply analyze the relaxation of the inter-chain distance between

one specific pair of charge patches. We therefore calculated the coordination number for

each charge patch, namely the number of charge patches in contact with the charge patch

of interest, as a function of the simulation time. The two charged patches are considered in

contact when the distance of at least one pair of residues is smaller than 0.7 nm, just as with

the clustering and contact analysis cases. The coordination number here is clearly a feature

of the formation of nodes, which comprise the network structure within the condensates. A

similar relaxation measure can then be applied to this coordination number, as displayed

in Fig. 3f. τ in this case increases linearly with lcp similar to the intra-chain relaxation.

However τ from inter-chain relaxation is one order of magnitude faster than that from intra-

chain relaxation. This suggests two notable structural behaviors of the network structure:

1) robust nodes that exhibit fast relaxation in terms of the number of peptides forming the

node; and 2) flexible linkers with slow relaxation, as the two ends are partially restrained by

the nodes.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.30.621161doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.30.621161
http://creativecommons.org/licenses/by-nc-nd/4.0/


a)

b) c) d)

e)

f)

Figure 4: a) Schematic diagram of the lcp calculating algorithm using the disordered region
of the SLC13A4 protein as an example. Positive charges are denoted along the sequence in
blue while negative charges are denoted in red. Shaded regions indicate the size and location
of the strongest positively and negatively charged patches determined from the algorithm. b)
Histograms of the product of positive and negative effective charge patch length (lcp+ · lcp−)
and patch sequence separation s, determined by the scanning algorithm throughout the
IDRome database.23 c) Histogram of lcp+ and lcp−. d) Histogram of ft values predicted.
e) Three representative GO terms categorized via the trend between fold enrichment and
ft. The dashed lines indicate the results from a linear fit. Legends show the GO terms,
Spearman correlation coefficients (Rs) and positive and negative slopes (S+ and S−) from
linear fit. For the turning case, Spearman correlation coefficients and and linear fitting are
applied to both sides of the fold enrichment peak. f) Slope from linear regression for high
(blue) and low-level (red) GO terms for each category.
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Exploration of the functional relevance of transient interactions

As we have demonstrated, the presence of transient interactions has a significant impact on

the conformational behaviors of a model peptide. Our next question was to see whether

any correlation exists between the fraction of transient interactions within an IDP and its

function. In other words, do certain classes of IDPs rely on specific transient interactions

to perform their roles? We addressed this question in two steps: first by adapting our

previous method to estimate the fraction of transient interactions ft to IDP sequences from

a biological database and second by performing Gene Ontology (GO) enrichment analysis82

for biological sequences with similar ft values.

In the previous section, we showed that ft driven by two charge patches can be estimated

using Eqs. 4 and 7, which contain two sequence dependent input parameters: lcp the effective

charge patch length and s the patch separation. However, biological sequences might not

have well defined “charge patch” areas for us to directly calculate lcp and s. To adapt

our previous method to estimate ft from any arbitrary sequence, we introduced a patch

scanning algorithm to determine the optimal patch length N and dominant positive and

negative charge patches within the sequence. First, we scanned a range of window sizes from

3 to 15, the same range tested in our model peptide. lcp was calculated for each window

using Eq. 5, where N is then the window size and fc is the net charge per residue instead of

fraction of charged amino acids. This allowed us to account for the coexistence of both types

of charged amino acids within the patch. For each sequence, we obtained lcp as a function

of both sequence position and patch size, shown in Fig. 4a using the disordered part of

S13A4 as an example. Second, we retained the smallest, most negative lcp value as lcp−

and the largest, most positive as lcp+, as well as their sequence separation s. These values

correspond to the largest effective negative and positive charge patch length (shaded area in

Fig. 4a), respectively. In order to avoid selecting overlapping positive and negative patches

which might exist in sequence with well-mixed charges, we checked if the identified patches

overlap with one another and removed overlapping patches from the ft determination. At
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last we estimated ft using Eqs. 4 and 7 substituting l2cp with the product of lcp+ and lcp−.

The estimated ft for the protein S13A4 is 0.36 for the two patches with a patch separation

of 86 amino acids. The smallest sequence separation s between the two charged patches we

visited is 30 since we are more interested in nonlocal transient interactions.

Admittedly, this scanning algorithm has several caveats. First, sequences may contain

some charged residues outside the identified patches, and smaller charge patches may also

contribute to determining ft. Due to the strong sigmoid dependence between ft and lcp,

these smaller patches might play a secondary role on ft (Fig. 2a). Second, evidence suggests

that when the same type of charged amino acids segregate into a short fragment, their

effective charge might be smaller than the total number of charged amino acids due to charge

regulation and/or renormalization.83,84 In such cases, our algorithm tends to overestimate

ft. However, this is unlikely to affect the next step of checking the qualitative and not

quantitative functional relevance of transient interactions.

To apply our ft determination algorithm, we turned to the IDRome database,23 which

contains more than 28000 disordered sequences. We first performed our lcp scanning algo-

rithm and identified approximately 11000 sequences with a pair of non overlapping positively

and negatively charged patches. As shown in Fig. 4b, patch separations s can be as large

as approximately 1000 residues, although the majority of patch separations are shorter than

400. Values of lcp,+ and lcp,− are not equally distributed and strong negative patches are

slightly more common than positive ones (Fig. 4c). Feeding the product of lcp,+ and lcp,−

and patch separation s into Eqs. 4 and 7, we estimated ft for the identified patch pairs.

We then binned the sequences according to the ft values, as shown in Fig 4d. Most IDPs

(approximately 84%) exhibit little to no transient interactions (0 < ft < 0.2), consistent with

the traditional understanding that IDPs lack specific interactions. However, approximately

11% of IDPs show ft values somewhere between 0.2 and 0.8, suggesting that transient inter-

actions are not rare in IDPs. Interesting, we see plenty of sequences (approximately % 5)

with an ft value above 0.8, suggesting almost stable specific interactions. These interactions,
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often seen in sequences with high fraction of charged amino acids, cause the conformational

ensemble to predominantly sample the closed state. They might only be seen as transient

interactions for high ionic strength and strong electrostatic screening.

To determine which biological functions have a dependence on transient interactions,

we performed GO enrichment analysis on the collection of sequences based on their ft val-

ues. First we classified IDP sequences into five groups based on their ft value ranges and

collected their GO terms. Due to the tree structure of GO terms, we scanned the list of

molecular function GO terms for each sequence and always added back the corresponding

parent terms. Each sequence therefore contains on average four to eight GO terms, varying

betweenm different ft ranges (see Fig. S9). With this finalized, we calculated each term’s

fold enrichment throughout the ft groups with respect to the whole IDRome database as

NgrpTref/(NrefTgrp), in which Ngrp is the number of times a term is annotated within a group,

Nref is the number of times a term appear within the reference database, and Tgrp and Tref

are the sizes of the ft group and reference set, respectively. Each term therefore has a series

of five values representing its fold enrichment in different ft ranges as shown in Fig. 4e.

We used these values to create a metric which separated the GO terms into four classes

based on their dependence with respect to ft. Since sampling GO terms within a specific ft

range might be limited, we only classified terms that are represented in at least four out of

the five ft ranges. First we calculated the Spearman correlation coefficient to determine if

the term’s fold enrichment monotonically increases or decreases with respect to ft. Terms

whose correlation coefficient is great than 0.8 or smaller than -0.8 fall into one of the first

two classes, “ascending” or “descending” (Fig. 4e). The strength of the dependence between

the GO term and ft can be quantified by the linear fitting slope S+ and S− for these two

classes, respectively. Terms which do not meet this criteria are subject to a second test.

We obtained the maximum value of fold enrichment within different ft ranges and again

calculated the Spearman correlation coefficient on the two sides of the maximum. This test

determines which terms have a non-monotonic behavior with respect to ft. Terms whose
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first and second Spearman coefficients are above 0.8 and below -0.8 fall into the final class,

“turning”. The strength of the dependence between the GO terms and ft in this class can

be quantified by |S+|+ |S−|, where S+ and S− represent the linear fitting slopes from either

side of the maximum. All others GO terms which were not classified into the previous classes

were sorted into the “none” class. These classifications provide us a guideline for determining

the preference of specific GO terms to certain levels of ft. Ascending means that the specific

GO term tends to sample sequence with high ft, descending low ft and turning medium ft.

The “none” class suggests unclear dependence of fold enrichment values across different ft

ranges.

We concentrated on two distinct categories of GO terms in our analysis: 1) the highest-

level terms, which are the immediate child terms of the broader category molecular function,

and 2) the lowest-level child terms, which represent the terminal vertices in the GO tree map.

These will henceforth be referred to as high-level and low-level terms, respectively. The high-

level terms correspond to general molecular functions that are parent nodes in the hierarchy,

while the low-level terms represent the most specific, finely categorized functions that do not

branch further. This distinction allows us to analyze biological processes from both a broad

perspective and a detailed, function-specific one, providing insights into how the conforma-

tional preferences of IDPs might correlate with different functional roles at varying levels of

specificity. As shown in Fig. S9, we observed that the high-level terms exhibit a roughly

equal distribution across the three classes—ascending, descending, and turning, representing

the preferences of transient interactions. This suggests that, at a broader functional level,

all three scenarios of transient interactions might be useful in tuning biological processes.

On the other hand, the low-level terms showed a marked preference for the turning class,

which refers to a particular dynamic conformational ensemble of IDPs in which the protein

undergoes rapid structural adjustments due to medium transient interactions. This suggests,

at more specific functional levels, certain IDP sequences may rely heavily on this flexible,

transient state to carry out precise molecular functions. Additionally, we sorted the GO
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terms in three classes according to their linear fitting slopes S+, S− and |S+|+ |S−|, respec-

tively, and showed the representative high- and low-level terms in Fig. 4f. While these data

do not serve as direct evidence that specific functions require the presence of transient in-

teractions, we do observe several interesting correlates. For instance, in the ascending class,

the general transcription initiation factor stands out as the highest-ranking term. Proteins

within this category are known to mediate the assembly of the RNA polymerase holoenzyme

and contain clusters of charged amino acids.85 In the turning class, nuclear estrogen receptor

activity is the highest-ranking term. Notably, one member of this class has recently been

shown to exhibit functionally relevant transient interactions.28 These findings highlight the

potential role of medium-strength transient interactions in regulating molecular processes

across different contexts.

Conclusion

In this work, we have investigated how patches of charged amino acids contribute to pre-

dictable levels of specific, transient interactions. Based on a series of model peptides with

different charged patches, we established a large database of transient interaction levels under

varying sequence and environmental conditions using coarse-grained simulations. The level

of these transient interactions can be reliably modeled by a polymer model and predicted by

a new sequence metric, the effective charge patch length.

Using this new sequence ruler for transient interactions, we further explored the impact

of different levels of transient interactions on the structural and functional behaviors of IDPs.

Notably, we observed increasing network structures during liquid-liquid phase separation as

transient interactions intensified. This phenomenon is primarily attributed to the conver-

sion from intramolecular to intermolecular transient interactions between charged patches

within the condensates. Additionally, we noted a significant enrichment of molecular func-

tions associated with medium-strength transient interactions. This highlights the potential

functional relevance of these dynamic interactions, which are neither too weak, converting
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an IDP into a random coil, nor too strong, causing it to adopt a folded conformation. This

delicate dynamic balance of transient interactions may be crucial for enabling IDPs to adopt

multiple conformations and fulfill diverse biological roles.

While transient, specific interactions are undoubtedly significant structural features among

some IDPs, our description of these interactions is clearly incomplete. First, transient in-

teractions can arise from sequence characteristics beyond just charged amino acids; they

can also be influenced by hydrophobic and aromatic residues. Additionally, IDPs often en-

gage with various interaction partners, suggesting that specific interactions may play a role

in heterotypic interactions as well. Our analysis of transient interaction enrichment in the

human proteome also lacks a mechanistic understanding of why charge-based interactions

are essential for realizing specific functions. Nevertheless, our initial evidence indicating

that more than 10% of IDPs exhibit charge-driven transient interactions strongly suggests

that this phenomenon is not uncommon and deserves further exploration. Continued re-

search in this area will hopefully illuminate more missing structural elements within the IDP

sequence-structure-function paradigm.
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1. Supporting Methods

Coarse-grained (CG) model. The CG HPS model[1] considers each amino acid as one
bead, described by three types of interactions: bonded, electrostatic and short-range
pairwise interaction terms characterized by amino acid hydropathy.[2] Bonded
interactions are modeled by a harmonic potential with a spring constant of 10 kJ/Å2 and
a bond length of 3.8 Å. Electrostatic interactions are modeled using a Coulombic term
with Debye-Hückel [3] electrostatic screening,

(S1) Eij(r) =
qiqj

4πDr
exp(−r/κ),

in which κ is the Debye screening length and D = 80, the dielectric constant of the
solvent. The short-range pairwise interaction is modeled using Ashbaugh-Hatch
functional form[4],

(S2) Φ(r) =

{
ΦLJ + (1 − λ)ε, if r ≤ 21/6σ

λΦLJ , otherwise

in which ΦLJ is the standard Lennard-Jones potential

(S3) ΦLJ = 4ε
[(σ
r

)12
−
(σ
r

)6]
.

The λ value in the pairwise interaction term is the arithmetic average of the λ values of
the two corresponding amino acids. The amino-acid specific parameters of the model are
shown in Table S1. The interaction strength ε is set to 0.2 kcal/mol based on
parameterization from previous works.[1]

The HOOMD-Blue software v2.9.3 [5] together with the azplugins [6] were used for
running the molecular dynamics simulations. All simulations were run using a Langevin
thermostat with a friction coefficient of 0.01 ps−1, a time step of 10 fs and a temperature
of 298 K for 5 µs. The simulations were recorded at every 100 ns, which resulted in 50000
conformations for each condition. The first 1000 frames (0.5 µs) were dumped for
equilibration and the remaining 49000 frames were used for further analysis. Distance
distributions are calculated for every simulated CG trajectory by recording the distance
between the center of the two charged patches. The histogram was made using 100 bins
and a distance range of 0 to 20 nm.

Slab simulation method. Slab coexistence simulations were conducted in three steps.
First, a large cubic box was populated with 100 peptide chains. The simulation box was
then gradually compressed over 10 ns to achieve a high peptide concentration while
avoiding steric overlaps. In the final step, the simulation box was extended along the
z-axis to 280 nm, significantly larger than the x- and y-axes. This configuration created a
slab-like structure in the center of the simulation box, effectively mimicking a droplet
with an infinite surface area. All slab simulations were then run for 5 µs, with the first 1
µs designated for equilibration, and data analysis performed on the remaining 4 µs
trajectories.
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To determine the dense phase and saturation concentration of a given slab simulation, we
first centered the slab of each frame to z=0. We then calculated the density profiles with
100 bins averaged over the last 4 µs (40000 frames) of the simulation. The dense phase
concentration is then given by the average density at z=0, the center of each slab, while
the saturation concentration is calculated by the average of the 10 bins furthest from the
center. After obtaining both concentrations for all sequences and simulation conditions,
we discarded any cases where the difference between saturation and dense phase
concentration was below a certain cutoff. The cutoff (approximately 25 mg/mL) was
established by estimating the low-density and high-density phase concentrations from the
slab with the lowest charge content, N = 3, fc = 1/3, which was determined by inspection
not to form a condensate.

Critical ionic strength was determined by fitting the remaining data to Eq. S4 with two
free parameters, A and Ic, the critical ionic strength,

(S4) ρhigh(I) − ρlow(I) = A(Ic − I)0.325.

In order to achieve a meaningful fitting, we only considered sequences for which phase
separation was observed in at least three different ionic strengths. In other words, any
slabs which disassociated too quickly with respect to ionic strength were discarded.

Cubic box simulations. Cubic box simulations were performed so that each box size
created an environment at a slightly higher concentration than that of the high-density
phase. This ensured that the box consisted of only one phase to calculate relevant
structural features. This was achieved by calculating the high density phase
concentration for each sequence at 0.1 M salt concentration and then solving for the size
of cubic box which would contain 100 chains at the same concentration. The actual
simulated box was 0.1 nm short on all sides than the solved case.

For each frame of the cubic box simulations, we applied a cluster-searching algorithm to
identify peptide clusters. Starting with an initial chain, we identified all other chains in
contact with it based on interactions between their positive and negative patches, where
contact was defined as at least one residue from a positive patch contacting a residue
from a negative patch on the chain of interest. Various distance cutoffs for these contacts
were tested (Fig. S8). For each contacted chain, the same search process was iteratively
applied to find additional contacting chains, continuing until no new contacts were
identified, at which point all identified chains were classified into a single cluster. The
process was repeated for unclustered chains until all chains were assigned to clusters.

Time correlation analysis. The relaxation times of various collective variables were
determined by first calculating the autocorrelation function of each variable and then
fitting the resulting relaxation curve to an exponential function. For collective variables,
we analyzed patch-to-patch distances across the single chain, slab coexistence, and cubic
box simulations. In condensate simulations, we reported the average relaxation time over
100 chains. In the cubic box simulations, we additionally examined the coordination
number of charged patches, defined as the count of negatively charged patches within a
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0.7 nm cutoff distance from any given positive patch. The reported values represent the
average relaxation time across all 100 positive patches in the simulation.
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2. Supporting Figures
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Figure S1. Fittings for determining ft from simulated patch-to-patch dis-
tance distribution p(r). Solid lines indicate results from simulations while
dashed lines show the optimal fitting according to the adjusted polymer
model in Eq. 1 of the main text.
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Figure S2. Correlation between total number of charged amino acids
within each charge patch q = fcN and ft for different temperature and
ionic strength conditions. Markers indicate results from simulation and
dashed lines are the best fit to the sigmoid equation shown in Eq. 4 of the
main text.
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Figure S3. Global fitting of ft as a function of lcp for all simulations to
obtain an optimized β of 0.76. Dots mark the results from simulated dis-
tance distribution while dashed lines indicate fitting from a sigmoid function
shown in Eq. 6 of the main text.
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b)a)

Figure S4. The value of lcp for which ft achieves a given value at a)
different temperatures and a fixed ionic strength of 0.1M and at b) different
ionic strengths and a fixed temperature of 300K.
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Figure S5. ft as a function of lcp for different patch sequence separations
s. Filled dots show results from simulation while Dashed lines indicate the
best fit results from the sigmoid function shown in Eq. 6 of the main text.
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Figure S6. Slab coexistence density profiles as a function of the charge
content (N and fc) and the ionic strength I.
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Figure S7. Critical ionic strength Ic as a function of lcp. Dense phase
(filled) and saturation concentrations (empty) as a function of lcp.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2024. ; https://doi.org/10.1101/2024.10.30.621161doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.30.621161
http://creativecommons.org/licenses/by-nc-nd/4.0/


S12

10 2

10 1

100

101

102

0.
6 

nm
 

 C
lu

st
er

s p
er

 F
ra

m
e

lcp
1.5

2.0

2.5

3.0

3.5

4.0

4.5

In
tra

 c
ha

in
 c

on
ta

ct
s

10 2

10 1

100

101

0.
7 

nm
 

 C
lu

st
er

s p
er

 F
ra

m
e

lcp

6

7

8

9

10

11

In
tra

 c
ha

in
 c

on
ta

ct
s

0 50 100
C

10 2

10 1

100

101

0.
8 

nm
 

 C
lu

st
er

s p
er

 F
ra

m
e

4 6 8
lcp

7

8

9

10

11

12
In

tra
 c

ha
in

 c
on

ta
ct

s

30

40

50

60

70

In
te

r c
ha

in
 c

on
ta

ct
s

80

100

120

140

160

180

In
te

r c
ha

in
 c

on
ta

ct
s

100

120

140

160

180

200

220

In
te

r c
ha

in
 c

on
ta

ct
s

Figure S8. Clustering analysis (left) and number of intra (blue) and inter
(red) chain charge contacts (right) for the cubic box simulations at different
lcp following the same color code as Fig. 3 in the main text. Chains are only
considered in contact when at least one pair of residues from the positive
and negative charged segments have a distance less than the displayed cutoff
distance.
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Figure S9. a) Number of annotated GO terms per sequence in each ft bin
from regions of the IDRome database with segregated positive and negative
charges. b) Relative population of GO terms in each dependence class for
high level and low level terms.
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3. Supporting Tables

Table S1. The amino acid parameters used in the model. σ is the diameter
of the amino acid used in the short-ranged pair potential. λ is the scaled
hydropathy from the literature [2]

Type Mass (amu) Charge σ (Å) λ
ARG 156.20 1 6.56 0.000
ASP 115.10 -1 5.58 0.378
GLY 57.05 0 4.50 0.649

Table S2. List of sequence charge content (N and fc), temperature (T ),
and ionic strength (I) for the single-chain simulations at a fixed sequence
separation s=100.

Single chain simulations (s=100 residues)
N 3 4 6 8 9 10 12 14 15
fc 1/3,

2/3, 1
1/2, 1 1/3,

2/3, 1
1/2, 1 1/3,

2/3, 1
1/2, 1 1/3,

2/3, 1
1/2, 1 1/3,

2/3, 1
T (K) 260, 270, 280, 300, 320, 350
I (M) 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5

Table S3. List of sequence charge content (N and fc), temperature (T ),
and ionic strength (I) for the single-chain simulations at different sequence
separations.

Sequence separation simulations
N 3 6 9 12 15
fc 1/3, 2/3, 1 1/3, 2/3, 1 1/3, 2/3, 1 1/3, 2/3, 1 1/3, 2/3, 1
s 30, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300

T (K) 300
I (M) 0.1
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Table S4. List of sequence charge content (N and fc), temperature (T ),
and ionic strength (I) for the coexistence slab simulations.

N 3 4 6 8 9 10 12 14 15
fc 1/3,

2/3, 1
1/2, 1 1/3,

2/3, 1
1/2, 1 1/3,

2/3, 1
1/2, 1 1/3,

2/3, 1
1/2, 1 1/3,

2/3, 1
T (K) 280
I (M) 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5

Table S5. List of sequence charge content (N and fc), temperature (T ),
and ionic strength (I) for the cubic box simulations.

Cubic box simulations
N 6 9 12 15
fc 1 2/3, 1 2/3, 1 2/3, 1

T (K) 280
I (M) 0.1
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