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The polysaccharides (PS) have been widely used as biomaterials in drug delivery,

due to their excellent biocompatibility, ease of functionalization, and intrinsic biological

activities. Among the various PS-based biomaterials, the self-assembled PS nanogels

(NG) featuring facile preparation are attracting evergrowing interests in various biomedical

applications. Specifically, NG derived from the self-assembly of natural PS well maintain

both the physicochemical and biological properties of PS while avoiding the chemical

modification or alteration of PS structure, representing a potent drug delivery system for

various therapeutic agents. In this review, the natural PS, such as chitosan, alginate, and

hyaluronan, for self-assembled NG construction and their advantages in the applications

of drug delivery have been summarized. The residues, such as amine, carboxyl, and

hydroxyl groups, on these PS provide multiple sites for both ionic cross-linking and metal

coordination, which greatly contribute to the formation of self-assembled NG as well as

the drug loading, thus enabling a wide biomedical application of PS NG, especially for

drug delivery. Future developments and considerations in the clinical translation of these

self-assembled PS NG have also been discussed.
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INTRODUCTION

Nanogels (NG) are nanoscale hydrogels that are composed of a three-dimensional network of
polymers with the ability to adsorb a large amount of water. The NG has the merits of most of the
nanoparticles (NP) for the applications of drug delivery, while it also possesses its own beneficial
features due to its unique physiochemical properties (Soni et al., 2016; Xu et al., 2017). With a
rational design, NG can have high hydrophilicity, tunable size and porosity, deformability, and
degradability. The NG with an appropriate size (i.e.,∼10–200 nm) can mediate the selective tumor
accumulation for anticancer drug delivery by taking advantages of the enhanced permeabilization
and retention (EPR) effect and the targeting ligands attached on the NG (Kobayashi et al., 2014;
Hartshorn et al., 2018; Cuggino et al., 2019). The gelation of hydrophilic polymer generates
NG, and meanwhile, the cross-linking degree controls the NG softness. The softness is a key
parameter for the interaction of NP with the biological system (Li et al., 2020). For example, NG of
different softness demonstrates a varied cellular uptake (Guo et al., 2018; Zhang et al., 2020). The
deformation of NG allows it to pass through the pores that are smaller than the hydrodynamic
size of NG, which plays an important role in the in vivo circulation and accumulation of NG
at the disease site, e.g., tumor (Hendrickson and Lyon, 2010; Anselmo et al., 2015). The porous
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structure of NG provides large spaces for drug loading such as
small-molecule drugs, nucleic acids, and proteins (Mauri et al.,
2018; Suhail et al., 2019). The release speed of the drugs, a key
factor for the drug delivery system, could be tuned by controlling
the cross-linking degree of NG. More importantly, NG are
generally hydrophilic and can be degraded when degradable
or natural polymers are adopted as NG matrix. Among the
naturally occurring polymers, polysaccharides (PS) represent one
of the most prevalent biomacromolecules to construct NG for
drug delivery.

Polysaccharides are biopolymers composed of repeated
monosaccharides linked by glycosidic bonds. Different
monosaccharides and their glycosidic linkage patterns generate
various PS such as chitosan (CS), alginate (ALG), and hyaluronan
(HA) (Liu et al., 2008). PS could be digested by various enzymes
and recycled when used as biomaterials in the body. Most of
the PS demonstrate low toxicity and immunogenicity, which
make them appealing for various biomedical applications such
as drug delivery (Barclay et al., 2019). In addition, some PS
also demonstrate intrinsic biological activities. For example,
HA could be specifically recognized by CD44, a receptor
overexpressed on many cancer cells. Consequently, the HA-
based nanocarriers could be used for CD44-targeted anticancer
drug delivery (Spadea et al., 2019; Gao et al., 2021). The
cross-linking of PS through chemical reactions, such as UV light
radiation and glutaraldehyde treatment, can generate PS NGwith
good stability (Debele et al., 2016). The chemical modification of
PS provides flexible options to construct NG and load cargoes;
however, it may not only compromise the biocompatibility but
also influence the biological activities of PS. A high degree of
chemical modification could retard the degradation of HA and
also compromise the CD44-targeted effects (Bhattacharya et al.,
2017; Kim et al., 2019). Self-assembled NG based on natural
PS would maintain their biological activities and meanwhile
provide the physicochemical properties of NG for drug delivery.
The functional groups of PS can also mediate different non-
covalent interactions. Specifically, the hydroxyl group of PS can
mediate the hydrogen bonding while the amine and carboxyl
groups can take part in both electrostatic interaction and
metal coordination (Giammanco et al., 2015; Debele et al.,
2016; Kim et al., 2017). These non-covalent interactions can
involve multiple monosaccharide units simultaneously to cause
both intermolecular and intramolecular cross-linking of PS,
inducing the formation of self-assembled NG. The preparation
of self-assembled PS NG requires neither chemical reactions
nor a complicated purification process, representing a facile and
cost-effective fashion to construct nanocarriers for drug delivery.
The common self-assembly of native PS is mainly mediated
by the physical cross-linking either through ionic gelation or
through metal coordination, which is reversible. Depending on
the PS type, the resultant NG can further entrap various drugs
through electrostatic interaction, hydrophobic interaction, and
π-π stacking, thus helping solubilize the drugs as well as increase
their bioavailability. Furthermore, the non-covalent interactions
between the encapsulated cargoes and PS were also believed to
stabilize the self-assembled NG (Zhang and Tung, 2017; Cai
and Lapitsky, 2020). In this review, we mainly focused on the

self-assembly of native PS, such as CS, ALG, and HA (Table 1),
and the related NG for drug delivery. The characteristics of these
PS and the representative strategies to prepare the self-assembled
NG are summarized. Ionic interaction and metal coordination
are the main routes employed to initiate the self-assembly of
NG. Recent progress of the self-assembled PS NG for drug
delivery is introduced with a focus on both the advantages and
the challenges to realize the efficient drug delivery. Finally, a
perspective for the future development of self-assembled PS NG
in translational medicine has been discussed.

SELF-ASSEMBLED CHITOSAN (CS) NG

Among the self-assembled PS NG, CS is the most prevalent
PS utilized to deliver various types of drugs. CS is a positively
charged and linear PS consisting of N-acetyl-D-glucosamine
(i.e., 2-acetylamino-2-deoxy-D-glucose) units linked by β-1,4
linkages. CS is produced by the deacetylation of chitin, which
is the second most abundant PS on earth (Miao et al.,
2018; Qu and Luo, 2020). The CS-based products have been
widely used in the food and cosmetic industry as well as
medicine such as wound dressing (Morin-Crini et al., 2019). In
addition, the bioactivities of CS include antibacterial, antifungal,
anti-HIV-1, and antioxidant activities (Cheung et al., 2015).
When used in drug delivery, the CS-based NP demonstrate
good biodegradability, low toxicity, and mucoadhesive ability
(Lapitsky, 2014; Swierczewska et al., 2016). The CS shows poor
water solubility at neutral pH, while the acidic environment
(i.e., pH < 6.5) and improved deacetylation can help solubilize
the CS (Miao et al., 2018). Due to its primary amino
groups, CS appears to be positively charged, which confers its
excellent ability to bind anionic therapeutics in drug delivery
(Debele et al., 2016; Ojeda-Hernandez et al., 2020). The ionic
gelation of CS is one of the most attractive methods to
formulate the self-assembled CS NG, which does not require
chemical reactions.

The positive charges of CS allow it easily to interact with
polyanionic molecules to form hydrogels. Tripolyphosphate
(TPP) is the most widely used non-covalent cross-linker for
CS due to its non-toxic and multivalent properties (Fan et al.,
2012; Fischetti et al., 2020). The negative charges of TPP could
efficiently interact with amines on CS through electrostatic
interaction, which leads to CS cross-linking and thus the
formation of NG. The CS/TPP NG was able to withhold anionic
drugs through their electrostatic interaction with CS (Figure 1A).
First, Calvo et al. demonstrated that the CS together with
polyethylene oxide copolymer could be physically cross-linked
by TPP to form NG ranging from 200 to 1,000 nm to load
bovine serum albumin (Calvo et al., 1997). Currently, the typical
preparation of drug-loaded CS/TPP NG only requires the mixing
of CS, TPP, and the drug of interest followed by a purification
procedure. During the self-assembly process, the parameters,
such as the pH, temperature, concentrations of TPP and drugs,
and the molecular weights of CS, are the key factors to control the
physicochemical properties of the CS/TPP NG (Fan et al., 2012;
Desai, 2016; Sreekumar et al., 2018). Due to the facile preparation,
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TABLE 1 | Key features of polysaccharides discussed in this review.

PS Molecular structure Sugar units Representative biomedical

applications

Biological activity(s) for drug

delivery

CS D-glucosamine,

N-acetyl-D-glucosamine

Cosmetics, wound dressing,

hemostatic agent, etc.

Encapsulation of anionic drug,

mediating endosomal escape of

drugs

ALG D-mannuronic acid, L-guluronic

acid

Food additive, dental

impressions, wound dressing,

etc.

Encapsulation of cationic drugs

HA D-glucuronic acid,

N-acetyl-D-glucosamine

Dermal fillers, joint lubrication,

preventing postoperative

adhesions, eye drops, etc.

Intrinsic targeting effect for HA

receptors, e.g., CD44

PS, polysaccharides; CS, chitosan; ALG, alginate; HA, hyaluronan.

a quick survey of self-assembly conditions for CS/TPP NG as
well as the large-scale manufacturing is possible. An increasing
number of anionic drugs, such as small-molecule drugs, nucleic
acids, and proteins, have been successfully encapsulated in
CS/TPP NG to realize various therapeutic applications (Nogueira
et al., 2013; Desai, 2016; Jamil et al., 2016). Recently, Abbaszadeh
et al. reported that the CS/TPP NG loaded with quercetin could
potentially function as both antibiotic and anticancer agents
(Abbaszadeh et al., 2020). When compared with the small-
molecule drugs, the delivery of nucleic acids, such as genes,
messenger RNA (mRNAs), and small interfering RNA (siRNAs),
faces more challenges due to their vulnerability to nuclease
degradation and poor capability to cross the cell membrane.
Besides, the endosomal escape of nucleic acids was necessary to
ensure an effective transfection, since nuclear and cytoplasmic
locations are essential for gene and siRNA delivery, respectively
(Degors et al., 2019). The positively charged CS could efficiently
bind and compact the nucleic acids, thus protecting them from
nuclease degradation. Katas et al. demonstrated that, compared
with the direct complexation of CS and siRNA, the CS/TPP
NG mediated a better RNA interference (RNAi) effect that was
presumably due to the improved binding and loading of siRNA
in the NG (Katas and Alpar, 2006). On the cellular uptake of
CS/TPP NG, CS can also mediate the endosomal escape of the
nucleic acids, since amines of CS induce the proton sponge effect
to mediate endosomal destabilization (Nasti et al., 2009; Richard
et al., 2013). Similar to nucleic acid delivery, CS/TPP NG could
load different proteins, protect them from enzyme degradation,
and realize their cytosol delivery (Xu and Du, 2003; Renu and
Renukaradhya, 2020). Although the cationic property of CS/TPP
provides a flexible delivery platform for different types of drugs,
it also brings unnecessary effects. In the case of protein delivery,
the strong positive charges of CS may induce the conformational
change of protein, which inevitably compromise the protein
activity (Bekale et al., 2015; Moraru et al., 2020). Additionally,

positively charged CS/TPP NG may damage the cell membrane,
causing unexpected cell toxicity (Bowman and Leong, 2006).
Similar to other cationic NP, CS/TPP NG also induce the non-
specific adsorption of proteins from the biological fluid, which
may not only change the size of NP but also affect the in vivo
circulation (Corbo et al., 2016; Moraru et al., 2020). To reduce the
positive charges of CS/TPP NG, other anionic polymers could be
co-encapsulated to neutralize a part of the positive charges, thus
potentially reducing the non-specific side effects.

SELF-ASSEMBLED ALGINATE (ALG) NG

ALG is the second most used PS to construct ionic hydrogels
for different biomedical purposes. ALG is a linear anionic PS
mainly derived from brown algae and bacteria, consisting of β-
D-mannuronic acid (i.e., M units) and α-L-guluronic acid (i.e.,
G units) (Debele et al., 2016; Miao et al., 2018). ALG has been
approved as food additives and widely used in biomaterials
researches ascribing to its minimal toxicity, low cost, ease
to formulate hydrogels, and mechanical flexibility (Lee and
Mooney, 2012). The functional groups of ALG, such as hydroxyl
and carboxyl groups, can non-covalently interact with divalent
cations, such as Ca2+, Zn2+, and Mn2+ (Russo et al., 2007;
Brus et al., 2017), which mediate the ionic gelation and the
NG formation. The G residues of ALG show a high affinity to
divalent cations such as Ca2+ than M residues. Consequently,
ALG with more G blocks leads to hydrogels of better stability
compared with ALG that is rich in M blocks (Debele et al.,
2016). Nevertheless, the self-assembly of ALG mediated by the
electrostatic interaction with cations enables a facile preparation
of drug-loaded NG. The resultant NG features the flexibility to
deliver different drugs such as chemotherapeutics for cancer,
insulin for diabetes, and antibiotics for infection diseases
(Severino et al., 2019).
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FIGURE 1 | The representative self-assembled nanogels based on the natural polysaccharides (PS) for drug delivery. The order of mixing PS, drugs, and ionic

cross-linkers could be varied during the self-assembly process. (A) CS/TPP nanogel, (B) ALG/Ca2+ nanogel, (C) HA/Cis nanogel.

Calcium is the most extensively used cation for ALG NG
preparation since it is an essential element for the body and
easily accessible. First, Grant et al. reported that the ionic
interaction between G blocks and Ca2+ formed an “egg-box”
structure and contributed to the physical cross-linking of ALG
(Grant et al., 1973; Hu et al., 2021). The Ca2+-mediated
gelation could initiate the formation of ALG/Ca2+ NG to
encapsulate different drugs through self-assembly (Figure 1B).
Under the selected preparation conditions, a direct mixing of
ALG and Ca2+ could generate drug-loaded NG without the
involvement of solvents (Xue et al., 2015; Bazban-Shotorbani
et al., 2016). Xue et al. demonstrated that doxorubicin could
be electrostatically self-assembled into the ALG/Ca2+, and
thus the NG showed a pH-responsive drug release behavior,
excellent compatibility, and anticancer effect (Xue et al., 2015).
Generally the ALG/Ca2+ NG formation is mainly dependent
on the non-covalent interactions between ALG, Ca2+ and the
encapsulated drugs. The concentration of each component,
the cross-linking time, and the pH to prepare NG could
control the final parameters of ALG/Ca2+ NG such as the
size, drug encapsulation efficiency, and drug release behavior

(Choukaife et al., 2020). Despite the facile preparation and
promising biomedical applications of the self-assembled ALG
NG, a comprehensive evaluation of the biocompatibility of ALG
is also required for the applications of drug delivery. Most of
the ALGs are extracted from algae and bacteria, and meanwhile
the preparation of ALG NG may require the assistance of
solvent. The impurities, such as endotoxin and residual solvent in
ALG NG, could also induce unexpected side effects. Endotoxins
are reported to induce immunogenicity and thus compromise
the biocompatibility of ALG NG (Lee and Mooney, 2012;
Choukaife et al., 2020). The direct self-assembly of purified
ALG and drug without the involvement of strong solvent may
represent a potent strategy for drug delivery with improved
safety profiles.

SELF-ASSEMBLED HYALURONAN (HA) NG

Besides the CS andALG, the reports of HA for PSNGpreparation
are increasing quickly for the past decade. HA, also named as
hyaluronic acid and hyaluronate, is a linear and non-sulfated PS
composed of repeating disaccharides of D-glucuronic acid and
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N-acetyl-D-glucosamine units (Jeong et al., 2008). HA is highly
negatively charged and a major component of the extracellular
matrix of mammalian cells (Debele et al., 2016; Miao et al.,
2018; Yu et al., 2020). Due to its excellent biocompatibility, low
cost, non-immunogenicity, and water-binding properties, HA
has been used for dermal filler, joint lubrication, prevention of
surgical adhesion, dietary supplements, and eye drops (Valachova
et al., 2016; Kim et al., 2017). HA could be specifically recognized
by its receptors such as CD44, endocytosed and trafficked to
endolysosomes, degraded by hyaluronidase, and then recycled
for HA synthesis (Gao et al., 2021). Consequently, the HA-based
drug delivery system could realize CD44-targeting as well as
hyaluronidase-responsive drug delivery for different cancers. The
carboxylic acid, N-acetyl groups, and primary and secondary
hydroxyl groups on HA provide chemical modification sites to
produce numerous HA derivatives, such as HA-drug conjugates,
which have entered the clinical trials (Miao et al., 2018). The
carboxyl groups of HA also provide non-covalent cross-linking
sites for both Fe3+ and cisplatin to generate NG through self-
assembly (Jeong et al., 2008; Isayeva et al., 2010; Tian et al., 2016;
Zhang and Tung, 2017).

Currently, the most used non-covalent cross-linker for HA
NG is the cisplatin. Cisplatin is a first-line chemotherapeutics
for multiple cancers. After the cellular uptake, cisplatin could be
aquated and thus get activated in the cytosol (Johnstone et al.,
2016). The anticancer activity of cisplatin relies on the DNA
cross-linking mediated by the platinum coordination. Similar
to its coordination with DNA, cisplatin could also coordinate
with the carboxyl groups of various polymers, e.g., HA (Uchino
et al., 2005; Jeong et al., 2008; Zhang et al., 2017). The early
preparation of HA and cisplatin (HA/Cis) NG employs the silver
nitrate to induce the cisplatin aquation, which facilitates its
coordination with HA (Cai et al., 2008; Jeong et al., 2008). A
simple heating of HA and cisplatin was then found to be capable
of accelerating the self-assembly process and thus efficiently
tuning the size of the resultant NG (Li and Howell, 2010). The
cisplatin in HA/Cis NG not only functions as a cross-linker
during the NG formation but also acts as a drug on its release. The
existence of chloride reverses the coordination between cisplatin
and HA, which could realize a controlled release of cisplatin and
thus reduced its notorious side effects in cancer chemotherapy
(Cai et al., 2010; Ishiguro et al., 2016). Interestingly, HA and
cisplatin could also be co-assembled with a second drug to form
multidrug NG (Figure 1C), thus easily realizing the combination
therapy especially for cancer (Zhang and Tung, 2017). The
cationic-aromatic drugs (CA drugs) containing aromatic ring
and positive charges, such as chemotherapeutics (Zhang et al.,
2017, 2018; Yu et al., 2020; Ma et al., 2021), kinase inhibitors
(Zhang and Tung, 2017), and photosensitizers/dyes (Zhang and
Tung, 2018a), could be easily self-assembled into the HA/Cis
NG. The positive charges of CA drugs are believed to interact
with HA through electrostatic interaction while the aromatic ring
contributes to the hydrophobic interaction and π-π stacking
of drugs, which collectively facilitates the encapsulation of CA
drug into the NG. Typically, heating of the mixture of HA,
cisplatin, and CA drugs could produce a multidrug HA NG.
The heating time, ratio of cisplatin to CA drug, and the CA

drug identity were found to determine the final physicochemical
properties of the NG such as size, the encapsulation efficiency
of drug, and the release speed of drug (Zhang and Tung, 2017).
Currently, doxorubicin, gefitinib, dasatinib, toluidine blue, etc.
have been successfully co-assembled into the HA/Cis NG (Gao
et al., 2021). The HA/Cis NG with doxorubicin encapsulation
demonstrated a pH- and GSH-responsive release behavior, which
was able to help combat the cancer drug resistance (Zhang
and Tung, 2018b; Ma et al., 2021). Generally, the HA/Cis NG
could efficiently realize a CD44-targeted delivery for cancers
such as cisplatin monotherapy and cisplatin-based combination
therapy. However, cisplatin as a cross-linker in HA/Cis NG
inevitably limits its application to malignant diseases. After the
self-assembly of HA, cisplatin and CA drugs, a simple dialysis
in phosphate-buffered saline (PBS) could remove the cisplatin
while keep the CA drugs retained in the NG (Zhang et al.,
2017). Subsequently, cisplatin could also be a removable cross-
linker to help construct self-assembled HA NG loaded with
a single drug, which potentially extends the application of
HA NG to other non-cancerous diseases. Different CA drugs
could be self-assembled into the HA/Cis NG, and it is still a
challenge to realize the macromolecular drug delivery using the
native HA.

CONCLUSIONS AND PERSPECTIVES

The ionic gelationmediated by electrostatic interaction andmetal
coordination has provided a very facile and biocompatible option
to construct the drug-loaded NG through the self-assembly of
natural PS such as CS, ALG, and HA. Other than the three
PS discussed earlier, ionic gelation of gellan gum and pectin
with cationic ions were also used; however, the applications
of these PS NG were relatively rare (Racovita et al., 2009;
Pedroso-Santana and Fleitas-Salazar, 2020). Future efforts can
also focus on exploring different PS NG using the self-assembling
strategy for drug delivery. A full understanding of themechanism
between the self-assembly of native PS, ionic, or metal cross-
linkers as well as the drug of interest will help quickly obtain
the drug-loaded NG with desired properties. For example, the
gelation of CS by the TPP was occurred instantly, which made
the mechanism study of the NG formation more challenging
(Desai, 2016). Adding sodium chloride during the CS/TPP NG
preparation could screen the charges and slow the gelation
process, which also helped narrow the NG distribution with
improved stability (Huang and Lapitsky, 2011, 2017). In terms
of the application of drug delivery, ideally, the drug needs to
be specifically delivered to the site of action while reducing
its non-specific toxicity as much as possible, which requires
the nanocarriers to overcome different barriers in the body
(Polo et al., 2017; Mitchell et al., 2021). The self-assembled PS
NG provide multiple benefits to overcome a part of the above
barriers. However, disadvantages also existed for each specific
PS NG in the drug delivery. The hydrophilic HA itself has an
antifouling property, and meanwhile, it could mediate a targeted
delivery of drugs to the tumor with CD44 overexpression (Xia
et al., 2019; Lee et al., 2020). However, most of the HA NP
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are retained in the endolysosomes following the trafficking of
HA, which largely prevents the delivered drugs to access their
molecular targets and subsequently limits the final therapeutic
efficacy. To increase the cytosolic drug delivery of HA NG,
the improvement in their lysosomal escape capability may also
be considered. Currently, several applications of PS-based drug
delivery are in different phases of clinical trials (Miao et al.,
2018). Although most of them are PS-drug conjugates, the
successful demonstration of these PS-based formulations in
patients strongly supports the promising therapeutic benefits of
PS as a drug carrier. For example, the self-assembled HA/Cis
NG (HylaPlat) is being evaluated in phase I/II clinical trial for
cancers in dogs (Cai et al., 2016). Generally, the self-assembled
NG using the native PS that are free of chemical reactions and
meanwhile with ease to scale up will have their own advantages
for the translational applications. Before their clinical translation,
a thorough evaluation of the therapeutic efficacy as well as

the comprehensive safety evaluation are highly recommended

using the clinically relevant animal models according to the
independent application.
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