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Redox homeostasis is essential for the maintenance of diverse cellular processes. Cancer cells have higher levels of reactive oxygen
species (ROS) than normal cells as a result of hypermetabolism, but the redox balance is maintained in cancer cells due to their
marked antioxidant capacity. Recently, anticancer therapies that induce oxidative stress by increasing ROS and/or inhibiting
antioxidant processes have received significant attention. The acceleration of accumulative ROS disrupts redox homeostasis and
causes severe damage in cancer cells. In this review, we describe ROS-inducing cancer therapy and the anticancer mechanism
employed by prooxidative agents. To understand the comprehensive biological response to certain prooxidative anticancer drugs
such as 2-methoxyestradiol, buthionine sulfoximine, cisplatin, doxorubicin, imexon, and motexafin gadolinium, we propose and
visualize the drug-gene, drug-cell process, and drug-disease interactions involved in oxidative stress induction and antioxidant
process inhibition as well as specific side effects of these drugs using pathway analysis with a big data-based text-mining
approach. Our review will be helpful to improve the therapeutic effects of anticancer drugs by providing information about
biological changes that occur in response to prooxidants. For future directions, there is still a need for pharmacogenomic studies
on prooxidative agents as well as the molecular mechanisms underlying the effects of the prooxidants and/or antioxidant-

inhibitor agents for effective anticancer therapy through selective killing of cancer cells.

1. Introduction

Reactive oxygen species (ROS) are generally defined as
chemically reactive molecules containing oxygen, produced
as a result of cellular metabolism [1]. A moderate level of
ROS plays an essential role in the cellular signaling that
regulates cell proliferation and cell survival [2]. However,
an increase in ROS levels can damage cellular components
such as lipids, proteins, and DNA, causing an imbalance
between cellular reduction-oxidation (redox) conditions and
resulting in the disruption of homeostasis [3]. Chronically
increased ROS cause severe cellular damage and lead to carci-
nogenesis by modulating cell signaling in biological processes
including cell proliferation and survival, angiogenesis, and
metastasis [4, 5].

Anticancer therapies based on oxidative damage through
the acceleration of accumulative ROS or the defective antiox-
idant system in cancer cells have been developed [2, 6]. Due
to uncontrolled metabolic processes during hyperprolifera-
tion, cancer cells have a higher basal ROS level than normal
cells [7]. Adaptation to excessive ROS conditions in cancer
cells has been reported, suggesting they have a higher level
of antioxidative capacity and ROS than normal cells [2].
ROS-inducing approaches rely on the fact that increasing
the ROS level over the cytotoxic threshold can selectively kill
cancer cells. The elevated ROS level breaks the redox homeo-
stasis and consequently causes cancer cell death. If exogenous
ROS-generating agents are triggered, the redox-imbalanced
cancer cells become more vulnerable than normal cells,
thereby leading to cell death [8] (Figure 1). Accordingly,
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Ficure 1: Differential ROS levels in normal and cancer cells. Normal cells have a lower basal ROS level than cancer cells. In normal cells, a
moderate ROS level is essential to promote cell proliferation and survival whereas an excessive ROS level has detrimental effects such as tumor
progression and angiogenesis. The redox balance in cancer cells is readily regulated by increasing antioxidant processes. Once the ROS level
exceeds the redox capacity in cancer cells, severe oxidative stress occurs, resulting in cancer cell death via the activation of apoptosis,

autophagic cell death, and necroptosis.

prooxidative agents have been investigated as anticancer
drugs that interrupt redox adaptation and eventually induce
cytotoxicity in ROS-dependent cancer cells [9].

In this review, we summarize the mechanisms underly-
ing the effects of anticancer drugs utilized in oxidative
stress-inducing chemotherapy for direct or indirect ROS
generation. To grasp the biological alterations mediated by
prooxidative drugs, the drug-focused pathways were ana-
lyzed and visualized using big data-based network analysis
software. We also suggest crucial therapeutic strategies for
anticancer drugs and provide information regarding poten-
tial side effects and drug resistance based on the results of
the pathway analysis.

2. Basic Concepts of ROS: Generation
and Elimination

Oxygen is an essential molecule for maintaining metabo-
lism and life in organisms. However, the metabolism of oxy-
gen produces highly reactive molecules called ROS, a major
source of oxidative stress. There are many types of ROS,
including superoxide (O,7), hydroxyl radicals (OH’), hydro-
gen peroxide (H,0,), and singlet oxygen ('O,) [10]. The cel-
lular redox state refers to the balance between the oxidized

and reduced states in cells. In living organisms, redox
equilibrium is important for cellular homeostasis [11]. As
previously demonstrated, the impairment of redox homeo-
stasis mediated by an excess of oxidized biological molecules
is associated with cellular toxic effects [12]. Accordingly,
proper regulation of the redox status through ROS genera-
tion and elimination is crucial.

Most endogenous ROS are mainly generated in the
mitochondrial electron transport chain (ETC) and NADPH
oxidase complex (NOX) [13, 14]. During oxidative phos-
phorylation, the leakage of electrons by ETC complexes I
and III occurs in the inner mitochondrial membrane, leading
to the reduction of oxygen into superoxide. Subsequently,
superoxide dismutase (SOD) converts superoxide into
hydrogen peroxide in the intermembrane space or the matrix
of mitochondria [8, 14]. Hydrogen peroxide can be converted
into hydroxyl radicals in the presence of Fe** [15]. Likewise,
NOX, a transmembrane enzyme complex consisting of seven
subunits, catalyzes the oxidation of NADPH by transferring
electrons to molecular oxygen, leading to the production of
superoxide [16].

To avoid endogenous ROS overproduction, cells have
diverse defense systems to eliminate ROS using antioxi-
dant molecules and enzymes such as glutathione (GSH),
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peroxiredoxin (Prx), thioredoxin (Trx), SOD, and catalase
[17]. GSH protects cellular components against oxidative
damage through interactions with a cofactor of GSH per-
oxidase (GPx) and/or participation in other antioxidant
components [18, 19]. In the presence of NADPH, GSH
reductase catalyzes the reduction of GSH. Two reduced
GSH molecules are oxidized into GSH disulfide (GSSG)
via a reaction with GPx, which catalyzes the reduction of
hydrogen peroxide to water and oxygen molecules through
the redox cycle [20, 21]. GSH deficiency has been shown
to reduce tissue ascorbate levels and increase oxidative
stress, ultimately resulting in diverse disorders such as
mitochondrial disease, hepatic injuries, and HIV [19, 22, 23].
Several anticancer drugs and xenobiotics have been devel-
oped for GSH-targeted chemotherapies or detoxifying
agent-based chemoprevention [24]. Both Prx and Trx,
which contain cysteine residues with redox-reactive thiol
groups, can scavenge hydrogen peroxide via thiol/disulfide
exchange [25]. Hydrogen peroxide is reduced by Prx, which
is simultaneously oxidized to form a disulfide bond, and Prx
is subsequently reduced by transferring the disulfide bond
to Trx [26]. In the presence of NADPH, Trx is reduced
by a reaction with Trx reductase [27, 28]. SOD catalyzes
the breakdown of superoxide to molecular oxygen and
hydrogen peroxide using metal ion cofactors including
copper, zinc, and manganese [29, 30]. Catalases reduce
hydrogen peroxide to water and oxygen with a manganese
ion cofactor [31].

Although cellular antioxidant systems have a vital role in
balancing endogenous ROS levels and the redox status for
cell protection against oxidative stress [32, 33], exogenously
prooxidants-induced ROS levels and an ineffective cellular
defense system result in significant imbalance between
prooxidants and antioxidants [34], possibly enabling cellular
damage and cell death.

3. Application of ROS Induction for
Anticancer Strategies

A lot of anticancer therapies have employed antioxidant
supplements as a strategy to prevent or treat cancer cells.
tert-Butylhydroquinone (tBHQ) mediates the dissociation
of Nrf2 via oxidative modification of the Keapl cysteine res-
idues by ROS generated during the metabolic process [35].
Nrf2 activation promotes the regulation of downstream cyto-
protective genes, which play important roles in cancer pre-
vention [36]. Selenocompounds exhibit anticancer effects
through potentiating the antioxidative defense system from
ROS-induced cellular damage [37, 38] and through redox
modification of redox-active, cysteine-rich regions of protein
kinase C (PKC), a receptor for tumor promoters [39, 40].
However, controversial issues remain regarding the che-
motherapeutic activities of antioxidants. Indeed, it has been
widely reported that Nrf2 activation contributes to chemore-
sistance in cancer cells [41-44]. Additionally, a high concen-
tration of tBHQ has been reported to increase carcinogenic
risk [45, 46]. The efficacy and safety of selenium are also
actively discussed due to its toxicity and side effects [47,
48]. Thus, chemotherapies involving antioxidants may not

be sufficient to kill cancer cells and further studies are needed
to determine whether they have unexpected adverse effects.

ROS has double-edged sword characteristics in terms of
its low-dose cell signaling and high-dose cytotoxicity [49].
A mild level of ROS regulates cell development and homeo-
stasis, whereas a high level inflicts severe cellular damage
[50, 51]. Cancer cells are more sensitive to the presence of
prooxidants and the inhibition of antioxidants due to their
excessive ROS levels [52-54]. The ROS-inducing approach
for killing cancer cells relies on oxidative stress-dependent
cytotoxic effects through apoptosis, necroptosis, and autoph-
agic cell death [55].

In the early stages, cancer cells exhibit uncontrolled cell
growth and proliferation via the modulation of transcription
factors and are vulnerable to DNA damage [56, 57] through
therapeutic strategies focused on inducing genetic damage
using radiation or oxidative stress [58-60] (Figure 2). In the
late stages, metastatic cancers undergo metabolic changes
such as increased endogenous antioxidant levels to buffer
oxidative stress conditions [61]. Indeed, the GSH/GSSG ratio
tends to be lower in circulating melanoma or metastatic can-
cers, suggesting that late-stage cancers have better antioxi-
dant processes than early-stage cancers [62, 63]. Although
NADPH-independent catalase activity has been reported to
decrease with cancer progression [64], the remarkable anti-
oxidant capacity is one of the reasons for chemoresistance
in advanced cancer cells [65, 66]. ROS-inducing and/or
antioxidant-suppressing approaches can be applied appro-
priately for the treatment of malignant cancer cells. Oxidative
stress-modulated therapeutics for attacking cancer cells are
being actively researched in the anticancer field [67, 68].
The cell-killing potential of ROS has been harnessed for anti-
cancer therapies with two major approaches: direct ROS gen-
eration and antioxidant process inhibition [6].

3.1. Direct ROS Generation. Electrons derived from
metabolism and respiratory processes are representative
ROS sources in cells [69]. Impairing the respiratory cycles
with the alteration of radical intermediates produces super-
oxide by which motexafin gadolinium and anthracyclines
function [69-71]. Motexafin gadolinium, an avid electron
acceptor, enhances the therapeutic index of radiotherapy,
since it can inhibit the repair activities of cancer cells after
irradiation [72, 73]. It is effective in patients with brain
tumors, brain metastases, and pediatric gliomas [72]. Indeed,
anthracycline-based anticancer drugs such as doxorubicin
can induce the chelation of intracellular iron, leading to
the accumulation of hydroxyl radicals and ultimately to cell
death [74]. These drugs are effective for malignant lympho-
mas, acute leukemia, and diverse solid tumors [75]. Cis-
platin, a well-known anticancer agent with cross-linking
activity, directly damages mitochondrial DNA (mtDNA),
which leads to ETC impairment [76]. It can also interfere
with DNA replication and consequently induce oxidative
stress to target cancer cells [77]. The drug is effective for
diverse cancer types, especially ovarian cancer [78, 79]. 2-
Methoxyestradiol is known to inhibit ETC complex I [80],
inducing mitochondrial production of hydrogen peroxide
[81]. Subsequently, it rapidly activates c-Jun N-terminal
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FIGURE 2: Anticancer therapeutic strategies attacking early-stage and late-stage cancer cells. (a) Early-stage cancer cells simply enable recovery
of the disrupted redox status using antioxidants/antioxidative process accelerators. Briefly, chemotherapy with radiation or oxidative stress
inducers is used to remove these cancer cells, in which significant DNA damage occurs. (b) Late-stage cancer cells have higher basal ROS
levels and antioxidative activities than normal or early-stage cancer cells. In this case, cancer cells can be killed by redox homeostasis
disruption following severe cytotoxic effects mediated by direct ROS inducers and/or antioxidant inhibitors. Prooxidative agents hold
promise for potent cancer chemotherapy. The double-lined arrows and double-lined squares indicate the direction of anticancer molecules

for movement and in cancer cells, respectively.

kinase (JNK), resulting in cytochrome c release and caspase-9
activation to initiate apoptosis [82, 83]. The drug can pro-
mote the therapeutic capability of other anticancer agents
[84-86]. In vitro and in vivo studies have demonstrated that
2-methoxyestradiol-mediated chemotherapy can inhibit
malignant cell proliferation as its own activity or in combina-
tion with synergistic drugs [87-90]. The ROS-accelerating
anticancer agents described above are listed in Table 1.
Although anticancer drugs with direct ROS-accumulating
activity have been shown to be effective for treating different
types of cancer, the effects on normal cells are still controver-
sial as they damage not only cancer cells but also normal
cells. For instance, the radiosensitizer motexafin gadolinium
interrupts the DNA repair process and causes injuries to
surrounding normal cells [91]. Additionally, anthracyclines
induce cardiotoxicity since their metabolites (e.g., oxygen-
centered free radicals) can cause heart failure or cardiomyop-
athy, with a higher risk for younger patients [92-94].
Cisplatin-induced ototoxicity has been reported, attributed
to its direct binding to DNA and consequent activation of
the inflammatory cascade [95]. Additionally, liver function

TaBLE 1: Mechanism of action of ROS-inducing anticancer drugs.

Name Mechanism of action Reference

Direct ROS generation
Accepts electrons to

Motexafin gadolinium form superoxide [69]
Induces chelation
Doxorubicin of iron to generate [74]
hydroxyl radical
. . Damages mtDNA
Cisplatin and ETC [76]
2-Methoxyestradiol Inhibits ETC [80]
complex I
Antioxidant process inhibition
Binds to enzyme
Buthionine sulfoximine related to GSH [101]
synthesis
Binds to thiol to
Imexon GSH activity [102, 103]

disruption
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FiGURE 3: Proposed biological pathways related to prooxidative anticancer drugs. Comprehensive illustration of the drug-gene, drug-cell
process, and drug-disease relationships for certain anticancer drugs with prooxidative activity (buthionine sulfoximine, cisplatin,
doxorubicin, imexon, 2-methoxyestradiol, and motexafin gadolinium). Green and red lines denote the positive and negative effects of each
drug, respectively. The legend for the diagrams is located at the bottom part of the figure. Target proteins (red), drug molecules (green),
cell processes (yellow), and diseases (purple) are symbolized and organized in a complex biological network.

abnormalities, fatigue, and diarrhea have been reported in
patients treated with 2-methoxyestradiol [85, 96, 97].

3.2. Antioxidant Process Inhibition. Although direct ROS
induction is one of the effective strategies for treating malig-
nant cancer cells [98], its combination with the disruption of
antioxidative processes leads to the best results for overcom-
ing the resistance characteristics of cancer cells. Depletion of
GSH activity is regarded as an indirect method of generating
oxidative stress. Cells can synthesize GSH via an ATP-
dependent process catalyzed by glutamate-cysteine ligase
(GCL) and GSH synthetase [99, 100]. For instance, buthio-
nine sulfoximine, a typical GSH synthesis inhibitor, can bind
to the GCL site that normally binds to the acceptor amino
acid [101]. Imexon, a small-molecule chemotherapeutic
agent, is widely used to treat advanced cancers of the breast,
lung, and prostate. It can disrupt GSH activity by binding to
the thiol functional group of reduced GSH [102, 103] and
subsequently deplete the GSH pool for antioxidative activity.
Due to a decrease in the GSH level by imexon treatment, loss
of the mitochondrial membrane potential and the accumula-
tion of oxidative stress occur in cancer cells.

Although anticancer therapy needs to disrupt, both
directly and indirectly, the redox adaptation status of cancer

cells, the inhibition of antioxidative enzyme has deleterious
side effects on normal cells in tissues and organs. For
instance, buthionine sulfoximine is known to be associated
with cardiac hypertrophy and heart failure by inducing solu-
ble epoxide hydrolase [104]. Imexon has potential side effects
in normal cells due to its cytotoxicity [105-107]. For the
future direction of oxidative stress-accelerating anticancer
therapy, further study is needed to identify ways to not only
reduce the side effects but also increase cancer cell-specific
killing efficiency. For instance, cotreatment with antioxidant
supplements that attenuate cisplatin-mediated nephrotoxi-
city through Nrf2 signaling has been investigated [108].
Moreover, plant-derived phytochemicals such as flavonoids
and carotenoids that act as both antioxidants and prooxi-
dants to improve the therapeutic effects and to reduce the
cytotoxic effect have been reported [109-111].

4. Pathway Analysis to Understand the
Process of Prooxidative Cancer Therapy

Identifying biological changes in cancer cells caused by
anticancer drugs is meaningful to improve their therapeu-
tic effect. Although several mechanism studies have been
actively conducted to determine the mode of action of
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TaBLE 2: List of proteins, cell processes, and diseases targeted by anticancer drugs.

Drugs Target type  Relation Relation effect Target
. Positive BAX, TP53
Expression .
. Negative HIF1A, IL6, PCNA, TNF, VEGFA
Protein .
. Positive CASP9, MAPKS8
Regulation i
Negative BCL2, HIF1A, SOD2

Apoptosis, autophagy, cell cycle arrest, cell death, DNA damage,

2-Methoxyestradiol Positi
ositive mitochondrial damage, oxidative stress, ROS generation

Cell Regulati
el process Reguiation Angiogenesis, cell cycle, cell growth, cell invasion, cell proliferation,

Negative . . . ..
& cell survival, mitochondrial respiration, tumor growth
Atherosclerosis, breast cancer, hepatocellular carcinoma, melanoma,

Disease  Regulation Negative .
pancreatic cancer

. Positive BCL2, HMOXI1, JUN, NFE2L2, SOD2, TNF
Expression .
. Negative GPX1, IL6, NOS2
Protein
. Positive BCL2, CASP3, MAPK14
Regulation i
L Negative GCLC
Buthionine . o
sulfoximine Positive Apop.to.s1s, autoPhagy, cellidea.th, cytotoxicity, DNA (.1amage,
Cell process Regulation lipid peroxidation, oxidative stress, ROS generation
Negative Cell growth, cell proliferation, tumor growth
. . Positive Cataract, liver injury, necrosis, neurotoxicity, toxicity
Disease  Regulation . .
Negative Hepatocellular carcinoma, lung cancer
ABCC1, BAX, BBC3, BECN1, CASP3, CASP8, CASP9, CYCS,
. Positive DDITS3, FAS, FASLG, GPT, H2AFX, HMOXI, IL1B, IL6, JUN,
Expression NFE2L2, NOS2, TNF, TP53
Protein Negative BCL2, SOD2, XIAP
) Positive CASP3, CASP7, CYCS, G6PD, MAPK14, MAPK3, MAPKS, TP53
Regulation i
Negative SOD1
Apoptosis, autophagy, cell cycle arrest, cell death, cytotoxicity,
Cisplatin Positive DNA damage, hpic.l peroxidation, mitochc.mdrial damage,
Cell process Regulation oxidative stress, ROS generation
Neative Angiogenesis, cancer cell growth, cell growth, cell invasion,
8 cell proliferation, cell survival, tumor growth
o Acute kidney injury, kidney disease, liver injury, necrosis,
Positive e . .
neurotoxicity, renal dysfunction, toxicity
Disease  Regulation Breast cancer, colorectal cancer, gastric cancer, hepatocellular
Negative carcinoma, lung cancer, lymphoma, melanoma, metastasis,
ovarian cancer, pancreatic cancer
ABCC1, BAX, BBC3, BECN1, CASP3, CASP7, CASP8, CASP9,
. Positive CAT, CYCS, DDIT3, FAS, FASLG, GPX1, H2AFX, HMOX1,
Expression IL1B, IL6, MAPK3, MAPKS, NFE2L2, NOS2, SOD1, TNF, TP53
Protein Negative BCL2, PCNA, VEGFA, XIAP
Positive ANXAS5, CASP3, CASP7, CASPS, FAS, GPT, IL6, MAPK14,
Regulation MAPK3, MAPKS, NOS2, TP53
Negative HIF1A
Apoptosis, autophagy, cell cycle arrest, cell death, cytotoxicity,
Doxorubicin Positive DNA damage, lipid peroxidation, mitochondrial damage,
Cell process Regulation oxidative stress, ROS generation
Negative Angiogenesis, cancer cell growth, cell growth, cell proliferation,
g cell survival, DNA repair, mitochondrial respiration, tumor growth
. Acute kidney injury, kidney disease, liver injury, necrosis,
Positive e . I
neurotoxicity, renal dysfunction, toxicity
Disease ~ Regulation Breast cancer, colorectal cancer, gastric cancer, hepatocellular
Negative carcinoma, lung cancer, lymphoma, melanoma, metastasis,

ovarian cancer, pancreatic cancer
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TaBLE 2: Continued.
Drugs Target type  Relation Relation effect Target
. Expression  Negative HIF1A
Protein . .
Regulation Positive CASP3, CASP9
Imexon ) Positive Apoptosis, cell cycle arrest, oxidative stress
Cell process Regulation i
Negative Cancer cell growth, cell cycle, cell growth, tumor growth
Disease  Regulation = Negative Lymphoma, melanoma, multiple myeloma, splenomegaly
Protein ~ Regulation Negative HMOX1, TXN
. ) Positive Apoptosis, cell death, cytotoxicity, oxidative stress, ROS generation
Motexafin gadolinium Cell process Regulation ) ] ) ) .
Negative Cell proliferation, cell survival, DNA repair, tumor growth
Disease  Regulation Negative Atherosclerosis, cerebral neoplasm, glioblastoma, lung cancer, metastasis

anticancer drugs for cancer treatment, the efficacy and toxic-
ity of anti- and prooxidants remain controversial. In this
regard, pathway analysis has the advantage of comprehen-
sively elucidating the molecular network involved in the
response to certain drugs. However, very few studies have
been performed to explore biological modulation during
treatment with prooxidant anticancer agents. In this review,
we explore and visualize key information on drug-gene,
drug-cell process, and drug-disease relationships for six
anticancer drugs abovementioned with prooxidative activity
(2-methoxyestradiol, buthionine sulfoximine, cisplatin, doxo-
rubicin, imexon, and motexafin gadolinium) using a text
mining-based biological network analysis tool, Pathway Stu-
dio ver. 12.2 (Elsevier, USA). This database provides informa-
tion describing the relationships between the entities including
the drugs, genes, cell processes, and diseases through a curated
resource based on text mining from biology articles.

Each drug molecule was first inputted to build a net-
work, and then the genes, cell processes, and diseases asso-
ciated with the drugs were analyzed based on data provided
in five or more references (Figure 3). Cisplatin and doxoru-
bicin had the largest networks, implying that these two
drugs have been extensively studied compared to the others,
while imexon and motexafin gadolinium had the fewest
connections. Figure 3 comprehensively illustrates the bio-
logical pathways including the target genes, key cellular pro-
cesses, and target types of cancer that can be positively or
negatively affected by these anticancer drugs. There were
two types of relationships in the identified networks:
Expression and Regulation. In Expression relationship, the
drug alters the protein abundance by affecting the levels of
transcript or protein stability. In Regulation relationships,
the drug directly or indirectly changes the activity of the
genes, cell processes, and diseases. In addition, we evaluated
the possible side effects related to the prooxidant anticancer
drugs such as neurotoxicity and cardiovascular diseases.
Table 2 summarizes the detailed information obtained from
pathway analysis regarding the relationship of each drug
with the targeted genes, cell processes, and diseases. We also
explored the association of drug resistance with each drug
through network analysis.

Based on the high number of references in the pathway
analysis, we found that 2-methoxyestradiol is not only a
potent inhibitor of HIF1A and VEGFA, which play impor-

tant roles in angiogenesis [112], it also activates MAPKS,
which triggers apoptosis [113]. Consistent with these results,
2-methoxyestradiol has been shown to be closely associated
with cellular processes such as apoptosis, cell proliferation,
and angiogenesis. Breast cancer, melanoma, and pancreatic
cancer were predicted to be major targets for this drug,
and atherosclerosis can also be attenuated due to its antian-
giogenetic effects. Moreover, 2-methoxyestradiol-mediated
autophagy promoting cancer cell survival could lead to drug
resistance [114].

Buthionine sulfoximine was shown to effectively inhibit
GCLC, blocking GSH synthesis [115]. The expression of
GPX1 was also found to decrease while that of NFE2L2,
HMOXI1, and SOD2 increased in direct response to GSH
depletion [116]. Oxidative stress, apoptosis, and cell death
were identified as the main cell processes induced by buthio-
nine sulfoximine-mediated GSH inhibition. Hepatocellular
carcinoma and lung cancer were predicted to be the main tar-
get diseases, and cataract can be evoked by increased lipid
peroxidation in the lens [117]. The increased NFE2L2 can
upregulate ABCC1, which is a cell membrane transporter
protein [118]. Accordingly, increased drug efflux through
the transporter leads to drug resistance [119]. Buthionine
sulfoximine-mediated autophagy can also negatively affect
drug sensitivity.

Cisplatin was shown to significantly induce expression
of the well-known tumor suppressor TP53 as well as proa-
poptotic genes such as TNF, BAX, CASP3, and FAS, while
decreasing antiapoptotic BCL2 and XIAP expression. Con-
sistently, cell processes including apoptosis, ROS generation,
DNA damage, and mitochondrial damage were found to
be significantly induced by cisplatin treatment. Diseases
effectively targeted by cisplatin were predicted to be ovar-
ian, lung, gastric, and breast cancer. However, cisplatin-
induced proinflammatory cytokines IL1B, IL6, and TNF are
at risk of causing side effects such as acute kidney injury
and renal dysfunction. Cisplatin also plays important roles
in drug resistance by inducing autophagy and activating
NFE2L2 and ABCCI, which elevate drug efflux.

Doxorubicin was shown to have similar effects to cisplatin
on targeted genes and cell processes. It also significantly
increases TP53, BAX, TNF, CASP3, and FAS expression
and decreases BCL2 and XIAP expression, promoting apo-
ptosis. Oxidative stress, DNA damage, and lipid peroxidation



were suggested to be doxorubicin-mediated cell processes.
Doxorubicin is mainly used to treat breast, ovarian, and lung
cancer as well as lymphoma, but there is a risk of heart failure
and neurotoxicity. Drug resistance in doxorubicin was pre-
dicted to be attributable to increased autophagy and the
upregulation of NFE2L2 and ABCCI.

Imexon was found to positively regulate the activity of
CASP3 and CASP9 which have critical roles in apoptosis.
Oxidative stress and cell cycle arrest can be stimulated by
imexon, which was predicted to have therapeutic effects on
multiple myeloma and splenomegaly.

Motexafin gadolinium was shown to inhibit the activity
of TXN and HMOX], leading to apoptosis. It was suggested
to exhibit anticancer effects by promoting ROS generation
and oxidative stress and by disrupting the DNA repair pro-
cess. Motexafin gadolinium was expected to target diseases
including lung cancer and cerebral neoplasm.

5. Conclusions

Redox homeostasis plays an essential role in maintaining
diverse cellular processes [120]. The disruption of redox
homeostasis is being actively investigated in the field of che-
motherapy since cancer cells can be effectively killed by accel-
erating their oxidative stress state. In this review, we
presented an overview of ROS-inducing anticancer therapy
and the anticancer strategy using prooxidative agents in
terms of direct and indirect ROS accumulation. For a com-
prehensive understanding of biological network of prooxi-
dant drugs and molecular targets, our pathway analysis
highlighted the crucial effects of each anticancer drug on
genes, cell processes, and diseases related to ROS generation
and antioxidant inhibition. Our explanation of changes in
biological processes relevant to specific drugs and potential
side effects would be meaningful for better understanding
of the toxicological aspects as well as for predicting the
efficacy of chemotherapies using prooxidative anticancer
drugs with undetectable side effects. Although several pre-
vious studies have investigated the modes of action for
prooxidant drugs, pharmacogenomic studies evaluating
the drug treatments are still required to elucidate the exact
anticancer mechanisms and potential molecular targets.
Our review will help researchers better understand the
current gene-targeting anticancer strategies involving pro-
oxidative drugs in order to overcome their controversial
side effects.
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