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Metabolomics is a rapidly expanding field of systems biology that is gaining significant 
attention in many areas of biomedical research. Also known as metabonomics, it
comprises the analysis of all small molecules or metabolites that are present within an 
organism or a specific compartment of the body. Metabolite detection and quantification 
provide a valuable addition to genomics and proteomics and give unique insights into 
metabolic changes that occur in tangent to alterations in gene and protein activity that 
are associated with disease. As a novel approach to understanding disease, metabolo-
mics provides a “snapshot” in time of all metabolites present in a biological sample such 
as whole blood, plasma, serum, urine, and many other specimens that may be obtained 
from either patients or experimental models. In this article, we review the burgeoning field 
of metabolomics in its application to acute lung diseases, specifically pneumonia and 
acute respiratory disease syndrome (ARDS). We also discuss the potential applications 
of metabolomics for monitoring exposure to aerosolized environmental toxins. Recent 
reports have suggested that metabolomics analysis using nuclear magnetic resonance 
(NMR) and mass spectrometry (MS) approaches may provide clinicians with the oppor-
tunity to identify new biomarkers that may predict progression to more severe disease, 
such as sepsis, which kills many patients each year. In addition, metabolomics may 
provide more detailed phenotyping of patient heterogeneity, which is needed to achieve 
the goal of precision medicine. However, although several experimental and clinical
metabolomics studies have been conducted assessing the application of the science 
to acute lung diseases, only incremental progress has been made. Specifically, little is 
known about the metabolic phenotypes of these illnesses. These data are needed to 
substantiate metabolomics biomarker credentials so that clinicians can employ them for 
clinical decision-making and investigators can use them to design clinical trials.
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FiGURe 1 | The metabolome is tightly connected with other “omes.” The metabolome interacts and reflects the activity of the genome, transcriptome, and 
proteome.
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wHAT iS MeTABOLOMiCS?

Metabolomics is a new, rapidly expanding field of systems biology 
that has garnered significant interest in biomedical research. Its 
novel aspect involves the ability to generate a “snapshot” measure-
ment of all small molecules, chemicals, and metabolites that may 
be found in a given sample (1, 2). Because of the ability to analyze 
small molecules (3), which are a distinct class of compounds 
from RNA, DNA, and proteins, metabolomics provides a viable 
alternative to and can complement transcriptomics, genomics, 
and proteomics. Metabolomics has immense potential for the 
discovery of novel biomarkers through analysis of continually 
changing metabolic profiles in response to environmental expo-
sure to toxic substances as well as the manifestation of diseases 
(4, 5). Metabolomics, also known as metabonomics, can provide 
a readout of metabolic states in health and disease and identify 
markers of drug response (pharmacometabolomics). This infor-
mation is critical for connecting and integrating systems biology 
sciences (Figure 1).

A key concept in metabolomics is that changes that occur 
in the transcriptome, genome, or proteome are reflected in 
the metabolome. These result in alterations in metabolite 
concentrations in biological fluids and tissues. Interestingly, 
measurement of metabolites in samples from the human body 
is not a new notion as metabolic changes have been used as 
markers since ancient times in the diagnosis of several dis-
eases (6). The diagnosis of diabetes mellitus was based on 
the sweet taste of urine from patients with Type I diabetes, 
caused by excessive urinary excretion of glucose as a small 
metabolite. This led to the development of analytical tools that 
were implemented more than 100  years ago, and are still in 
use today, to measure small molecule metabolites in a variety 
of body samples.

There are several major advantages to metabolomics over tra-
ditional clinical chemistry. The first is that advancements in com-
putational technologies allow for the interpretation of metabolite 
data in the context of its relationship to metabolic pathways (6–8). 
In addition, recent improvements in the sensitivity and specificity 
of small molecule detection allow for the characterization and 
quantification of complex metabolic profiles in biological sam-
ples, which result in the simultaneous measurement of dozens, or 
even hundreds, of metabolites in a single sample (9, 10).

To understand the contribution that metabolomics may make 
to other fields in systems biology, it is useful to compare the 
impact that physiological and environmental influences have on 
genomics, proteomics, and metabolomics. While genomic analy-
sis has identified a number of genes that have effects on the health 
status of the human body, proteomics has found comparatively 
fewer proteins, and still fewer disease-associated metabolites 
have been validated for clinical applications using metabolomics. 
However, because the metabolome is much more dynamic than 
either the genome or proteome, metabolomics has the ability to 
detect changes in metabolites resulting from physiological and/
or environmental events over shorter time scales (11, 12). This 
makes metabolomics a powerful approach for the detection of 
temporal physiological changes in real time and allows its use 
as a monitoring approach for potential environmental insults, 
disease progression, or drug response. In this way, for example, 
it is possible to monitor time dependent, infection-induced 
changes in metabolites due to various strains of pneumonia-
causing bacteria, which return to levels associated with health 
upon resolution of infection (13). This level of detail could be 
particularly important for driving efforts in precision medicine 
for which reliable and reproducible biomarker credentials (14) 
are needed for well-informed clinical decision-making and the 
design of clinical trials (15).
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BiOMARKeRS ARiSiNG FROM SYSTeMS 
BiOLOGY APPROACHeS

There are numerous metabolomic and clinical chemistry stud-
ies that reproducibly demonstrate that metabolites are highly 
predictive for a large proportion of complex diseases (16). Thus, 
metabolomics offers significant opportunities for the advance-
ment of biomarker discovery and analysis in disease diagnostics. 
Furthermore, exposure to drugs and environmental insults is 
readily assessed and monitored over time by the application of 
metabolomic analysis to a wide variety of body samples includ-
ing saliva, nasal lavage, exhaled breath condensate, sweat, blood, 
plasma, serum, urine, and feces, among many others (3, 17). 
Examples of metabolite biomarkers include glucose, used to 
diagnose diabetes, creatinine to detect kidney disease, cholesterol 
and triglycerides to determine the risk of cardiovascular disease, 
uric acid to detect gout, and thyroxine hormone to indicate hypo/
hyperthyroidism (6, 16).

We have historically adhered to the concept that each disease 
can be monitored or diagnosed with a single biomarker. However, 
this limits the accuracy, precision, and sensitivity/specificity of 
the detection and diagnosis of disease or changes in the environ-
ment. New and developing systems biology technologies and 
the wealth of information acquired about any given patient (18) 
suggest that we may be able to use a compilation of biomark-
ers to describe a given disease, which then greatly enhances 
disease detection and environmental changes. Here, we discuss 
the potential applications for how to perform metabolomics 
analysis. In addition, we summarize the current understanding of 
metabolomics analysis of community-acquired pneumonia and 
acute respiratory distress syndrome (ARDS). We also explore the 
potential for metabolomics analysis of biological samples from 
healthy individuals exposed to environmental toxins that may 
result in acute respiratory diseases.

MeTABOLOMiCS STUDY DeSiGN, 
SAMPLe COLLeCTiON, AND 
MANAGeMeNT

Study Design
As with any scientific study, the design of a metabolomics experi-
ment depends on the scientific question under consideration. 
A targeted metabolomics approach, where specific metabolites are 
measured, is best suited for testing specific hypotheses, whereas 
untargeted approaches that measure all detectable compounds 
are most often used for hypothesis-generating studies.

The choice of model system (e.g., human, animal model, 
mammalian cell culture) determined by the experimental ques-
tion also has implications for study design and sample size. 
For example, inter-individual variation in most animal studies, 
where the genetic background, diet, and other environmental 
factors are relatively homogeneous and can be easily controlled, 
is minimized. Since these factors cannot be easily controlled in 
clinical cohorts, human studies usually require larger sample 
sizes. Clinical variables have to be carefully matched between 
cases and controls. These include age, weight/body mass index, 

sex, diet, medication, smoking history, etc., which have been 
discussed in detail in a number of metabolomics review papers 
(19–23) and most certainly apply to the design of metabolomics 
studies of patients with acute lung disease. Mammalian cell 
culture studies, where the sources of variation can be controlled, 
require a smaller sample size but also have unique considerations 
(24). These include the decision whether to analyze either cell 
metabolites (endometabolome) or cell culture media metabolites 
(exometabolome) or both. Importantly, regardless of the model 
system used, most metabolomics assays simultaneously measure 
hundreds or even thousands of metabolites. This makes multi-
ple statistical tests necessary for the analysis of these data (see 
Statistical Analysis), which can lead to high false discovery rates 
(FDR) (25). Various statistical approaches can be used to account 
for the errors introduced by multiple hypothesis testing, which 
also makes the number of detected metabolites an important 
factor in determining the appropriate sample size for a metabo-
lomics study.

For the understanding of new diagnostic and prognostic 
approaches in metabolomics analysis of acute lung diseases, 
it is important to consider design options for cross-sectional 
and other types of clinical studies (23). Patient selection must 
include a matching of cases/controls that consider confound-
ing factors, for example, factors that influence both the disease 
state and biomarker concentrations. In addition, a sample size 
calculation should be carried out with sufficient numbers for 
internal and external validation to avoid false discoveries in 
metabolomics (25).

Sample Collection, Handling, and Storage
The most critical aspect of sample collection is consistency. This 
becomes particularly important for the studies that span consid-
erable periods of time like clinical trials that can be conducted 
over several years. A standard operating procedure for sample 
acquisition, processing, and storage should be developed prior 
to study implementation and followed judiciously by all study 
personnel. The most common problem is variation in the dura-
tion of time that a sample sits at room temperature before it is 
stored (26). Following collection, samples should be kept cold 
or frozen and stored (preferably −80°C) as soon as possible to 
minimize metabolite degradation. Sample stability varies widely 
between different sample types (27–32). In addition to expedi-
tious sample handling, general sample handling practices (e.g., 
avoiding unnecessary freeze/thaw cycles) should be followed 
(33, 34). Other considerations for animal studies include 
variation introduced by anesthesia or euthanasia at the time of 
sample acquisition. For example, Overmyer et al. showed that use 
of continuous isoflurane in mouse models led to more consistent 
metabolomics data compared to other methods of anesthesia or 
euthanasia (35).

Most biological samples, with the exception of urine (17, 36), 
require the removal of macromolecules by either chemical extrac-
tion (e.g., methanol) or filtration in advance of metabolomics 
assay (9, 21). Over the past several years, specific protocols 
have been developed for processing different types of biological 
samples (30, 37–39). We refer the readers to these references for 
specific details on these protocols.
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Pooled quality control/quality assurance (QC/QA) samples 
must be included in the sample train to gage variance in data 
acquisition. These QC/QA samples should be measured as one 
in every 10 samples of the sample order, and their peak heights 
and positions compared between measurements to ensure that 
the quality of data is robust throughout sampling. Ideally, two sets 
of QC/QA sample should be obtained, with one set containing 
signals that approximate a negative control (e.g., a control group 
with baseline signals), and the second set containing signals that 
resemble a positive control (e.g., a test group with maximally 
differing signals because of changed conditions) (25, 40).

ANALYTiCAL TeCHNiQUeS

Metabolites can be measured by a number of different tech-
niques but the primary analytical platforms that are used in 
metabolomics are mass spectroscopy (MS) and one dimensional 
(1D) proton (H) nuclear magnetic resonance (NMR) (21, 41, 
42). There are advantages and disadvantages to each and, 
importantly, no single method captures all classes of metabolites 
present in the metabolome (9). The type of sample or biofluid 
can also influence the choice of analytical technique (26, 29, 
43). A brief overview of these methods is presented below; more 
detailed descriptions of these platforms have been recently 
published (42, 44–48).

Nuclear Magnetic Resonance
Single proton NMR (1H-NMR) involves the use of a large and 
powerful magnet to align protons that are present in a sample that 
is placed in an NMR glass tube. There are several types of magnets 
that can be used, ranging from 400 to 900 MHz. The higher the 
value, the more sensitive the magnet is to lower concentrations 
of metabolites or proteins in a sample. Magnets may be equipped 
with a robot sample handler, which allows users to sequentially 
assay and to automatically analyze samples without the need 
to manually insert samples into the magnet at the end of each 
spectral run.

Proton NMR is based on the principle that protons resonate 
in a high magnetic field. A high power short duration radio 
frequency pulse causes the absorption and subsequent release of 
electromagnetic radiation, which varies for a compound based 
on the location (e.g., energy state) of its associated protons. This 
leads to the generation of a small NMR response, also known as a 
free induction decay (FID). When the FID is Fourier transformed 
(49), these signals are translated into peaks that are displayed 
across a spectrum with units of parts per million (ppm) to 
distinguish their positions (i.e., chemical shift) (Figure 2). The 
chemical shifts of these peaks are affected by the proximity of 
electronegative groups such as nitrogen, oxygen, carbonyls, 
double bonds, halogens, etc., which influences the place of each 
type of proton on the spectrum. Every metabolite has its own 
unique NMR spectrum that represents the environment of each 
proton. These resonances are further split by interaction with 
protons on neighboring carbon atoms. The area under the peak 
is directly proportional to the concentration of each metabolite, 
which can be calculated with the use of an appropriate internal 
standard (e.g., DSS).

Consistency in the NMR pulse sequence is a key. As long as 
the same methodology (i.e., field effect pulses, gradients, delays, 
power levels) is used, and the method components are properly 
calibrated for delivered performance, then the result should be 
evaluated on solvent suppression and any residual or unexpected 
stray suppression throughout the rest of the spectrum. The 
optimal NMR pulse sequence is the one that works consistently 
for the respective instrument and is one that can be reliably 
reproduced. In addition, the type of spectral analysis software 
that will be used, such as Chenomx software,1 for determining 
the identities and concentrations of metabolites in a spectrum 
may also influence the choice of pulse sequences.

The advantage of using NMR is that almost every biological 
compound has a distinct and reproducible NMR signature. This 
makes it possible to calibrate the magnet for each compound 
using purified standards. Each compound gives either single or 
multiple peaks, depending on the number of protons present in 
the molecule if using 1H-NMR. Metabolite detection by NMR is 
unique in that it is non-destructive to the sample, and in some 
cases, it is possible to return samples (e.g., urine) unaltered to the 
investigator following assay. This allows conformation by other 
techniques or re-testing later if desired.

It can be deceptively difficult to have multiple instruments, 
possibly in quite distant facilities, provide accurate and precise 
results for comparisons, but it can be done (36). If the instru-
mentation is well understood and operated by a knowledgeable 
spectroscopist, then after the initial investment of setup time, 
consistent data should be relatively easy to obtain. The primary 
spectroscopic requirements are that the pulse sequence compo-
nents (e.g., excitation pulse, power levels, and tune/match) are 
properly calibrated for delivered effect at the probe head. Proper 
use of controls at regular intervals then will lend confidence in the 
long-term performance.

Mass Spectroscopy
Mass spectroscopy generates metabolite spectral data as mass-
to-charge (m/z) ratios and relative intensities (41), but quantified 
data can be generated with the use of compound standards 
(Figure 3). For metabolomics studies, MS is most often preceded 
by either liquid chromatography (LC) or gas chromatography 
(GC) (Figure 4).

Liquid Chromatography-Mass Spectroscopy
Liquid chromatography-MS is the analytical approach that is 
most often used for metabolomics studies because it allows the 
detection of a broad range of different classes of metabolites (33, 
45, 50). There are a number of advantages to the use of LC-MS for 
metabolomics. It is sensitive to nanomolar concentrations; there 
is no need for sample derivatization (see GC-MS), and there is 
good coverage of mass range, which permits the detection of 
metabolites with different chemical properties. In addition, 
aqueous and lipid metabolites can be simultaneously assayed, 
and advancing technology is permitting greater separation and 
detection of metabolites including lipids (42). The disadvantages 

1 www.chenomx.com
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FiGURe 2 | Analysis of metabolites by nuclear magnetic resonance (NMR). Samples are inserted into a magnet from which FID data are collected and 
analyzed to generate spectra. Positions of metabolites are determined by multiple peaks occurring across a spectrum that correspond to purified standards for each 
individual metabolite. Areas under the peak curve correspond to the concentration of the metabolite. Shown here is a human urine sample with urea, creatinine, and 
citrate shown as a few examples of metabolites present in the sample.
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of LC-MS include its high variability, particularly across instru-
ments that it is not routinely quantitative, and there is no stand-
ardized metabolite library (21).

A critical component of the LC-MS assay is the type of 
chromatography column that is used because it determines the 
types of metabolites that will be detected (42, 51). In addition, 
the polarity and pH of the solvent that is used to move the sample 
through the LC column influences sample retention. Reverse-
phase columns, like C18 columns, provide good retention and 
separation of non-polar compounds (33, 42, 45, 51). Alternatively, 
hydrophilic interaction chromatography (HILIC) columns are 
better for the detection of polar compounds. Recent advances 
in LC-MS include the introduction of ultra performance liquid 
chromatography (uHPLC) (52), which detects smaller sized 
particles and has led to better peak capacity, greater resolution, 
and higher throughput due to shorter sample run times and capil-
lary electrophoresis (CE)-MS (48, 53), which has the capacity to 
separate complex mixtures with high resolution and minimum 
sample manipulation.

For the detection of metabolites by LC-MS, the sample must 
be ionized. The mass analyzer then determines the mass of the 

ionized compounds, which is reported as the m/z ratio (Figure 4). 
There are a number of different techniques for ionization, but 
electrospray ionization (ESI) is widely used because it generates 
both positive and negative ions (41, 45). Atmospheric pressure 
chemical ionization (APCI) is slightly less sensitive but works 
well with non-polar compounds such as lipids. For complex sam-
ples, matrix-assisted laser desorption/ionization (MALDI) is very 
useful and is highly sensitive, and it is the preferred approach for 
higher mass compounds. The primary disadvantage of MALDI 
is background interference, particularly with lower molecular 
weight compounds.

There are a number of options for the types of mass analyzers 
for coupling with LC (42, 46). The most common mass analyzers 
are the quadrupole, time of flight (TOF), and ion trap analyzers. 
Due to their relatively low cost, quadrupole analyzers are widely 
used. Triple quadrupole (QQQ) analyzers, in which three quad-
ropoles are combined in succession, allow for MS/MS, or further 
fragmentation of ions during analysis. TOF analyzers determine 
the m/z by accelerating ions and then measuring the time it takes to 
travel down a flight tube. TOF analyzers have high mass accuracy, 
are highly sensitive, and quickly acquire data. They can be coupled 
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FiGURe 3 | Representative mass spectroscopy (MS) spectrum 
following high performance liquid chromatography (HPLC). Initial data 
that are generated from liquid chromatography (e.g., HPLC, shown as an 
example in upper panel) which is often conducted prior to MS analysis (lower 
panel). The MS spectrum shows numerical values that correspond to the 
mass-to-charge ratio (m/z, x-axis) and relative intensity (y-axis) for each 
detected metabolite.
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with a quadrupole (Q-TOF), which is well suited for metabolite 
detection. Ion trap analyzers are similar to quadrupoles because 
they allow for detection of particular ions and are affordable. They 
trap ions of interest and accumulate them for better sensitivity or 
they can trap and fragment a specific ion multiple times; this is 
referred to as MSn but ion trap analyzers do not have the broad 
capabilities of QQQ analyzers. Newer technologies like Fourier 
transform ion cyclotron resonance (FT-ICR) have the highest 
degree of mass accuracy and have MS/MS and MSn capabilities 
but are limited by high cost.

Gas Chromatography-Mass Spectrometry
The advantage of GC-MS is that it is highly sensitive and specific 
for separation and detection of volatile metabolites such as 
organic acids (42, 44). In addition, spectral patterns and reten-
tion times of compounds are highly reproducible, which allows 
for the use of established compound libraries. Also, there is 
lower instrument-to-instrument variability, which is a limita-
tion of LC-MS. However, the use of GC-MS for metabolomics 
study is reserved for thermally stable volatile compounds that 
are of low polarity and primarily those that are amenable to 

derivatization, which aids in making compounds less polar and 
more stable. This process can lead to loss of metabolites, and 
incomplete derivatization can add spectral artifacts. Most often, 
chemical derivatization is performed using oximation reagents 
such as hydroxylamines or alkoxyamines, which react with 
aldehyde and keto groups. This is followed by silylation with 
N-methyl-N(trimethylsilyl)-trifluroacetamide (48); it can also 
be achieved with silylation alone. Silylation involves the replace-
ment of hydrogens in functional groups (e.g., –COOH) with a 
trimethylsilyl group [−Si(CH3)3] (54) (Figure  5). For GC-MS 
metabolomics studies of organ tissue, N,O-bistrifluroacetamide 
with trimethylchlorosilane has been used (48).

In GC-MS, a carrier gas propels the sample through the 
separation column, after which it is ionized by electron ionization 
(EI) or chemical ionization (CI) for detection by the mass spec-
trometer. EI is the most frequently used ionization technique, 
and mass analyzers are those which were described for LC-MS.

Applications of Capillary Electrophoresis for 
Metabolomics
Capillary electrophoresis, although used less frequently, presents 
a viable option for the detection of metabolic markers. It separates 
complex mixtures with high resolution and minimum sample 
treatment. A wide range of polar metabolites and ionic com-
pounds are amenable to CE separation, which makes it a com-
plementary tool to the LC and GC techniques described above. 
CE is often used in combination with EI-TOF-MS. Combining 
CE with MS is rather challenging, which limits the applications 
of this separation method (48, 55). Nevertheless, CE has been 
successfully applied for the identification of metabolic markers 
in serum, urine, cerebrospinal fluid, and cell lines (56–58). Naz 
et  al. recently published a CE-TOF-MS method that allowed 
identification of metabolic markers in an experimental model 
of ventilator induced lung injury (VILI) (53). Thus, MS coupled 
with chromatography represents a diversity of applications that 
may be useful for the detection and differentiation of diseases 
and environmental impact on clinical and experimental biofluids.

ANALYSiS OF MeTABOLOMiCS DATA

Analysis of metabolomics data encompasses a number of opera-
tions from initial processing used to perform quality assurance 
and quality control, imputation of missing data, normalization, 
and statistical analysis, to biological data interpretation. Initial 
data processing is platform specific and varies widely for the 
analytical platforms described in previous sections. Most instru-
ment vendors provide proprietary software for processing raw 
data that often include options for data normalization and basic 
statistical analysis. LC-MS, GC-MS, and NMR data processing 
have been extensively reviewed (6, 12, 42). Significant progress 
has been made in recent years to increase accuracy and reproduc-
ibility of LC-MS and GC-MS data and to automate processing 
of NMR data; however, there are still many unresolved issues. 
In general, the analysis of targeted metabolomics data is usually 
more straightforward. Analysis of untargeted metabolomics data, 
where not all metabolites are identified, is much more complex. 
In this section, we will primarily focus on the methods and tools 
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FiGURe 5 | Representative scheme of silylation. In this case, silylation 
using N-methyl-N(trimethylsilyl) trifluoroacetamide (MSTFA) as a type of 
derivatization can be done in preparation for gas chromatography (GC)-mass 
spectroscopy (MS).

FiGURe 4 | Analytical workflow of liquid chromatography (LC)-mass spectroscopy (MS). (A) An illustration of what happens to molecules during LC-MS. 
Neutral molecules may be ionized using a number of different techniques, but electrospray ionization is frequently used. Following ionization, negatively and 
positively charged compounds are generated. LC-MS conducted in negative and positive modes will detect negatively and positively charged ions, respectively. The 
read-out is a graphic representation of compounds as shown in Figure 3. (B) Elaborate equipment is needed to conduct LC-MS metabolomics. The initial step is 
chromatography followed by ionization and mass analysis of the molecules.
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for performing statistical analysis, biological data interpretation, 
and the identification of potential biomarker candidates.

Statistical Analysis
Statistical analysis is a critical part of any high-throughput study, 
and metabolomics is no exception. Several common types of 
analyses involve finding metabolites/features that differentiate 
experimental and control groups, and determining the extent of 
associations between metabolites and phenotypic or clinical vari-
ables. An important concept that became particularly apparent 
from gene expression profiling studies is the necessity to validate 
findings using a separate group of samples obtained from a dif-
ferent independent population (25). This becomes particularly 
important for building various classificatory and predictive 
models, which are the required step in biomarker discovery and 
the validation of biomarker credentials (14, 59). The choice of 
analytical technique has implications for the number of samples 
that should be collected, including biological and technical 

replicates, the type of controls, and other factors that may influ-
ence study outcome. As mentioned above, another important 
factor to be considered when choosing the appropriate sample 
size is that the biological variability of the metabolome is higher 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


FiGURe 6 | Different methods of analysis of metabolomic data. In this example, NMR spectra collected from control and diseased subjects may be analyzed 
by untargeted “binning” or targeted profiling, either of which can be subjected to PCA or PLS plotting.
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in the human population compared to well-controlled animal 
studies. All these parameters should be considered at the early 
stages of experimental design.

One common feature of all analytical techniques described 
above is that they produce complex multi-dimensional data sets. 
Therefore dimension reduction techniques, such as principal 
components analysis (PCA) and various clustering methods (e.g., 
hierarchical, or k-means clustering), provide a useful tool for the 
initial survey of the global properties of the data. For example, 
PCA is an approach that is frequently used to identify potential 
outliers and assess the overall quality of the data. Parametric 
statistical tests, such as the Student’s t-test for two experimental 
groups, or ANOVA for multiple groups, are often used to identify 
differentiating metabolites.

Given the large number of metabolites that can be measured in 
a single experiment, multiple tests have to be performed, increas-
ing the probability of type I error (false positives). To remedy 
this problem, test results have to be adjusted using family wise 
error rate or FDR (60, 61). In addition to these tests, fold change 
analysis is frequently used to determine the magnitude and direc-
tion of the change.

It is worth mentioning that statistical analysis can be per-
formed on either absolute concentrations or relative peak inten-
sities and does not require prior identification of metabolites, 
which is the basis of the chemometric, or “untargeted,” approach 
(62, 63). Despite recent progress in data processing algorithms, 
identifying and quantifying all peaks in a given NMR spectra or 
all features from a GC-MS or LC-MS experiment remain a time-
consuming and challenging task. A chemometric approach 
provides a viable alternative. For example, NMR spectra can 
be divided into “bins” of equal chemical shift intervals, often 
referred to as “binning” (Figure  6). The area of each bin is 
integrated, and statistical analysis can be performed to identify 
the spectral regions that differ between groups. These results 
can then be used to identify specific metabolites that contribute 

to the signal in that region. Untargeted GC-MS studies, and 
especially LC-MS studies, are characterized by the presence 
of multiple unknown features, some of which may be strongly 
associated with the disease or specific biological condition 
under study. Statistical analysis can be performed on those 
followed by computational and experimental analysis to verify 
their identity.

Chemometric approaches have been broadly used in animal 
and human studies for identification of disease biomarkers (19, 
64), as well as for assessing drug metabolism and drug safety (65). 
The advantage of chemometric methods is that they provide a 
practical way to deal with large volumes of data. An alternative 
approach, where quantitation and identification of the broad 
range of metabolites is performed up-front, also has merits; it 
permits the advantageous use of parametric statistics, pathway 
analysis, and hypothesis-generating tools that are described 
below and has the potential to provide broader context for data 
analysis.

Knowledge-Based Methods for Biological 
Data interpretation
Irrespective of the specific technique used, the output of statistical 
analysis is usually a list of metabolites that are significantly associ-
ated with a phenotype. A growing number of metabolomics as 
well as genomics and proteomics studies have shown that gaining 
biological insight from a list of differentially regulated molecules 
is challenging (25, 34).

The first step in this process usually involves mapping 
known metabolites onto biological pathways. A number of 
well- documented public databases contain carefully curated 
information about metabolites, metabolic reactions, enzymes, 
genes, proteins, and pathways (66–68). A number of open source 
(69–73), and commercial tools (MetaCore, Ingenuity Pathway 
Analysis) make use of pathway information and provide various 
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FiGURe 7 | Metscape network showing metabolites that differentiated ARDS BAL fluid samples from those of healthy controls. Red nodes represent 
experimentally measured metabolites that were used by Metscape as seeds for building the metabolic network. The program also provides information about 
metabolic reactions (gray nodes), metabolic enzymes (green nodes), and genes (light blue nodes). The most significant BAL metabolites of ARDS were those 
associated with purine metabolism, specifically hypoxanthine, xanthine, and guanosine.
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ways to map experimentally observed changes onto metabolic 
pathways. To illustrate the application of pathway mapping for 
the analysis of metabolomics data, we recently used published 
untargeted LC-MS profiles of bronchial lavage fluid from 
patients with ARDS and healthy controls (Figure 7) (51). This 
study identified 26 metabolites that were significantly different 
between the two conditions. We loaded these compounds into 

the pathway-mapping tool Metscape2 (73). Metscape is a plugin 
for a widely used open source network analysis and visualiza-
tion tool Cytoscape3 (74). It supports network-based exploration 

2 http://metscape.ncibi.org/
3 http://www.cytoscape.org/
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FiGURe 8 | Range of sensitivities of metabolomic technologies. At the 
lower end of sensitivity or lower detection limit (LDL), NMR is suitable for 
detection of smaller numbers of known metabolites, while at the higher end 
of sensitivity (at right), MS-based technologies are superior for detection of 
known as well as unknown metabolites. Adapted with permission from 
Wishart (6).
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of metabolomics and gene expression data. Figure  7 shows a 
metabolic network for a subset of these compounds. Placing 
compounds into metabolic pathways helps connect the observed 
changes to previously reported biological observations. For 
example, Evans et al. reported a fourfold increase in guanosine 
and 41- and 19-fold increases in hypoxanthine and xanthine in 
ARDS (51), respectively and pointed out that these findings can 
be related to previously reported inflammatory effects of uric 
acid, which is a product of guanosine metabolism (75, 76).

In addition to mapping metabolites to pathways, it is often use-
ful to be able to assess the relative significance of different pathways. 
This task can be accomplished through enrichment analysis. The 
goal of such analysis is to evaluate what pre-defined biologically 
meaningful sets of metabolites (e.g., pathways) are enriched with 
differentially regulated metabolites from a given experiment. 
This approach was originally developed for the analysis of gene 
expression data (77) and recently applied to metabolomics data 
(78–80). The output of enrichment analysis is usually a ranked list 
of pathways or other biological categories (e.g., Gene Ontology 
terms) and the list of experimental compounds mapped to them. 
While enrichment testing is a well-established data reduction 
technique that proved to be invaluable for the analysis of microar-
rays, RNA seq and proteomics data, applying it to metabolomics 
has some challenges. Metabolite enrichment testing usually has 
lower statistical power than gene enrichment testing due to the 
relatively small number of identified metabolites measured in a 
given study. Metabolomics data are considerably sparser than 
gene expression data, which also complicates the analysis. The 
problem can be further compounded by metabolites involved in 
multiple metabolic pathways (e.g., ATP, NADP, NADPH, etc.).

One important limitation of all techniques that rely on 
pathway mapping is relatively low coverage of experimentally 
measured metabolites included in pathway databases. The 
best represented classes of metabolites include intermediates 
of primary metabolism, whereas the coverage of secondary 
metabolites and lipids is significantly lower (81). Lack of standard 
unique metabolite identifiers creates additional technical chal-
lenges for pathway mapping. In recent years, several approaches 
have been described that attempt to overcome this problem and 
expand the number of metabolites that are included in second-
ary analysis. For example, MetaMapp combines the biochemical 
reactions from KEGG with Tanimoto chemical and National 
Institute of Standards and Technology (NIST) mass spectral 
similarity scores to build extended metabolite networks (81). 
A recently published tool MetaMapR takes this approach one 
step further and allows users to calculate structural and mass 
spectral similarity directly within the program and supports 
interactive network visualization (82). Other efforts to overcome 
some of these problems involve generating automated annota-
tions by linking compounds to publications via Medical Subject 
Headings (MeSH) (83).

Data-Driven Data Analysis Methods
One of the characteristic features of metabolomics data, gener-
ated through untargeted LC-MS and GC-MS studies, is the 
presence of multiple unknown features that are excluded from 

pathway analysis. Data-driven approaches that allow the inclu-
sion of unknown features into secondary analysis are rooted in an 
observation that functionally relates metabolites tend to display 
correlated changes. Early work in this area utilized Pearson’s 
correlation coefficients to establish linear associations between 
metabolites (84). However, Pearson’s correlation does not differ-
entiate between direct and indirect associations, and metabolism 
is not inherently linear. Subsequently, several groups proposed 
using Gaussian graphical modeling to reconstruct partial correla-
tion networks among sets of genes or metabolites to overcome 
these limitations (85–87). While these methods have potential to 
complement knowledge-based data analysis methods described 
above, practical application may be limited by the number of 
analyzed samples.

In NMR analysis, presently a semi-automated approach 
[Chenomx software (see footnote 1)] seems to be the most trusted 
and reliable form of analysis for NMR spectra, whereas fully auto-
mated analysis software is under rapid development [e.g., Ref. (88)]. 
The Metabolomics Society also lists available software packages.4

Relative Sensitivities of NMR and MS-
Based Approaches
The relative sensitivities of NMR versus MS-based approaches are 
a central issue in the decision-making behind which technology 
to use in biological studies. While NMR is a preferred approach 
for the detection of a broad spectrum of metabolites, its ability 
to detect low concentrations of metabolites is limited compared 
to MS-based analyses (Figure 8). While NMR is suitable for the 
majority of known metabolites, the limit of detection of NMR 
is usually in the millimolar to micromolar range (21). However, 

4 http://metabolomicssociety.org/resources/metabolomics-software
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FiGURe 9 | Differentiating between different types of pneumonia in human patients. Urinary metabolites were found to be distinct in pneumonia caused by 
S. pneumoniae and other pathogens. These graphs show OPLS-DA models based on 61 measured metabolites found in the urine from S. pneumoniae patients 
compared with those found in viral pneumonia and other bacteria (including Mycoplasma tuberculosis, Legionella pneumophila, S. aureus, and others). Note that 
the labeling for S. pneumoniae is shown in red at left while this is black in the middle and right panels. Adapted with permission from Slupsky et al. (92).
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recent developments in NMR-based approaches have shown 
improved sensitivity in the nanomolar to micromolar range. In 
contrast, MS-based approaches can detect metabolites at less 
than picomolar levels, which substantially increases the number 
of metabolites or features detected in a given sample. The problem 
is that many of these very low abundance metabolites are not well 
characterized, and they give rise to a large number of “unknown” 
features. In general, it may be best to initiate a high-throughput 
analysis, for example when searching for potential biomarkers 
in biological fluids, using an NMR-based approach in a pilot 
experiment. Once a limited number of marker metabolites are 
identified, these could be pursued further using more sensitive 
MS-based approaches.

APPLiCATiONS OF MeTABOLOMiCS TO 
ACUTe LUNG DiSeASeS

Pneumonia in Animal Models and 
Humans
Streptococcus pneumoniae is a major cause of bacterial infection 
in the lower respiratory tract and is the most common cause 
of community-acquired pneumonia (89). Millions of people 
in North America are affected by pneumonia, and this illness 
results in over half a million hospitalizations each year (90). The 
accurate diagnosis and antibiotic treatment of this disease at the 
individual level are of primary importance in controlling the 
incidence of pneumonia. Systems biology approaches are hoped 
to improve diagnosis and facilitate monitoring of disease together 
with prescribing appropriate therapy in pneumonia and similar 
inflammatory lung diseases (91).

The application of 1H-NMR-based metabolomic analysis of 
pneumonia patient urine samples demonstrated that definitive 
metabolic profiles specific to S. pneumoniae infection could 
be identified (Figure  9) (13). Notably, the pattern of urinary 
metabolites in pneumococcal pneumonia was distinct from 
those associated with pneumonia caused by viruses and other 
bacterial strains, as determined by orthogonal projections to 
latent structures (OPLS)-discriminant analysis (DA). In addition, 

serial collection of urine samples from patients with pneumonia 
over time demonstrated that infected individuals reverted to a 
normal metabotype upon resolution of infection, indicating 
that the specific metabolic profiles in urine were unique to the 
infection. Blinded analysis of the urine samples showed that 
NMR-based metabolomic profiling provided excellent sensitivity 
and specificity, with a high accuracy rate (91%), for identification 
of S. pneumoniae infection. Interestingly, none of the subjects in 
the blinded sample population were false positives, which would 
have been predicted with up to 10% colonization of the healthy 
adult population by pneumococcal strains.

Using an animal model of pneumonia, it was found that dis-
tinct urinary metabolic profiles resulted from infection by two 
different pathogens, S. pneumoniae and methicillin-resistant 
Staphylococcus aureus, a major cause of antibiotic-resistant 
pneumonia that is normally associated with hospital-acquired 
pneumonia but that has been increasing in the community (92). 
Following 24  h of infection with S. pneumoniae or S. aureus, 
in-bred C57BL/6 mice exhibited significant urinary metabolic 
changes that could be detected using NMR-based measurements 
(Figure  10). Urinary metabolic profiles reverted to normal, 
healthy values upon resolution of infection, suggesting that 
these metabolites were specific to bacterial infections. These 
results underscore the potential that metabolomics has for the 
diagnosis, and monitoring of the antibiotic therapy of pneumo-
nia, and how this could be applied to the clinical management 
of pneumococcal disease both in community- and hospital-
acquired illnesses.

Two recent studies have supported the concept of applying 
metabolomics analysis to the diagnosis of pneumonia. Both of 
these applied mass spectrometry (MS)-based approaches and 
found that a number of urinary and blood metabolites cor-
related with the incidence of pneumonia infection. In the first 
study carried out in The Gambia, West Africa, it was found that 
metabolomic analysis of urine and plasma samples distinguished 
severe pneumonia patients from community controls in children 
(93). The specific urinary metabolites found to decrease in 
children with pneumonia were uric acid and l-histidine while 
plasma metabolites that were increased included hypoxanthine 
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FiGURe 10 | Distinct metabolic profiles in animals infected with S. pneumoniae and S. aureus. An inbred strain of mice (C57BL/6), maintained in specific 
virus antigen-free housing with autoclaved bedding and dietary supplies, was infected intratracheally with a clinical isolate of S. pneumoniae, serotype 14. After 24 h 
of infection, bronchoalveolar lavage (BAL) samples were analyzed for cell counts (A) and histology was carried out on lung sections (B) to confirm inflammation 
arising from infection. At the same time, urine samples were collected from animals that were subjected to NMR analysis, and a PCA model of urinary metabolite 
concentrations was generated (C). Macs, macrophages; PMNs, polymorphonuclear neutrophils. Adapted with permission from Slupsky (13). Copyright 2009 
American Chemical Society.
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and glutamic acid. Plasma levels of l-tryptophan and ADP were 
reduced in children with pneumonia. These six metabolites 
emerged as markers of key differences between the two groups. 
The authors speculated that these metabolites are important in the 
host response through antioxidant, inflammatory, and antimicro-
bial pathways, as well as energy metabolism. The drawbacks of 
this study were its small scale (only 11 children with pneumonia 
were examined), and that metabolite concentrations could not 
be quantified as the MS-based approach only determined relative 
changes in metabolites.

In the second study, the global metabolomic profile in plasma 
from surviving and non-surviving patients (by 90  days) with 
community-acquired pneumonia was determined (93). This 
study also used MS-based approaches to identify metabolites in 
plasma samples and compared these with the presence of inflam-
matory markers including interleukin (IL)-6, IL-1β, and tumor 
necrosis factor-α (TNF). A number of metabolites were found 
that differed significantly between surviving and non-surviving 
pneumonia patients. In particular, pseudouridine was increased 
in non-surviving patients, and this was subsequently determined 
to induce significant TNF and IL-1β production, likely through 
Toll-like receptor 4 (TLR4), from monocytes/macrophages in cul-
ture. These findings showed novel findings regarding metabolite 
detection in plasma samples in patients that survived pneumonia. 
These data were acquired using MS-based approaches for which 

quantitation of metabolites was not done. Nevertheless, taken 
together, these studies suggest that metabolomics has the poten-
tial to diagnosis and track prognosis in patients with pneumonia 
in the community.

The application of metabolomics should be taken into consid-
eration with clinical decision-making when treating community-
acquired pneumonia, which involves determining whether (1) 
to withhold antibiotics, (2) to use targeted antibiotics, or (3) 
to stratify patients in order to give more aggressive therapy to 
those with higher risk (94). Stratification could generate different 
metabolic markers for pneumonia than diagnostic markers, and 
this needs to be kept in mind as a potential future study for the 
metabolomics of pneumonia.

The Metabolomics of Acute Respiratory 
Distress Syndrome
ARDS Is a Significant Hazard to Human Health
Acute respiratory distress syndrome (ARDS) in adults is char-
acterized by an abrupt infiltration of inflammatory, fibrin-rich 
exudate into the pulmonary interstitium and airspaces that 
impairs lung function and gas exchange (95–98). There are a 
number of conditions that can prompt the development of ARDS 
but the most common precipitating etiologies include sepsis, 
pneumonia, and severe trauma.
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FiGURe 11 | Progression of disease in ARDS. The clinically challenging problem of acute respiratory distress syndrome (ARDS) is illustrated by the diversity in 
the underlying etiologies and the complex time course of the disease. Approximately 40% of patients with severe sepsis will develop ARDS. Patients who do not 
recover during the proliferative phase may go on to develop emphysematous regions in the lungs and ultimately fibrosis. While it is reasonable to expect that each of 
these phases will have a distinct metabolomics phenotype, these have yet to be realized. Reproduced with permission from MacLaren and Stringer (104). Illustration 
of lungs from "Lungs diagram simple" by Patrick J. Lynch, medical illustrator. Licensed under CC BY 2.5 via Wikimedia Commons – http://commons.wikimedia.org/
wiki/File:Lungs_diagram_simple.svg#mediaviewer/File:Lungs_diagram_simple.svg.
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The early phase of ARDS is characterized by diffuse alveolar 
damage (Figure 11), an associated increase in endothelial per-
meability, intravascular thrombi, severe epithelial injury with 
denudation of alveolar wall basement membranes, and the accu-
mulation of alveolar infiltrates in the airspaces, which are highly 
enriched with neutrophils (a hallmark of ARDS) (95). In ARDS 
survivors, these changes progress for several days to a repair 
phase, which is characterized by hyaline membrane formation, 
the appearance of mononuclear cell infiltrates, and development 
of intra-alveolar and interstitial fibrosis (Figure 11) (96). Patients 
are critically ill, requiring treatment and mechanical ventilation 
in an intensive care unit setting. As such, the morbidity and mor-
tality associated with ARDS is significant. In the United States, 
ARDS accounts for an estimated 75,000 deaths per year (99), 
and overall mortality has been estimated between 20 and 40%. 
Despite the seriousness of this human hazard, knowledge of the 
pathogenesis of ARDS is incomplete (100, 101) and to date, there 
is no effective pharmacotherapy.

Acute respiratory disease syndrome is a clinically challenging 
problem, due in part to, the disparity in its definition and its hetero-
geneity. The first consensus definition by the American-European 
Consensus Conference (AECC) included the sub-category of 
acute lung injury (ALI), which used the same criteria as ARDS 
but with less severe hypoxemia (PaO2/FIO2 of <300 mm Hg). In 
2012, the definition was further refined by the European Society 
of Intensive Care Medicine, which resulted in the generation of 
the Berlin Definition of ARDS (Table 1); it has been endorsed 
by the American Thoracic Society and the Society of Critical 
Care Medicine (102). Notable changes include the removal of 
the sub-category of ALI and the addition of more detail about 
levels of oxygenation and mechanical ventilation. Utilization of 
the Berlin Definition of ARDS is expected to allow for greater 
delineation of patients with ARDS for inclusion in clinical trials 
(103), but it does not fully address the heterogeneity of the dis-
ease that originates from a broad range of underlying etiologies 
(104, 105). These problems have undoubtedly contributed to the 
failure of ARDS clinical trials and have limited the success of 
finding predictive and prognostic biomarkers that have gained 

broad clinical adoption. These shortcomings have created an 
opportunity for the application of metabolomics to ARDS. 
However, the success of metabolomics in ARDS will hinge on 
its ability to differentiate patient phenotypes within the ARDS 
diagnosis and to identify patients at risk for developing ARDS, 
neither of which, to date, have been accomplished. Despite the 
potential informative nature of the metabolome, few experi-
mental and clinical studies of ARDS metabolomics have been 
conducted and, to date, most of them are feasibility studies, the 
goal of which has been to differentiate lung injury from health.

Metabolomics Studies in Experimental Models of 
ARDS
A challenge in ARDS research is the absence of a translational 
experimental model of the disease (96, 106, 107). Rodent models 
do not accurately mimic the human disease and promising pre-
clinical data so far have not lead to success in clinical trials. Despite 
this limitation a number of metabolomics studies have been 
conducted in rodent models of ARDS. Overall, the findings from 
experimental ARDS metabolomics studies have not informed of 
novel processes and appear to be disparate because numerous dif-
ferent model systems, sample types, and analytical platforms have 
been utilized, each with differing metabolic changes (Table 2).

In a study that utilized male Sprague-Dawley rats, Izquierdo-
Garcia et al. used a VILI model of ARDS (108). This involves a 
repetitive cyclic stretch and over-inflation of the lungs, which 
leads to diffuse cellular infiltration, inflammation, loss of mem-
brane permeability, activation of the coagulation system, and cell 
death (109) that is indicative of the exudative phase of ARDS 
(Figure 11). The found metabolic changes induced by VILI in the 
lung tissue, BAL, and serum are shown in Table 2. Importantly, 
the metabolites in the BAL and lung tissue were associated with 
markers of the ARDS phenotype including peak inspiratory 
pressure, PaO2, and a histologically derived lung injury score. 
However, there was no association between these indices and 
the relative intensity of detected serum metabolites. Collectively, 
the results of this preliminary, qualitative metabolomics study 
implicated a shift in cell energy metabolism as evidenced by 
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TABLe 1 | The Berlin definition of acute respiratory distress syndrome.

Timing Within 1 week of a known clinical insult or new or worsening 
respiratory symptoms

Chest imaginga Bilateral opacities – not fully explained by effusions, lobar/
lung collapse, or nodules

Origin of edema Respiratory failure not fully explained by cardiac failure or 
fluid overload
Need objective assessment (e.g., echocardiography) to 
exclude hydrostatic edema if no risk factor present

Oxygenationb

Mild 200 mm Hg <PaO2/FIO2 <300 mm Hg with PEEP or CPAP 
≥5 cm H2Oc

Moderate 100 mm Hg <PaO2/FIO2 <200 mm Hg with PEEP ≥5 cm 
H2O

Severe PaO2/FIO2 <100 mm Hg with PEEP ≥5 cm H2O

CPAP, continuous positive airway pressure; FIO2, fraction of inspired oxygen; PaO2, 
partial pressure of arterial oxygen; PEEP, positive end-expiratory pressure.
aChest radiograph or computed tomography scan.
bIf altitude is higher than 1000 m, the correction factor should be calculated as follows: 
[PaO2/FIO2% (barometric pressure/760)].
cThis may be delivered non-invasively in the mild acute respiratory distress syndrome 
group.
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ARDS-induced changes in glucose and lactate in lung tissue and 
the BAL and possible disruption of cell membrane integrity based 
on the changes in serum metabolites as well as decreased glycine 
in the lung tissue. The magnitude of these metabolic changes 
were related to lung injury severity suggesting that the pathways 
associated with these metabolites may provide insight in the 
pathogenic mechanisms that underlie ARDS.

In a lipopolysaccharide (LPS)-induced ARDS model in male 
rats, Bos et  al. utilized a novel collection and pattern recogni-
tion tool (eNose, Comon Invent, Delft, Netherlands) in parallel 
with GC-MS to capture and measure metabolites in exhaled 
breath (110). This technique permits the assessment of volatile 
metabolites that are present in exhaled breath (43, 111), and the 
application of which could be the prediction or early diagnosis 
of ARDS because it may be a more sensitive test than currently 
used diagnostic parameters (e.g., chest radiograph, PaO2/FIO2 
ratio). It may also be useful to longitudinally track drug treatment 
response. The eNose is a pattern recognition tool that works by 
reversibly binding a broad range of volatile organic compounds to 
seven metal-oxide sensors which results in a change in electrical 
resistance.

For this work, IV (as a model of indirect lung injury) or 
intratracheal (IT; as a model of direct lung injury) LPS (96, 105, 
106) was administered to anesthetized rats that received either 
low (0) or high (5 mm Hg) PEEP. In exhaled breath condensate, 
IV and IT LPS induced changes in 21 and 14 GC-MS detected 
metabolites, respectively. The eNose was effective in discrimi-
nating LPS treated and control animals. The found differences 
between LPS-treatment and controls pointed to alterations in 
metabolites (Table 2) associated with oxidative stress, which is 
consistent with the known etiology of ARDS. While the overall 
metabolomics findings from this study are limited to LPS exposure 
in an experimental model, this report was the first to demonstrate 
the utility of exhaled breath as a viable, non-invasive biofluid for 
early detection of ARDS-induced changes in lung metabolomics. 
In addition, the eNose strategy successfully detected lung injury 

early in the course of illness, although not as early as GC-MS, fol-
lowing IV administration of LPS. In the clinic, early identification 
of patients at risk for ARDS could have a significant impact on 
improving morbidity and mortality.

In a method development and validation study, Naz et  al. 
showed in a rat model of VILI that a CE-MS metabolomics assay 
successfully identified 18 compounds associated with lung injury 
in serum (53). In this study, five metabolites of ARDS were identi-
fied (Table 2). Of these, the decline in arginine associated with 
ARDS has previously been reported, and its supplementation has 
been shown to reduce inflammation (112). Arginine is converted 
to urea and ornithine by arginase, the latter of which is a precur-
sor of proline, the primary amino acid in collagen. A reduction 
in arginine and the associated increase in ornithine suggest that 
arginase activity is increased in this model of ARDS and contrib-
utes to the enhanced collagen deposition and cell proliferation 
that is known to occur during the proliferative and fibrotic phases 
of ARDS (Figure 11). Interestingly, elevated levels of ADMA, an 
arginine analog and inhibitor of nitric oxide synthase (113), can 
uncouple NOS perpetuating the production of superoxide anion 
(O2

−) (114, 115). In turn, because ADMA is a competitive inhibi-
tor of NOS, reduction of nitric oxide in the presence of O2

−  can 
lead to the production of peroxynitrite (116). In this model of 
ARDS, which is indicative of VILI, the metabolic consequences 
of increased ADMA may contribute to lung inflammation but 
no measurements or phenotyping of lung injury were done. This 
study also introduced the possibility that the found increase in 
choline may represent a protective mechanism in this VILI model 
of ARDS. In addition, the “fingerprinting” approach used in this 
study serves as a metabolomics strategy that could be tested as a 
screening tool for patients in the ICU at risk for the development 
of ARDS.

In one of the first studies of experimental ARDS lung metabo-
lomics, we utilized a cytokine-induced lung injury model to test the 
extent of the temporal association between the visual phenotype 
of inflammation in the lungs [as measured by magnetic resonance 
imaging (MRI)] and changes in the lung metabolome (117). We 
found that cytokine-induced lung inflammation resulted in a 
decreased energy state as evidenced by ATP depletion, energy 
balance, and energy charge levels (Table  2). In addition, there 
was a significant increase in glycolytic activity (elevated lactate-
to-glucose ratios). This metabolic pattern normalized 24 h after 
the induction of injury. The spectrum of ALI spans from mild 
interstitial edema (reversible damage) to extensive cellular injury 
(irreversible damage) (118) (Figure  11). Presently, biomarkers 
that differentiate the two extremes have not been identified but if 
found, could represent a powerful experimental and clinical tool 
to distinguish the range and extent of pulmonary injury. The value 
of this study was that it demonstrated the association between 
phenotypic and metabolic changes which is an important first 
step in biomarker discovery (59). In doing so, MRI and metabolic 
NMR spectroscopy may enhance the development of more robust 
and predictive longitudinal models of experimental lung injury.

In summary, there is a common, overarching theme from 
these studies: lung injury results in a perturbation of energy and 
oxidative stress metabolism, the magnitude of which may reflect 
the severity of the damage. This is evidenced by changes in a 
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TABLe 2 | Summary of metabolomics studies conducted in experimental ARDS models.

Model 
system

experimental ARDS Sample 
type

Analytical platform Metabolic changes Reference

Rat VILI Lung tissue High resolution magic angle spinning 1D 1H-NMR ↑ Lactate (119)
↓ Glucose
↓ Glycine

BAL 1D 1H-NMR ↑ Glucose
↑ Lactate
↑ Acetate
↑ 3-OHB
↑ Creatine

Serum 1D 1H-NMR and HPLC-MS ↑ Ptdcholine
↑ Oleamide
↑ Sphinganine
↑ Oxo-hexadecanal
↓ Lyso-ptdcholine
↓ Sphingosine

Rat IT or IV LPS Exhaled 
breath

GC-MS ↓ Hexanal (121)
E-nose ↓ Pentadecane

↓ 6, 10-dimethyl-5, 9-undecadien-2-one

Rat VILI Serum CE-MS ↑ Choline (57)
↑ Ornithine
↑ ADMA
↓ Isoleucine/leucine
↓ Arginine

Mouse IL-1β + TNF-α Lung tissue 1D 1H-NMR ↓ ATP (138)
↓ Energy charge
↑ Lactate:glucose ratio

VILI, ventilator-induced lung injury; BAL, bronchoalveolar lung lavage; IT, intratracheal; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; 1D 1H-NMR, one dimensional proton 
nuclear magnetic resonance; HPLC-MS, high performance liquid chromatography-mass spectroscopy; GC-MS, gas chromatography-mass spectroscopy; CE-MS, capillary-
electrophoresis-mass spectroscopy; OHB, hydroxybutyrate; ptd, phosphatidyl; ADMA, asymmetric dimethyl arginine.
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broad range of metabolites associated with these processes, which 
are consistent with what is presently known about human ARDS. 
However, in aggregate, these studies have not lead to advance-
ments in the experimental modeling of ARDS that is needed to 
enhance translation to the clinical situation and they have not 
informed of previously unrecognized metabolic pathways that 
may be relevant to ARDS pathogenesis or severity.

Clinical Metabolomics Studies in ARDS
Very few clinical metabolomics studies have been conducted in 
patients with ARDS, and no studies have tested the predictive-
ness of a metabolomics strategy in patients at risk for develop-
ing ARDS. There are, however, a number of studies that have 
demonstrated the feasibility and utility of metabolomics as an 
approach for biomarker discovery in ARDS. Like studies in the 
experimental arena, the future of a metabolomics approach to 
clinical ARDS will rely on its ability to tell clinicians something 
they do not already know using presently available clinical tools. 
This includes prediction of onset as well as differentiation of 
ARDS phenotypes.

In a study of mechanically ventilated patients, Schubert 
et  al. demonstrated the utility of exhaled breath as a sample 
for metabolomics analysis (119). In mechanically ventilated 
patients with and without ARDS, volatile compounds captured 
on a charcoal filter introduced to the ventilation system were 
assayed by GC-MS. The ARDS (as defined by AECC) patient 
group had a range of underlying etiologies that included 

pancreatitis, sepsis, pneumonia, and trauma. These patients 
produced over 50% less isoprene than patients without 
ARDS (21.8 versus 9.8  nmol/m2/min) although the variance 
across both groups of patients was high such that the 95% CI 
of the medians overlapped. Isoprene is the most abundant 
hydrocarbon in human breath, and it is primarily generated 
via the mevalonate pathway of cholesterol biosynthesis (120). 
The concentration of isoprene in the breath is known to be 
highly variable, and in the context of ARDS, isoprene levels 
may decline due to a reduction in cholesterol levels that may 
be associated with disease severity (121, 122).

The utility of exhaled breath as a viable sample for ARDS 
metabolomics has been furthered by Bos et  al. (111). They 
found that three metabolites, octane, acetaldehyde, and 
3- methylheptane, discriminated ARDS from non-ARDS 
patients. The diagnostic accuracy was increased by the addition 
of the Lung Injury Prediction Score (LIPS) (123) but not by the 
Acute Physiology and Chronic Health Evaluation (APACHE) II 
(124) or the Simplified Acute Physiology Scores (SAPS) II (125), 
all of which are measures of disease severity. Notably, this study 
did not find any difference in isoprene levels between ARDS and 
non-ARDS patients. This may due to methodological differ-
ences between the two studies and the known variability in the 
measurement. In addition, exhaled breath isoprene levels can be 
influenced by other factors such as mechanical ventilation, use 
of anesthesia and gender (126). ARDS was, however, associated 
with higher concentrations of breath octane, which was more 
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strongly related to the diagnostic model than any other of the 
detected volatile metabolite. Octane is a known end product of 
lipid peroxidation, one of the degenerative processes caused by 
oxidative stress (127, 128). In addition to octane, the authors 
reported that acetaladehyde and 3-methylheptane were predic-
tive of ARDS. This is an ambitious conclusion given the sample 
size of this study and given that there are a number of sources of 
acetaldehyde including bacteria that may not be specific to ARDS 
(129, 130) and there is no apparent source of 3-methylheptane 
in humans (131). Nevertheless, the exhaled breath metabolomics 
signature is one that reflects oxidative stress.

Assessment of the local lung environment may provide 
more detailed metabolic information than what is reflected in 
the blood. However, metabolomics of the lung environment is 
challenging because it is unclear which type of sample is optimal, 
and samples are difficult to obtain. Exhaled breath presently 
requires introduction of specialized equipment into the ventila-
tion scheme and the acquisition of BAL requires the invasive 
procedure of bronchoscopy. Until recently, the utility of the BAL 
as a biofluid for ARDS metabolomics was not known. In general, 
it is a manufactured sample generated by the instillation of nor-
mal saline into the airways, which results in a sample with high 
protein and salt content and low metabolite levels, which limits 
the utility of 1H-NMR. We demonstrated the utility of BAL as 
a metabolomics biofluid by assaying samples from patients with 
ARDS and healthy controls using a newly developed untargeted 
LC-MS metabolomics assay (51). Using RPLC and HILIC-MS, 
we identified 26 and 18 endogenous metabolites, respectively, 
that differentiated ARDS from health. These included lactate 
and other metabolites associated with energy metabolism such 
as citrate, creatine, and creatinine, which we previously showed 
to be increased in the plasma of patients with ARDS (2). These 
findings demonstrated the utility of BAL as a biofluid for LC-MS 
metabolomics, and while the objective of the work did not 
include introducing ARDS biomarker candidates, we did make 
informative observations about the lung metabolome during 
ARDS. These included a found decline in phosphatidylcholine, 
the primary phospholipid of pulmonary surfactant, which has 
been shown to be inversely related to inflammatory-cell mediated 
lung injury (132). However, the strongest found metabolic signal 
was from guanosine metabolism. This was evidenced by a 41-fold 
increase in hypoxanthine, a 19-fold increase in xanthine, and a 
4-fold increase in guanosine. We did not detect uric acid, but 
increases in all its precursor molecules provide evidence that the 
pathway was activated. Uric acid has previously been shown to 
be a major “danger signal” in the lung contributing to cell-death-
induced acute inflammation, and its production is via xanthine 
oxidase, which is a known O2

−-producing enzyme.
Taken together, the metabolomics data generated to date 

from both experimental and clinical studies of ARDS implicates 
perturbations in energy and oxidative stress metabolism, which 
is consistent with what is already known about ARDS. Very few 
clinical studies with ample samples sizes have been conducted. 
Importantly, multi-center, prospective studies with robust valida-
tion testing have not yet been done. To date, the body of knowledge 
of ARDS metabolomics has been generated from small studies 
that have demonstrated feasibility and provide promise that the 

field has potential for discriminating the ARDS phenotype as well 
as distinguishing lung injury severity. As the field moves forward, 
progress in metabolically detailing ARDS heterogeneity will be 
needed in order to bring an “added value” in the phenotyping of 
ARDS and for providing needed aid in designing clinical trials 
aimed at testing prevention and treatment strategies in ARDS 
patients. This is particularly relevant since the National Lung, 
Heart and Blood Institute recently launched an effort aimed at the 
prevention of ARDS called the Prevention and early Treatment of 
Acute Lung Injury (PETAL) network.5

Monitoring exposure of Lungs to 
environmental insults
Poor air quality in environmental and occupational settings 
has detrimental effects on the respiratory health of adults and 
children. According to the World Health Organization, seven 
million deaths were attributed to the combined effects of ambi-
ent and household air pollution in 2012 alone (133). Among 
these, 8% were due to acute lower respiratory disease, 17% to 
chronic obstructive pulmonary disease (COPD), and 6% to lung 
cancer. The remaining deaths were attributed to ischemic heart 
disease (36%) and stroke (33%). Many of these were premature 
deaths were due to the burning of solid fuel for heating and cook-
ing, mainly in developing countries. In 2013, the International 
Agency for Research on Cancer (IARC) established that air pol-
lution was carcinogenic to humans. Specifically, increased expo-
sure to particulate matter was related to an elevated risk of lung 
cancer (134). In 1998, the National Institute for Occupational 
Safety and Health produced a report on respiratory diseases 
in the United States from 1982 to 1993 due to occupational 
exposure (135). The leading respiratory diseases resulting in 
mortality were COPD, pneumonia, and lung cancer, with more 
than 500,000 annual deaths for these diseases combined in the 
US (135).

Evaluating the effects of environmental insults on respira-
tory diseases requires proper monitoring of environmental and 
occupational exposures to environmental contaminants. This is 
normally performed by collecting air samples in breathing zones 
of individuals at risk. However, this technique may not always be 
convenient, and does not accurately reflect the quantity of airborne 
samples that are inhaled or consumed by exposed individuals. 
Thus, biomonitoring has become increasingly popular, in which 
samples are obtained from exposed individuals to determine 
the impact of airborne particles on health. Recent research has 
focused on biomarkers related to oxidative stress in the blood of 
subjects exposed to ambient particulate matter, where a positive 
association was found between indoor and outdoor concentra-
tions of polyaromatic hydrocarbons (PAHs) and blood levels of 
sTNF-RII and IL-6 (136).

Welding fumes have also been known to have adverse effects 
on health, and recent studies have looked at biomarkers of 
exposure for welders that correlate with increased inflamma-
tory markers (138, 137–140). Blanc et al. (137) have shown an 
increase in the pro-inflammatory cytokines TNF, IL-6, and IL-8, 
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and polymorphonuclear leukocytes in bronchoalveolar lavage 
with increasing time of exposure to welding fumes in healthy 
subjects. In another study, a positive correlation between iron 
and leukotriene B4 was found in non-smoking welders, while a 
similar correlation was observed between iron, prostaglandin 
E2, and 8-isoprostane in smoking welders (138). Urine levels 
of 8-hydroxydeoxyguanosine (8-OHdG) were also increased in 
boilermakers from pre- to post-shift (139).

Metabolomics is a novel approach that has been proposed 
to monitor exposed individuals and to develop biomarkers of 
exposure. Recent research has focused mainly on exposure to 
heavy metals (141–146), dioxins (147–149), vinyl chloride (150, 
151), pesticides (152, 153), smoking (154–156), and welding 
fumes (157–159). These studies examined metabolite profiles 
in serum, plasma, or urine samples from control and exposed 
individuals, and each was able to determine significant metabolic 
changes in body samples in response to environmental expo-
sure to toxic substances. Metabolites were measured by NMR, 
LC-Q-TOF-MS, GC-MS, and UHPLC-QTOF-MS analyses and 
subjected to multivariate statistical comparisons. In general, the 
findings from these studies showed that samples from control 
groups clustered in a different region of PCA or OPLS-DA score 
plots from that of exposed individuals.

Of particular interest are the studies on exposures to cadmium, 
cigarette smoke, and welding fumes, as these contaminants are 
known to cause adverse respiratory health effects (160–164). 
In the case of environmental exposure to cadmium, one study 
using NMR spectroscopy in urine samples observed an increase 
of citrate concentrations in exposed subjects (141) while another 
study using LC-Q-TOF-MS and GC-MS showed elevated 
concentrations of l-glutamate, l-cysteine, l-tyrosine, N-methyl-
l-histidine, l-histidinol, taurine, phenyl-acetyl-glutamine, 
hippurate, α-pyroglutamic acid, d-galactose, myo-inositol, 
xanthine, urea, deoxyadenosine monophosphate, creatine, cre-
atinine, 7-α-hydroxyprogesterone, tetrahydrocortisone, estrone, 
and corticosterone in subjects presenting with high urinary 
cadmium (142). A similar study showed elevated concentrations 
of myo-inositol and a decrease in citrate for subjects presenting 
symptoms of cadmium toxicosis (143). Occupational exposure 
to lead, cadmium, and arsenic demonstrated an increase in 
1- methylhistidine, phenylalanine, low-density lipoproteins, 
tyrosine, and unsaturated fatty acids, and a decrease in very 
low-density lipoproteins and glutamate in the serum of exposed 
subjects using NMR spectroscopy (146).

Two studies were performed using MS to evaluate metabolites 
in the serum of smokers (156, 157). The first one found an increase 
of 23 lipid metabolites (156), and the second one observed a 
change in both lipid and amino acid metabolism in both genders 
(157). Interestingly, smoking cessation seemed to reverse some of 
these metabolites to baseline (157).

Only two studies have been performed examining occupa-
tional exposure to welding fumes (158, 159). The first study 
was performed on urine samples of welders using NMR 
spectroscopy and observed an increase in glycine, taurine, 
TMAO/betaine, serine, S-sulfocysteine, hippurate, gluconate, 

creatinine, and acetone, and a decrease in creatine (158). The 
second study was performed on plasma samples from boil-
ermakers, which were analyzed using MS, and a decrease in 
eicosapentaenoic acid and docosapentenoic acid was observed 
in these participants (159).

Therefore, these reports suggest that metabolomic measure-
ments may be useful for the generation of appropriate biomarker 
candidates that allow monitoring of exposure levels of susceptible 
individuals. However, these studies show variability in metabolite 
profiling depending upon the technique used or the media analyzed. 
Based on the few environmental studies conducted using metabo-
lomic techniques, we are some way from validating these approaches 
as each technique requires careful calibration and appropriate use 
of quality assurance/quality control samples to ensure that meas-
urements are robust and reproducible. Provided that appropriate 
quality assurance/quality control is carried out in each study, it may 
be possible to elucidate patterns of metabolite changes that can be 
used as biomarkers of environmental exposure to toxins.

CONCLUSiON

In summary, we have reviewed the rapidly expanding field 
of metabolomics and its application to acute lung diseases. 
Metabolomics is an important component of systems biology that 
has enormous clinical potential in the development of biomarkers 
and as a novel approach to understanding disease mechanisms. 
Metabolomics allows us to generate a snapshot of all the metabo-
lites present in a biological sample, and to follow rapidly changing 
trends in metabolites over time in a way that cannot be captured by 
genomics or proteomics. These changes may be monitored by the 
application of NMR or MS-based approaches. The challenge for 
the application of metabolomics to acute lung diseases rests with 
whether it will be able to identify more precise patient phenotypes 
that are not presently recognized by currently available clinical 
tools. The extent of the predictive and prognostic value of a given 
set of metabolites (e.g., biomarker credentials) will be required 
for optimal patient selection for clinical trials and ultimately for 
clinical decision making (14, 15) that will be needed to realize 
precision medicine. To date, urine metabolomics shows promise 
for rapidly differentiating pneumonia pathogens that is needed 
for timely antibiotic selection. However, for ARDS, metabolomics 
data that enable the distinction of susceptible patients and ARDS 
severity, are lacking. Analytically, there is a need to improve the 
sensitivity of NMR analysis and its reproducibility across centers. 
For MS-based approaches, new developing strategies to address 
the large number of unknown metabolites are being tested. 
With these challenges in place, we look forward to a future of 
increasingly sophisticated analyses of biological samples that will 
enhance our capability for diagnosing and monitoring human 
lung diseases.
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