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Abstract: A unique approach was utilized to develop multi-walled carbon nanotube (MWCNT)
silver (Ag) membranes. MWCNTs were impregnated with 1 wt% Ag loading, which resulted
in a homogeneous dispersion of Ag in MWCNTs. MWCNTs impregnated with Ag were then
uniaxially compacted at two different pressures of 80 MPa and 120 MPa to form a compact membrane.
Compacted membranes were then sintered at two different temperatures of 800 ◦C and 900 ◦C to
bind Ag particles with MWCNTs as Ag particles also act as a welding agent for CNTs. The powder
mixture was characterized by FESEM, thermogravimetric analysis, and XRD, while the developed
samples were characterized by calculating the porosity of membrane samples, contact angle, water
flux and a diametral compression test. The developed membranes showed overall large water flux,
while maximum porosity was found to decrease as the compaction load and sintering temperature
increased. The mechanical strength of the membranes was found to increase as the compaction
load increased. The hydrophilicity of the membranes remained unchanged after the addition of
Ag particles. The developed membranes would be useful for removing a variety of contaminants
from water.

Keywords: multi-walled carbon nanotubes; membranes; silver particles; water purification; impreg-
nated MWCNTs

1. Introduction

The need for pure water is rising rapidly in the industrial, agriculture and domestic
sectors [1]. Pollutants such as arsenic [2], heavy metal ions, and organic and inorganic
impurities [3,4] from various industries are contaminating water on a large scale. Thus,
water purification becomes a critical issue to protect the environment and human health [1].
It is therefore the need of the hour to develop water purification techniques that can
meet the rapidly rising demand for clean water [5,6]. More specifically, durable, cheap,
and reliable water purification technologies are needed to produce purified water from
desalinated or brackish water [7].

Nanotechnology has promising potential in the field of water purification. Various
nanoparticles (Ag, Fe, Ti and Au) and their oxides have been extensively utilized to
control undesired environmental impacts. Among these, Ag nanoparticles are beneficial
to limit the growth of viruses and bacteria [8]. Different nanomaterials such as CNTs,
zeolites, and metals and their oxides have been extensively used for water purification.
Among all these, CNTs stand out because of their exceptional mechanical, electrical, and
thermal characteristics. CNTs have been used extensively in the removal of different
types of pollutants, such as heavy metal ions (chromium, nickel, zinc, lead and cadmium),
radioactive nuclides [7,9–19], and inorganic and organic contaminants [20–23].
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Membrane separation technologies can be generally categorized based on the driving
force utilized to generate the separation. The movement of water through the membrane
in reverse osmosis (RO) [24] and nanofiltration membrane operations require the applied
hydraulic pressure gradient to exceed the osmotic pressure gradient between the input and
the filtrate [25]. Forward osmosis, on the other hand, uses an osmotic pressure differential
to move water [26].

In recent years, RO water filtration has gained significant importance because of its
ability to purify various types of waste- and seawater [27]. RO is now marked as the most
significant water purification system for seawater [28]. RO water filtration facilities use
a high pressure to filter pollutants, and the membrane plays an important role in this
process. The membrane in a RO water purification system acts as an obstacle that only
allows water to pass through it, blocking the other impurities present in the water [29].
However, like all other membrane separation processes, RO requires a high-pressure and
high-energy input due to slow flow rates. Energy consumption accounts for around 50%
of the cost of the process and consequently plays a substantial role in greenhouse gas
emissions [30]. The popularity of pressure-driven membrane systems in commercial ap-
plications has been substantially limited by the energy need. Pollutant precipitation also
lowers membrane durability and functionality as well as causing fouling and blockage [31].
Moreover, RO makes water more acidic because it cannot remove volatile organic com-
pounds and chemicals from water. Membrane separation processes are also less durable
and unable to self-clean, necessitating the use of different treatment methods for cleaning
and recycling [32]. This has prompted scientists to come up with new membranes, such as
carbon nanotubes (CNTs), for low-cost water filtration and desalination methods [33]. In
addition to RO, various other water purifying processes have also been employed in the
past. These techniques commonly involve ion exchange, adsorption, electrolysis, solvent
extraction, precipitation, distillation, evaporation, crystallization, and ultra-, micro- and
nano-filtration technologies [34]. Most of these water purification techniques consume
a high amount of energy, therefore prohibiting their utility for large-scale commercial
applications. With respect to this, membrane filtration has become the center of attention
due to the features this technology offers [35]. The fact that there is no need for additives
and thermal sources in membrane technology makes it more popular among other water
purification techniques [36].

To overcome the limits of conventional membranes, innovative materials such as
2D nanosheets, carbon nanotubes and bioinspired pathways have recently attracted a lot
of attention [37]. The development of remarkable transport features, such as slip flow,
which might enable membranes to have ultra-high permeate flux, has stimulated similar
interest in innovative materials. These materials potentially offer crucial properties for
solute–solute separation, including chemical and structural consistency and easy selectivity,
which are lacking in present membranes [38]. However, the addition of fabrication-induced
flaws has hampered the use of these materials in membranes [39].

The nano-porous surfaces of CNTs are ideal for resisting micropollutants and ions in
the liquid state. They were many times faster than previous membranes at conducting wa-
ter at high rates [40]. The hydrophobic hollow shapes facilitate the smooth transportation
of water without requiring any energy to drive water across the hollow tubes. The cytotoxic
properties of CNT-based membranes reduce biofouling and enhance membrane lifespan by
killing and eliminating microorganisms. On the other hand, pressure is required to drive
water molecules through the dense porous structures of other conventional membranes
such as RO. However, CNT-based membranes can replace all other conventional mem-
branes with minimal or no energy use [41,42]. Salts are rejected and ions are retained by
the nanoscale pore diameter [43].

CNTs are used for the development of water purification membranes with unique
characteristics [44,45]. The permeability of water through CNTs is very high because CNTs
have tube-like structures comprised of cylindrical graphene sheets [46]. The ultra-high
transportation of molecules of water through these extremely narrow molecular tubes is
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due to the exceptionally large aspect ratio, molecularly smooth hydrophobic graphitic
walls, and the nanoscale internal diameters of CNTs. Water molecules flow quicker through
nanotube pores than through other pores of equivalent size. The thermodynamic and
transportation parameters of limited water vary considerably from those measured in
the bulk due to the smaller diameter of CNTs [42]. Previously, CNTs have been directly
employed for the desalination of water [47–49] and used for the filtration of contaminants
that slow down the desalination process [50]. CNTs require low operating power for the
purification of water, which make them very attractive for water desalination. The smooth
inner structure of CNTs enables them to provide an uninterrupted flow of water, blocking
the contaminants [51,52].

CNT-based membranes have evolved as an appropriate water filtration technology,
despite the fact that each membrane separation has its own set of advantages and dis-
advantages. It has shown groundbreaking results and has the ability to be commercially
successful in the near future. Water permeate flux, desalination ability, solute separation,
durability, antimicrobial activity, low energy consumption, cost of materials, scalability,
and integration with industrial applications are all characteristics that must be met before
CNT membranes become commercially available [53]. So far, microbial removal efficiencies
on CNTs have outperformed any other commonly available adsorption medium [54].

Membrane technology is gaining attention because membranes have the ability to
block various types of contaminants such as heavy metal ions, and organic and inor-
ganic impurities, and act as a strong barrier in the regrowth of microorganisms. Using
membrane separation enhances flow rates dramatically and almost completely reduces
diffusion constraints [55]. Microbial regrowth is a major concern with water purification
membranes [56,57]. Bacteria create a layer on the membrane’s surface due to their fast
multiplication rate followed by further multiplication of bacterial cells. The unfavorable
impacts of this phenomenon include large amounts of energy consumption during the
water purification process, decreases in water flux, and the decomposition of membranes.
The biodegradation of membranes is a major issue which needs serious attention. To
prevent the growth of microorganisms on membrane surfaces, more efficient and robust
approaches are required [58–63].

Currently, CNTs can be synthesized on a large scale by various techniques such as
arc discharge processes [64], CVD [65], and photoablation/laser ablation [66]. For the
development of CNT-based water purification membranes, techniques such as vertically
aligned CNTs [67,68], and multi-stacked and mixed-matrix CNT membranes are com-
monly used. Because of their simple synthesis process, mixed-matrix CNT membranes
are employed all over the world [69–71]. A variety of nanoparticles with wide ranging
properties are available. Among these, commercially available Ag nanoparticles have
received special interest because of their remarkable electrical, antibacterial and optical
capabilities [72,73]. Studies have reported that silver nanoscale particles also act as a binder
to bond the carbon nanotubes together [74]. Silver nanoparticles (AgNPs) have been uti-
lized to extract lipopolysaccharides (LPS) from a water mixture, which cause inflammatory
reactions, resulting in tissue injury, with up to 97 percent effectiveness [75]. AgNPs can also
diminish the regrowth of microorganisms by damaging their cell membranes during the
water purification process [76,77].

2. Materials and Methods

MWCNTs of purity > 90%, which were used in this study, were provided by Times
Nano, China. The MWCNTs had an outside diameter of 10–20 nm and a length of 10–30 µm.
Silver nitrate (AgNO3) of purity ≥ 99% was procured from Duksan Pure Chemicals, Korea,
and was utilized as a salt for silver.

The surfaces of MWCNTs were impregnated with Ag nanoparticles. An amount of
0.01 g of pure AgNO3 was dispersed in 60 mL of ethanol (99.9% purity) for 1 wt% Ag
loading, and 0.623 g of MWCNTs was dispersed in 300 mL of ethanol. Separately, both
solutions were sonicated in an ultrasonic probe sonicator for 1 h, after which both the
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solutions were mixed. This was followed by post-sonication for 2 h [74]. This resulted in
a homogeneous dispersion of particles, decreasing the chances of lump formation in the
liquid. This mixture was then dried at 100 ◦C for 24 h for the evaporation of ethanol. The
remaining mixture was then calcinated for 4 h at 500 ◦C under a nitrogen atmosphere as
shown in Figure 1 to impregnate MWCNTs with Ag. This resulted in the homogeneous
dispersion of Ag in the MWCNTs. This was the technique used to develop MWCNTs doped
with 1 wt% Ag.
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Figure 1. Calcination cycle explaining calcination of dried powder at 500 ◦C for 4 h under nitro-
gen atmosphere.

MWCNTs impregnated with Ag nanoparticles were uniaxially compressed in a stainless-
steel die with a diameter of 27 mm at two different pressures, 80 MPa and 120 MPa, as
illustrated in Figure 2a,b. This resulted in membranes of approximately 27 mm diameter
and 2.5–3 mm thickness, as shown in Figure 2c, having 1 wt% Ag loading. To prevent
the oxidation of the MWCNTs, these membranes were sintered for 4 h in a horizontal
sintering tube furnace at two different temperatures, 800 ◦C and 900 ◦C, with a heating rate
of 5 ◦C/min in an argon atmosphere. Figure 3 depicts the sintering process.

Membranes 2022, 12, x FOR PEER REVIEW 4 of 18 
 

 

solutions were mixed. This was followed by post-sonication for 2 h [74]. This resulted in 
a homogeneous dispersion of particles, decreasing the chances of lump formation in the 
liquid. This mixture was then dried at 100 °C for 24 h for the evaporation of ethanol. The 
remaining mixture was then calcinated for 4 h at 500 °C under a nitrogen atmosphere as 
shown in Figure 1 to impregnate MWCNTs with Ag. This resulted in the homogeneous 
dispersion of Ag in the MWCNTs. This was the technique used to develop MWCNTs 
doped with 1 wt% Ag. 

 
Figure 1. Calcination cycle explaining calcination of dried powder at 500 °C for 4 h under nitrogen 
atmosphere. 

MWCNTs impregnated with Ag nanoparticles were uniaxially compressed in a stain-
less-steel die with a diameter of 27 mm at two different pressures, 80 MPa and 120 MPa, 
as illustrated in Figure 2a,b. This resulted in membranes of approximately 27 mm diame-
ter and 2.5–3 mm thickness, as shown in Figure 2c, having 1 wt% Ag loading. To prevent 
the oxidation of the MWCNTs, these membranes were sintered for 4 h in a horizontal 
sintering tube furnace at two different temperatures, 800 °C and 900 °C, with a heating 
rate of 5 °C/min in an argon atmosphere. Figure 3 depicts the sintering process. 

 
Figure 2. (a) Stainless-steel die of 27 mm diameter; (b) powder mixture within the die; (c) membrane 
synthesized via compaction process. 
Figure 2. (a) Stainless-steel die of 27 mm diameter; (b) powder mixture within the die; (c) membrane
synthesized via compaction process.



Membranes 2022, 12, 179 5 of 18Membranes 2022, 12, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 3. Sintering cycle describing the sintering of membranes at a rate of 5 °C/min for 4 h in an 
argon atmosphere at two separate temperatures of 800 °C and 900 °C. 

The characteristics of doped and raw MWCNTs were investigated using a number of 
characterization techniques. The raw powder mixture and developed membrane samples 
were observed using a field emission scanning electron microscope (Lyra 3, Tescan, Czech 
Republic). A thermogravimetric analysis was performed with a thermogravimetric ana-
lyzer in air at a heating rate of 10 °C/min. Using an X-ray diffractometer (Rigaku MiniFlex 
X-ray diffractometer, Japan), the X-ray diffraction peaks were observed at a rate of 2°/min 
throughout a range of 10° to 80° (2 theta). The membranes were placed between two flat 
plates and subjected to a diametrical compression test on a universal testing machine. Po-
rosity of membranes was calculated using Equation (1). 

 푃표푟표푠푖푡푦 =
푊 − 푊

휌 × 푉
× 100 (1)

where Wwet (g) and Wdry (g) are the wet and dry weights of samples, respectively, ρ (g/cm3) 
is the distilled water density, and V(cm3) is the sample volume. This volume is calculated 
using Equation (2), in which d(cm) is the diameter and h(cm) is the thickness of sample. 

푉 =
휋
4

(푑 ℎ) (2)

The dry weight of the membrane sample was determined using a density balance, 
and the wet weight was determined by soaking it in distilled water. The experiment was 
carried out five times, with the average value utilized to minimize the experimental error. 
The water movement across the membrane generally relies on the porosity of the mem-
brane sample, with a higher water permeability for the membranes having higher poros-
ity. On the flow loop test bench depicted in Figure 4, water flux measurements were taken. 

Figure 3. Sintering cycle describing the sintering of membranes at a rate of 5 ◦C/min for 4 h in an
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The characteristics of doped and raw MWCNTs were investigated using a number of
characterization techniques. The raw powder mixture and developed membrane samples
were observed using a field emission scanning electron microscope (Lyra 3, Tescan, Brno,
Czech Republic). A thermogravimetric analysis was performed with a thermogravimetric
analyzer in air at a heating rate of 10 ◦C/min. Using an X-ray diffractometer (Rigaku
MiniFlex X-ray diffractometer, Tokyo, Japan), the X-ray diffraction peaks were observed at
a rate of 2◦/min throughout a range of 10◦ to 80◦ (2 theta). The membranes were placed
between two flat plates and subjected to a diametrical compression test on a universal
testing machine. Porosity of membranes was calculated using Equation (1).

Porosity =
Wwet − Wdry

ρ × V
× 100 (1)

where Wwet (g) and Wdry (g) are the wet and dry weights of samples, respectively, ρ (g/cm3)
is the distilled water density, and V(cm3) is the sample volume. This volume is calculated
using Equation (2), in which d(cm) is the diameter and h(cm) is the thickness of sample.

V =
π

4

(
d2h

)
(2)

The dry weight of the membrane sample was determined using a density balance, and
the wet weight was determined by soaking it in distilled water. The experiment was carried
out five times, with the average value utilized to minimize the experimental error. The
water movement across the membrane generally relies on the porosity of the membrane
sample, with a higher water permeability for the membranes having higher porosity. On
the flow loop test bench depicted in Figure 4, water flux measurements were taken.
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Figure 4. Flow loop test bench.

The pressure range across the membrane to measure the water flux was varied from 7
to 40 psi. Equation (3) was used to calculate the water flux.

J =
V

A × T
(3)

where J is the pure water flux (L/(m2·h)), V denotes the volume of water that flows
through the sample in liters L), A denotes the membrane’s cross-sectional area in meters
squared (m2), and T denotes the time it takes for the water to move across the sample
in hours (h) [78]. A diametrical compression test was used to determine the mechanical
strength of Ag-doped MWCNT membranes. The purpose of this test was to determine
the durability of porous MWCNT-Ag membranes. In a diametral compression test, the
membrane was squeezed along the diameter between two flat plates of the machine as
shown in Figure 5a,b, which caused tensile strains in the transverse direction. As shown in
Figure 5, the membrane ruptured into two pieces as a result of tensile failure.
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Equation (4) was used to calculate the diametral compressive strength in which p
indicates the applied load and t indicates thickness of the membrane.

σ = 2P/πdt (4)

By dropping water on the surface of MWCNTs and MWCNTs-Ag membranes, the
water contact angle was determined. An arsenic removal test was carried out to assess the
heavy metal removal efficiency of synthesized membranes. The adsorption capacity of the
selected CNT-1 wt% Ag (800 ◦C/120 MPa) membrane was evaluated using the flow loop
system shown in Figure 4. Three membranes each having a 27 mm diameter and a 3 mm
thickness were subjected to the test at three different cross-membrane pressures of 10, 15 and
20 psi, respectively. Using an arsenic standard solution (1000 ppm), a solution with an initial
arsenic concentration of 2 ppm was prepared. A 1M KOH solution was used to maintain
the pH of solution at 5.8. The filtrate (10 mL) was collected after a single run through the
membrane and analyzed using an Optical Emission Spectrometer (OES). The OES testing
facility of Pakistan Council of Research in Water Resources (PCRWR) was outsourced to
determine the arsenic concentration in the pre- and post-purification conditions.

3. Results and Discussion
3.1. Characterization of Raw and Impregnated MWCNT Powder
3.1.1. FESEM and EDX Analysis

Figure 6 depicts the FESEM micrographs of raw and Ag-impregnated MWCNTs. At
low magnification, the MWCNTs were more cluttered, exhibiting a clot-like appearance
(Figure 6a), while a relatively rough appearance was observed at high magnification
(Figure 6b). A smoother and less entangled appearance of the MWCNTs-Ag at high
magnification indicated that sonication was effective (Figure 6c), while at low magnification
it was difficult to assess the distribution of Ag particles within the MWCNT network
(Figure 6d). The EDX map acquired from MWCNT-Ag powder, shown in Figure 7a,
indicates a uniform dispersion of Ag particles (Figure 7d) within the MWCNT network
(Figure 7b). The signal of aluminum metal (Figure 7c) is captured from the sample holder,
while the Au signal (Figure 7e) is attributed to the conductive coating. The EDX spectrum
is shown in Figure 7f.
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Figure 7. (a) Electron beam microscopy image of MWCNT-Ag powder; (b) signal of carbon from
MWCNTs; (c) signal of aluminum from sample holder; (d) uniform dispersion of Ag particles
within the MWCNT network; (e) signal of gold from conductive coating; (f) EDX spectrum showing
dispersion of Ag particles with MWCNT powder.
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3.1.2. Thermal Degradation Analysis

The thermo gravimetric analysis curve for MWCNTs impregnated with 1%Ag loading
is shown in Figure 8. For MWCNTs-1% Ag, the initial degradation temperature was 458 ◦C
and, at around 600 ◦C, total degradation was noticed. The weight percent of the sample was
decreased to approximately the percentage of Ag loading at 900 ◦C, which was confirmed.
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3.1.3. X-Ray Diffraction (XRD)

Figure 9i shows the XRD pattern of raw MWCNTs, which shows two prominent
distinctive peaks at 2θ∼25 and 44 degrees, which correlate to the hexagonal graphite
lattice of MWCNTs. For MWCNTs-Ag, peaks of Ag were detected at 2θ∼38◦, as shown in
Figure 9ii. After the calcination of MWCNT-Ag powder, crystals of Ag were formed, which
were detected in XRD peaks.

3.2. Membrane Characterization
3.2.1. Field Emission Scanning Electron Microscopy (FESEM)

Figure 10 illustrates FESEM images of sintered membranes of MWCNTs doped with
Ag nanoparticles. It shows that Ag nanoparticles are evenly dispersed on the surface
of membranes. Pores in the membrane are clearly visible in samples sintered at 800 ◦C
(Figure 10b). FESEM images of MWCNT-Ag membranes (800 ◦C; 80 MPa) show visible
cracks at low magnification with bright spots of Ag particles (Figure 10a), while there
was no agglomeration of particles at high magnification, which highlights the effective
dispersion of Ag within the MWCNTs (Figure 10b). A low-magnification image (Figure 10c)
of (900 ◦C; 80 MPa) sample shows the homogeneous dispersion of Ag particles on the
surface of membranes, while at high magnification, bright knots of Ag particles are clearly
visible within the MWCNT network (Figure 10d). On the other hand, the MWCNT-Ag
membrane synthesized at 800 ◦C and 120 MPa illustrates a smooth crack-free surface at
low magnification (Figure 10e) with bright spots of Ag particles at high magnification
(Figure 10f). Figure 10g shows a visible agglomeration of Ag particles for samples syn-
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thesized at 900 ◦C and 120 MPa, indicating an inhomogeneous sonication of the powder
(Figure 10h). However, a crack-free surface without visible porosity is obvious. It is perti-
nent to point out that Ag has a significant effect on the attributes of membranes and binding
together of the MWCNTs.
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Figure 10. FESEM images of sintered membranes. (a) Low-magnification image of MWCNT-Ag
membrane synthesized at 800 ◦C and 80 MPa; (b) high-magnification image of 800 ◦C and 80 MPa
membrane; (c) image of membrane (900 ◦C and 80 MPa) at low magnification; (d) high-magnification
image of 900 ◦C and 80 MPa membrane; (e) low-magnification image of membrane produced at
800 ◦C and 120 MPa; (f) high-magnification image of 800 ◦C and 120 MPa membrane; (g) Image of
900 ◦C and 120 MPa membrane at low magnification; (h) high-magnification image of membrane
synthesized at 900 ◦C and 120 MPa.
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3.2.2. Porosity

Porosity was found to decrease as the initial compaction load and sintering temper-
ature increased. A maximum porosity of 82% was achieved in the sample prepared at
800 ◦C with a compaction load of 80 MPa. A minimum porosity of 56% was achieved in
the sample prepared at 900 ◦C with a compaction load of 120 MPa (Figure 11). The effect of
temperature was significant towards a better densification, primarily due to higher diffu-
sion of Ag within the MWCNT network and wider coverage of voids present between the
MWCNT network by Ag particles. Additionally, better adhesion of MWCNT-Ag-MWCNT
was realized because of the higher activation energy available for bonding.
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3.2.3. Water Flux Measurement

Water flux values were also influenced by the initial compaction loads and sintering
temperatures. Generally, higher flux was measured in more porous membranes which
were compacted with low compaction loads and sintering temperatures. A linearly increas-
ing trend in water flux was observed in all samples with an increase in pressure across
membranes (7–40 Psi), as illustrated in Figure 12. All the membranes developed through a
powder metallurgical route showed overall higher flux values than the ones prepared via
chemical vapor deposition, a technique described in the literature [79].
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3.2.4. Diametrical Compression Test

Diametrical strength was measured to have increased with the increase in initial
compaction pressure and sintering temperature. The sample synthesized at 900 ◦C and
compacted at 120 MPa achieved the highest strength of 4.5 MPa, as shown in Figure 13. The
strengths observed for the current membranes were consistent with the existing literature
on diametrical compression strength for Alumina/CNT-based membranes [80].
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3.2.5. Hydrophilic Behavior of Raw and Ag-Doped MWCNT Membranes

The hydrophilic nature of the raw and Ag-doped MWCNTs was assessed qualitatively
by dropping deionized water onto the surface of MWCNTs and MWCNT-Ag membranes
and capturing the image using a digital single-lens reflex (DSLR) camera, as shown in
Figure 14. To reduce the experimental error, the experiments were carried out multiple
times with various membranes. The water completely spread on the surface of membranes,
and it can therefore be concluded that the inclusion of Ag particles had no effect on the
membrane’s hydrophilicity.
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3.2.6. Water Purification Capability

Using an arsenic standard solution (1000 ppm), a mixture with an initial arsenic
concentration of 2 ppm was prepared. A 1M KOH solution was used to keep the pH
of the solution at 5.8. An arsenic removal test was then performed to determine the
MWCNT-Ag membrane’s ability to remove arsenic. The ultimate concentration of arsenic
in the filtrate was equivalent to 505 ppb (average value of three membranes), indicating
that the experiment was successful in removing 75% of the arsenic. The experiment was
repeated three times to reduce experimental error, with the average value being reported.
However, the membranes developed in the current study can be further utilized for rigorous
water purification experiments to investigate the selectivity of heavy metals via batch
adsorption analysis.
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4. Conclusions

Ag-doped MWCNT membranes were developed successfully. The membranes showed
unique characteristics and were notably influenced by sintering temperature and com-
paction load. Silver particles also acted as a binding agent for MWCNTs. As verified by the
contact angle measurement, there was no change in the hydrophilic nature of membranes.
The porosity of the membranes was noticed to decrease as the compaction load and sinter-
ing temperature increased due to a higher diffusion of Ag within MWCNTs and extensive
coverage of voids. The mechanical strength of the membranes was measured to rise as
the sintering temperature and compaction load increased, as confirmed by the diametrical
compression test. Higher values of water permeate flux were measured in membranes
compacted at low compaction pressures and sintering temperatures. The membranes
were found to have a profound influence on the elimination of arsenic from the standard
arsenic solution.
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