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Abstract: Although the global prevalence of neurological disorders such as Parkinson’s disease,
Alzheimer’s disease, glioblastoma, epilepsy, and multiple sclerosis is steadily increasing, effective
delivery of drug molecules in therapeutic quantities to the central nervous system (CNS) is still
lacking. The blood brain barrier (BBB) is the major obstacle for the entry of drugs into the brain, as it
comprises a tight layer of endothelial cells surrounded by astrocyte foot processes that limit drugs’
entry. In recent times, intranasal drug delivery has emerged as a reliable method to bypass the BBB
and treat neurological diseases. The intranasal route for drug delivery to the brain with both solution
and particulate formulations has been demonstrated repeatedly in preclinical models, including in
human trials. The key features determining the efficacy of drug delivery via the intranasal route
include delivery to the olfactory area of the nares, a longer retention time at the nasal mucosal surface,
enhanced penetration of the drugs through the nasal epithelia, and reduced drug metabolism in the
nasal cavity. This review describes important neurological disorders, challenges in drug delivery
to the disordered CNS, and new nasal delivery techniques designed to overcome these challenges
and facilitate more efficient and targeted drug delivery. The potential for treatment possibilities with
intranasal transfer of drugs will increase with the development of more effective formulations and
delivery devices.

Keywords: neurological disorders; Parkinson’s disease; Alzheimer’s disease; glioblastoma; epilepsy;
multiple sclerosis; nose-to-brain; blood brain barrier; nanoformulations

1. Introduction

Improving the prognoses of diseases of the central nervous system (CNS) such as Parkinson’s
diseases (PD), Alzheimer’s diseases (AD), and brain tumors has always been a greater challenge
than those of diseases affecting other organs [1–3]. Reportedly, >90% of newly proposed CNS drugs
have not been approved by the US Food and Drug Administration (FDA) [4]. The presence of the
complex blood brain barrier (BBB) that limits drug entry to the CNS region is the major obstacle for
the development of CNS treatments [5]. Moreover, non-targeted delivery of diagnostic reagents or
therapeutic drugs is known to cause significant damage to neurons and glial cells. Therefore, novel
delivery platforms bearing the therapeutic drugs for neurological disorders are urgently needed.

In this era, imaging agents or treatments for CNS diseases are highly dependent on nanomedicines,
because they play a promising role in CNS drug delivery. It has been shown that nanomedicines can
actively and effectively cross the BBB and deeply penetrate the diseased brain tissues. In addition,
nanomedicines are also associated with increased strength, stability, surface area, and sensitivity [6,7].
Novel, advanced, and versatile CNS nanomedicines can simultaneously serve diagnostic and
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therapeutic functions; however, a number of optimizations are still required for future widespread
clinical applications.

The nasal passage is the brain’s only contact with the external environment. Upper posterior
segments of the nose are connected with the axons of the 12th cranial nerve. These nerves penetrate the
mucosal lining and allow direct contact with the external environment without a peripheral sensory
receptor relay. These nerves act as a chemical sensor, detect food scents, and play a role in social
behaviors. Additionally, these nerves also offer a potential route for direct access of medication into
the CNS [5–7]. Recent studies have shown the potential existence of a functional pathway (sometimes
called “nose-to-brain” transport) for drugs to pass into the CNS from structures deep in the nose
innervated by cranial nerves [5,7,8].

In this review, we focus on delivery of nanoformulations for the treatment of CNS disorders
via the nasal route. This review includes a brief description of neurological diseases and currently
developed nanoformulations suited for nose-to-brain delivery. We conclude with a brief discussion on
the potential of nanomedicines and the future prospects of intranasal delivery to the CNS for successful
clinical trials.

2. Blood Brain Barrier

The blood brain barrier (BBB) is made up of a triad of capillary endothelium, pericytes, and
the astrocytic foot processes [9]. Specialized endothelial cells of the BBB lack fenestration, possess
extensive tight junctions that severely restrict cell permeability, and have few pinocytic vesicles to
minimize uptake of extracellular substances (Figure 1) [10]. Therefore, the transport of drugs is
hindered and only few drugs can reach brain tissue. This is most likely why therapeutic agents
that show in vitro efficacy fail to show in vivo activity. Drug delivery to the brain is always a great
challenge unless the existing therapeutics have been customized [11]. It has been shown that small
lipophilic molecules with molecular weights less than 400 Da can easily diffuse through the BBB,
while large or hydrophilic molecules require special assistance like gated channels, proteins and/or the
ligand-specific receptors, and ATP-mediated energy [12]. To maximize drug delivery into the brain,
two basic approaches have been applied: a molecular approach and a polymeric carrier approach.
In the molecular approach, drugs are delivered to the brain cells in the native form that are then
activated by the target cell-specific enzymes. However, the limited availability of such drugs and
their corresponding metabolic pathways has restricted the use of this approach. The polymeric carrier
approach employs polymeric nanoparticles as the vehicles, which not only enhances the physiochemical
stability of the therapeutic substances but also facilitates the administration through intravenous and
intrathecal routes or as cerebral device implants [9].
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Figure 1. Schematic demonstrating various transport systems that shuttle molecules across the BBB. 
Very small amount of water-soluble compounds cross through the tight junctions (paracellular), 
whereas lipid-soluble agents traverse via the transcellular lipophilic pathway. Selective transport 
systems exist for glucose, amino acids, nucleosides, and other substances, in addition to specific 
receptor-mediated endocytosis for certain proteins such as insulin and transferrin. (AZT = 
azathioprine). 

3. List of CNS Diseases 

3.1. Parkinson’s Disease (PD) 

PD, occurring primarily in the substantia nigra, is the second-most common neurodegenerative 
disease, leading to the development of bradykinesia and tremors of cardinal motor functions (Figure 
2) [3]. PD models specifically show a decrease in dopamine transporters, which are responsible for 
dopamine uptake by dopaminergic neurons and progression of neuronal communications. Reduced 

Figure 1. Schematic demonstrating various transport systems that shuttle molecules across the BBB.
Very small amount of water-soluble compounds cross through the tight junctions (paracellular), whereas
lipid-soluble agents traverse via the transcellular lipophilic pathway. Selective transport systems exist
for glucose, amino acids, nucleosides, and other substances, in addition to specific receptor-mediated
endocytosis for certain proteins such as insulin and transferrin. (AZT = azathioprine).

3. List of CNS Diseases

3.1. Parkinson’s Disease (PD)

PD, occurring primarily in the substantia nigra, is the second-most common neurodegenerative
disease, leading to the development of bradykinesia and tremors of cardinal motor functions
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(Figure 2) [3]. PD models specifically show a decrease in dopamine transporters, which are responsible
for dopamine uptake by dopaminergic neurons and progression of neuronal communications. Reduced
dopamine delivery during PD results in significant loss of neuronal functions [13]. Another hallmark
of PD is the accumulation of α-synuclein in the Lewy bodies. However, the underlying mechanisms
for PD-induced dementia are poorly understood [14]. The progression of PD can be delayed by
levodopa—the precursor of dopamine—or a levodopa agonist [15,16]. However, it has been shown
that untargeted delivery of levodopa can attack the peripheral nervous system leading to dyskinesia
and adverse cardiovascular effects [17]. Therefore, it is advisable to carefully deliver neurotransmitters
for PD treatment across the BBB by using a suitable delivery system, which does not allow penetration
into other peripheral vessels.
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3.2. Alzheimer’s Disease (AD)

AD is an irreversible and progressive neurodegenerative brain disorder that affects patients’
memory, cognition, language skills, and behavior [18]. At present, there is no known cure for
AD given the lack of understanding of its molecular and intercellular mechanisms. However,
treatments are available to improve the symptoms and on-going research is aimed at finding a cure.
Accumulation of amyloid-beta (Aβ) peptides, neurofibrillary tangle formation of phosphoric tau
proteins, and detrimental neuroinflammation are the signature features of AD progression [19]. The
major biochemical markers for diagnostic purposes include Aβ plaques around the affected brains and
presence of soluble Aβ and tau proteins in the cerebrospinal fluids, which are targeted. Inhibition
of Aβ plaque/tau tangle formation and neutralization of their aggregations around neurons is the
main focus of advanced therapeutic strategies [20–22]. The current clinically approved drugs can
only relieve symptoms and delay AD progression by promoting interactions between neurons in AD
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brains through neurotransmitters [23]. Therefore, the discovery of novel AD markers and development
of advanced and potent nanomedicines to target these AD markers is crucial for effective treatment
and cure.

3.3. Glioblastoma (GBM)

GBM is the most common high-grade primary brain tumor in adults. It is also known to occur in
children, albeit rarely [24]. GBM is the deadliest form of primary brain tumor, and originates from
glial cells. It has been shown that even after aggressive multimodal therapy including chemotherapy,
radiation, surgery, and their combined treatments, the median survival rate is 14 months, which
emphasizes the urgent need for developing an effective strategy to eradicate brain tumors [1,25].
The discovery of highly expressed novel markers of brain tumors and the application of these markers
in several nanoformulations functionalized with targeting ligands has notably improved the treatment
and elimination of brain tumors [8,26–31]. Another recent and emerging anticancer approach that
led to an explosion of clinical trials is immunotherapy, defined by targeting immune checkpoint
receptors expressed on adaptive immune cells to improve immune surveillance [32]. However, with
immunotherapy, the targeting efficiency is reduced resulting in incomplete elimination of tumors, and
recurrence occurs because of the intratumor heterogeneity among individual patients. Therefore, the
development of advanced and potent nanomedicines equipped with multimodal treatment systems is
urgently needed for total removal of cancers.

3.4. Epilepsy

Epilepsy is a disorder of the CNS characterized by periodic loss of consciousness with or without
epileptic seizures associated with abnormal electrical activity in the brain [33,34]. Epileptic seizures
can result from almost any insult that perturbs brain function: for example, traumatic brain injury or
stroke, infectious diseases such as neurocysticercosis, autoimmune diseases, and genetic mutations [35].
Currently, more than 500 genes associated with epilepsy have been identified. However, in most cases,
epilepsy is idiopathic [33]. Epilepsy is related to physical risks and psychological and socioeconomic
consequences which impair patients’ quality of life. An epileptic seizure is caused by abnormal
excessive or synchronous neuronal activity in the brain. The epileptic seizure is a transient behavioral
change, associated with symptoms like stiffening, jerking, loss of awareness, a smell of burnt rubber,
or déjà vu, and a sensation that rises from the abdomen to the chest. Epileptic-seizure onset can be
generalized (neuronal abnormal activity in a widespread distribution over both hemispheres), focal
(neuronal abnormal activity in one or more localized brain regions or hemisphere), or of unknown
origin (when it is not known whether the onset is focal or generalized) [36]. Onset of epilepsy is
determined when there is >80% confidence based on the electroencephalography, clinical features, and
neuroimaging findings [37].

3.5. Multiple Sclerosis

Multiple sclerosis (MS) is the well-known chronic demyelinating disorder of the CNS in young
adults. MS is a heterogeneous, multifactorial, immune-mediated disorder, and is influenced by both
genetic and environmental factors [38–40]. The initial stages of MS are characterized by reversible
episodes of neurological dysfunction lasting several days or weeks. Irreversible clinical and cognitive
deficits develop over time [39]. Some patients have a progressive disease course from the onset.
Formation of demyelinating lesions in the brain and spinal cord is the pathological hallmark of MS,
which can be associated with neuro-axonal damage [41]. During MS, infiltration of immune cells such
as T cells, B cells, and myeloid cells into the CNS parenchyma causes focal lesions with associated
injury [42]. MS creates a substantial burden on society with respect to high cost of available treatments,
and poorer employment prospects.
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3.6. Cerebral Palsy (CP)

CP is a common pediatric disorder occurring in about 2–2.5 per 1000 live births [43]. In the
traditional sense, CP is not a disease entity, rather a clinical manifestation seen in children who
share antenatal, perinatal, or early postnatal period-acquired features of a non-progressive brain
injury or lesion. It has been noted that the clinical manifestations of CP vary greatly in the type
of movement disorder, degree of functional ability and limitation, and the affected areas of the
body [44]. Currently, there is no cure for CP, but there are advancements in areas of both prevention
and treatment of brain injury. For instance, magnesium sulfate administration during premature
labor and cooling of high-risk infants has been shown to reduce the rate and severity of CP [45].
Currently, most CP research and management strategies are focused on the needs of children, although
the disorder affects individuals throughout their lifetime. Clinical researchers concerned with the
management of children with CP are struggling to maximize function and participation in activities
and minimize the factors that worsen the condition, such as feeding challenges, epilepsy, scoliosis, and
hip dislocation [44]. Noteworthy management strategies comprise improving neurological function
during early development, enhancing motor function through rehabilitation technologies, overcoming
weakness and hypertonia, and preventing secondary musculoskeletal problems [44]. However, it is
particularly challenging to meet the needs of people with CP in resource-poor settings.

4. Nanoformulations for Brain Disorders

4.1. Polymeric Nanosuspensions

Polymeric nanosuspensions are typical drug-loaded nanoformulations stabilized by using either
lipid mixtures or non-ionic surfactants. Polymeric nanosuspensions have numerous advantages
including enhanced drug loading, ease of fabrication, improved pharmacokinetics, and the possibility
of surface modifications (Figure 3) [46]. However, the preparation of polymeric nanosuspensions takes
very long and are not considered the formulations of choice for chronic disease therapy owing to their
unstable shelf life [47].
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4.2. Polymeric Nanogels

Polymeric nanogels are the cross-linked hydrophilic or amphiphilic polymers that are fabricated
by emulsification followed by solvent evaporation [48,49]. The nanogel formulation is based on the
principle of ionic and non-ionic polymers coalescing and forming cross-linked networks [50]. Polymeric
nanogels are considered to provide more protection to the entrapped drugs during the transport
process than other nanoformulations [49]. Polymeric nanogels have been mainly used to deliver DNA,
siRNA, and oligonucleotides with an encapsulation efficiency of 40%–60% [51]. Nanogels have also
been shown to deliver oligonucleotides specifically to the brain with more efficiency than to the spleen
and liver [52].

4.3. Polymeric Nanoliposomes

Polymeric nanoliposomes represent a vesicular structure, containing an internal aqueous
compartment and an outside covering of single or multi-lamellar lipid layers. This structural
design of nanoliposomes facilitates enhanced stability and drug encapsulation along with evasion
from the reticuloendothelial system [53]. Although the stability of nanoliposomes for brain disorders
is still debatable, a report has shown that curcumin nanoliposomes were specifically active against
amyloid aggregates [54].

4.4. Niosomes

Niosomes are nanoscale vesicles, having a stable bilayer structure, and are mainly composed of
non-ionic surfactants and cholesterol. Niosomes are highly biocompatible and biodegradable [55].
They exhibit high chemical stability, long shelf life, low toxicity, and inexpensive manufacturing
cost. Niosomes have the ability to entrap lipophilic or hydrophilic drugs and are able to deliver the
drug molecules at target site in a sustained and/or controlled manner [56,57]. Niosomes have been
reported to modify drugs organ distribution and metabolic stability [58]. It has been shown that
surface modification of the niosomes promotes the target specificity for the cancer drug delivery system.
For instance, modification of temozolomide-loaded niosomes with chlorotoxin, a target-specific peptide,
significantly enhanced the gliomas targeting efficiency of the temozolomide [59]. A study reported
that surface modified niosomes containing olanzapine (an atypical antipsychotic drug) showed a
3-fold increase in olanzapine concentration in the brain compared to the intranasal solution of the
drug [60]. In an attempt to provide a novel pharmacological approach to ameliorate PD induced by
subchronic MPTP administration in C57BL-6J mice, a group of researchers developed a non-invasive
intranasal delivery system, composed of chitosan coated niosomes with entrapped pentamidine
(inPentasomes). The study demonstrated that inPentasomes, because of their capability to inhibit
glial-derived S100B activity, rescued the dopaminergic neuronal loss and reduced the severity of
neuroinflammation occurred in the nigrostriatal pathway, which subsequently led to a significant
improvement in parkinsonian motor dysfunctions [61]. Another similar investigation reported the
preparation of drug free and pentamidine loaded chitosan glutamate coated niosomes for intranasal
drug delivery using thin film hydration method. In this study, particular attention was given to
observe the interactions of both drug free and pentamidine loaded niosomes with the mucin. It was
demonstrated that niosomal formulation effectively delivered pentamidine or other possible drugs to
the brain via nasal administration [62]. A study reported the formulation of buspirone hydrochloride
(an anxiolytic agent and serotonin receptor agonist) niosomal in situ nasal gel in order to overcome the
problems of short half-life (2–3 h) and low oral bioavailability (4%) of buspirone hydrochloride. It was
shown that the application of niosomes proved the potential for intranasal delivery of the buspirone
hydrochloride over the conventional gel formulations [63].
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4.5. Nanospheres and Nanocapsules

Nanospheres are the solid core polymeric matrices fabricated by the micro-emulsion polymerization
technique, whereas nanocapsules exhibit vesicular systems where a thin nontoxic polymer encapsulates
the oil-filled drug compartment [64,65]. Both nanospheres and nanocapsules offer the advantages of
improved drug stability, easy surface modification, and evasion of systemic degradation. However,
they also have certain limitations such as complicated purification and storage as well as improper
drug-release patterns [66,67]. Indomethacin-loaded nanocapsules have been shown to protect
hippocampal cultures against in vitro inflammation [68].

4.6. Polymeric Nanomicelles

Polymeric nanomicelles contain a hydrophobic core surrounded by the shell constituting
hydrophilic polymer blocks [69]. The shell stabilizes and disguises polymeric nanomicelles from
cellular interactions, while the core can encapsulate about 30% of hydrophobic drugs [70,71]. It is
estimated that polymeric nanomicelles could be effective for both in vitro and in vivo delivery of DNA
molecules, although no reports exist yet on the nanomicelle-mediated CNS drug delivery. It has been
shown in vitro that PEGylated phospholipid nanomicelles revoked amyloid-induced toxicity [72].
However, polymeric nanomicelles are not feasible for encapsulating hydrophilic drugs. Additionally,
they have a shorter shelf life [73].

4.7. Metal Nanoparticles

Metal nanoparticles have been the focus of recent research given their potential applications in
the fields of biomedical engineering and sciences [74]. Metal nanoparticles can be synthesized with
the inclusion of several structural and surface modifications, which opens new horizons for their
application in the fields of magnetic separation, targeted gene and drug delivery, and particularly,
in diagnostic imaging [75–77]. Multiple modern and advanced imaging techniques like SERS, CT,
MRI, PET, and ultrasound require a contrast agent for effective functioning. This requirement of a
contrast agent provided the basis for the formulation of nano-sized gold, silver, and magnetic iron
oxide (Fe3O4) nanoparticles [78–80].

4.8. Gold Nanoparticles

Gold nanoparticles (AuNPs) are widely used as nanomaterials for drug delivery and imaging [81].
Studies have shown that AuNPs exhibit low specificity because of absence of a selective moiety
that can discriminate between targeted and non-targeted cells [82]. For delivering the therapeutic
substances to targeted cells or tissues, researchers have been combined the AuNPs with cell-targeting
ligands. The surface area of AuNPs provides a platform for conjugating multiple proteins, peptides,
aptamers, and antibodies [83]. However, these conjugating methodologies are very complex as well
as system-specific, which limits cross-system application. Additionally, several substances are not
appropriate for clinical application because of potential toxicity resulting from the use of surfactants
such as cetyl trimethylammonium bromide [84]. AuNPs for neuronal uptake can be utilized through
two main routes: crossing the BBB and through the olfactory nerves. During an investigation,
researchers successfully employed nose-to-brain direct transport pathway to deliver theranostic
polyfunctional gold-iron oxide nanoparticles, surface loaded with miR-100 and antimiR-21, to GBMs in
mice [85]. A study reported the formulation of resveratrol-loaded transferosomes and nanoemulsions
labelled with gold nanoparticles for targeting the brain through intranasal route. The effectiveness
of brain targeting of these two nanoformulations were achieved via testing the memory recovery of
Wistar albino rats through a water maze test and bioaccumulation investigations using computed
tomography and histopathological examination. It was observed that transferosomes significantly
promoted behavioral acquisition and spatial memory function in the amnesic rats compared with both
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the nanoemulsion formulation and the pure drug [86]. It has been reported that AuNPs may lead to
astrogliosis, increased seizure activity, and judgement impairments after crossing the BBB [87].

4.9. Silver Nanoparticles

Silver nanoparticles (AgNPs) have been shown to induce cytotoxicity in human skin, lungs, and
fibroblast cells [88,89]. In relation to the CNS, it has been shown that AgNPs, following inhalation and
ingestions, cross the BBB and accumulate in the brain [90–92]. Patchin et al. found rapid translocation
of 20 nm AgNPs into the olfactory bulb, with slower and less effective transport of 110 nm silver
particles after a 6-h exposure [93]. A study reported very little AgNP absorption (measured as total
silver) into the blood after intranasal administration and significantly higher blood concentrations after
AgNO3 delivery, and demonstrated that silver found in the blood was due to silver ion release from
AgNPs [94]. AgNPs have also been shown to induce cytotoxicity in neurons in vitro [95]. However,
the exact mechanisms of AgNPs causing neurodegeneration are poorly understood, and this topic
needs to be more thoroughly investigated. In contrast to the above facts, a study reported that AgNPs
showed remarkable anti-inflammatory effects, reduced LPS-induced ROS, nitric oxide and TNFα
production, which resulted into decreased microglial toxicity towards dopaminergic neurons [96].
Therefore, further investigations are required to take decisions about how to design future classes of
safe AgNPs.

4.10. Magnetic Nanoparticles

Magnetic nanoparticles (MNPs) are actually the nanoparticles which exhibit magnetic properties.
These are capable of producing temporary pores in the cell membranes, as is the case in the
BBB endothelium, which enhance drugs targeting and delivery; the phenomenon is termed as
magnetoporation [97]. MNPs have been utilized in multiple biomedical applications including
magnetic hyperthermia and heating, magnetic vectors and magnetic contrast agents [98–100]. In an
attempt to establish a promising treatment for PD, researchers developed a nanocarrier composed of
Fe3O4 nanoparticles coated with oleic acid molecules and absorbed short hairpin RNA. It was shown
that these superparamagnetic nanoparticles reduced the expression of α-synuclein, suppressed its
toxic effects on the cells, and blocked α-synuclein-induced cell death [101]. Another study reported
the successful delivery of mesenchymal stem cells (MSCs) and improved neurobehavioral assessment
when MSCs were incubated with micrometer-sized iron particles and finally administrated them in
a PD mouse model by the way of the intranasal route [102]. It has been recently demonstrated that
dextran-coated iron oxide nanoparticles enhanced the therapeutic efficacy of human MSCs in a mouse
model of PD by decreasing the loss of dopaminergic neurons and increasing the differentiation of
human MSCs to dopaminergic neurons [103].

4.11. Dendrimers

Dendrimers have a characteristic architecture consisting of molecular hooks and are a novel class
of highly branched nanoparticles that can target specific cells [104]. Two basic structures for dendrimers
have been demonstrated of which one represents a central core with radiating polymer branches, and
the other type only shows multiple branches without the core [105]. Because of the unique branching
structure of dendrimers, surface modifications through either adsorption or covalent conjugation
become very easy, which also enhances the potential of dendrimers to carry various drugs [106,107].
Polyamidoamine dendrimers have been shown to be used to fabricate tunable drug delivery systems
with the potential to target intracellular components both in vitro and in vivo [108]. Additionally,
dendrimers can also be used as scaffolds for delivering therapeutic and diagnostic entities in vivo.

5. Limitations of the Existing Routes of Administration

Although nanotherapeutics has shown tremendous application potential, it still has some
limitations [109–143] (Table 1). The brain is the most sensitive and complex organ and any non-specific
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distribution of drugs may result in complicated irreversible damage to the CNS. Nanoparticles are very
small in dimension and could likely deliver drugs way over the tolerated levels by the brain, thereby
delaying the clearance and resulting in severe toxic effects [144]. Therefore, intensive care is needed
when considering the delivery of therapeutics using nanoparticles. The toxicity of nanoparticles relates
to their shape, size, surface area, solubility, and dose, and oxidative stress generation is the most
commonly reported toxicity [145]. It has been shown that iron oxide nanoparticles reduced the viability
of the PC12 cell line, whereas they caused neuronal degeneration in vivo [146,147]. A study reported
the non-specific distribution of silver nanoparticles in the brain, liver, and kidney upon long-term
exposure [148]. To overcome these limitations, biodegradable polymeric nanoparticles are preferred
these days which can offer easy drug delivery and surface modifications. It has been shown that
the biodegradable polymeric nanoparticles are metabolically converted to biocompatible lactic acid,
butanol, and 6-hydroxycaproic acid, all of which are considered safe by the US-FDA [149].

Table 1. Approaches for brain drug delivery.

S. No Approaches Benefits Drawbacks References *

1 Nanoparticles
Target the brain using specific

physiological conditions; Actively
targeted drug delivery

Cross the BBB [114–124]

2 Gold nanoparticles
Drug delivery systems, x-ray
imaging, photothermal and

photodynamic therapies

Neurotoxic effects like astrogliosis,
increased seizure activity, and

judgement impairments
[81–87]

3 Silver
nanoparticles

Drug delivery systems,
anti-inflammatory Neurotoxic [88–96]

4 Magnetic
nanoparticles

Targeted drug/gene delivery,
contrast agents for MRI,

biosensors for diagnostic purpose,
hyperthermia as treatment

modality in cancer

Insufficient size control
distribution, uncontrolled shape,

poor colloidal stability,
nonbiodegradability, limited

biocompatibility and cytotoxicity

[97–103]

5
Nanoparticles for
brain diagnostics

or imaging

Cross the BBB through increasing
the permeability under diseased

states; Enhanced imaging

Difficult understanding of
dynamic changes in the BBB,

Cross the BBB
[143]

6 Brain permeability
enhancers Open the BBB transiently Mismatched results between

humans and rodents [128–131]

7

Enhanced brain
drug uptake using

non-invasive
techniques

Ability to open the BBB and
reduce efflux transporters Higher toxicity [136]

8 Viral vectors High transfecting efficiency of
genes

Safety issues; direct injection to
brain; crossing the BBB; high dose

by intravenous route
[109–113]

9 Exosomes Delivering the genes to CNS;
actively cross the BBB

Difficult loading procedure;
require exosomes donor cells;

in vitro toxicity, poor
pharmacokinetics

[125]

10 Niosomes

Targeted drug delivery, reduced
dose is required, subsequent

decrease in side effects, improved
bioavailability, osmotically active

and stable

Requires specialized equipment,
inefficient drug loading, time

consuming
[55–63]

11
Delivery via active
transporters in the

BBB

Potently cross the BBB by
intravenous injection Used for small molecules only [126,127]

12

Delivery under
disease states

through permeable
BBB

Potentially cross the BBB
Dynamic changes in the BBB and

their mechanisms are poorly
understood

[133–135,137,
138]

13
Using altered

administration
routes

Bypass the BBB through nasal
administration Suitable for low dose only [142]

* The numbers refer to the numbered references in the text.
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6. Nose-to-Brain as an Alternate Therapeutic Route

Although researchers have successfully explained active transport mechanisms from the blood
into the CNS and enabled the BBB penetration of some drugs, additional challenges still exist. Several
drugs, particularly macromolecules, are degraded in the gastrointestinal tract and/or undergo hepatic
metabolism, which severely limits the bioactive drug reaching the blood stream [150,151]. It is not
appropriate to increase the oral dose for compensation, because it leads to unacceptable gastrointestinal
tract or systemic adverse effects. Generally, 100% bioactive drugs in the blood stream can be obtained
via injections, but they are not the route of choice in many cases especially for treatment requiring
frequent dosing or home administration [152]. This limitation is even more conspicuous for intrathecal
drug administration. Hence, researchers have focused on nasal administration that can offer an
alternate route into the systemic circulation for multiple drugs having low oral bioavailability, slow
absorption, and slow onset of action (Figure 4) [153]. In this scenario, the nasal passage can be used
as an attractive delivery route for CNS drugs that do pass the BBB. Moreover, it can also be used for
drugs formulated to exploit active transport mechanisms to cross from the blood into the brain [154].
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7. Formulations for Nose-to-Brain Delivery

Regarding the nose-to-brain delivery, various clinical and preclinical studies have been conducted
to involve the use of drugs in solution and particulate dispersions [155–157]. Clinical studies have
usually involved the use of a nasal drug delivery device, while most animal studies have been
conducted in rodents.

7.1. Solution Dosage Forms

Studies have reported the use of drug molecules via the nose-to-brain route by simply dissolving
it in an aqueous phase which produced significant pharmacological effects [155,157–159]. Intranasal
delivery of insulin to the brain in an insulin solution was among the first trials of delivering peptides to
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the CNS [160]. Although clinical studies have shown a pharmacological response of drugs administered
via the nose-to-brain route, preclinical studies reveal that only a small fraction of the administered
dose is actually delivered to the brain. A study reported the delivery of radiolabeled interferon beta-1b
in aqueous solution form to a monkey brain with a Cmax of 0.0064%, and concluded that the drug
delivery would be enhanced by adding absorption enhancers to the formulation [157]. Brain weight
was supposed to be 1% of the animal’s average body weight in all cases where the Cmax was shown as
a percentage of the total dose [161]. A midpoint is considered as the representative body weight when a
range of body weights are given. Another study reported the delivery of oxytocin solution to the brain
via the nasal route with a Cmax of 0.003% of a 10 µg dose being found in the brain [162]. Wang et al.
delivered the DB213 (HIV replication inhibitor) solution to the rat brain with a Cmax that was estimated
to be no more than 0.007% of the administered dose [163]. In comparison with similar computations
following oral dosing where the Cmax is 0.24%–4.3% of the administered dose, these Cmax values are
extremely low [164]. However, the addition of specialized excipients to these solutions boosts brain
delivery via the nasal route. For example, when tetradecyl-b-d-maltoside (a penetration enhancer)
was added to the protein solutions of serpin B2 and activin administered via the nose-to-brain route,
neuroprotective activity was observed in a mouse model of brain injury [165]. A study showed
that addition of a cell-penetrating peptide (CPP), l-penetratin, to the exendin-4 (glucagon-1 receptor
agonist) solution resulted in delivery of exendin-4 to the hypothalamus and hippocampus on nasal
delivery to normal mice and the activation of insulin signaling, whereas plain exendin-4 solution
and exendin-4 plus the inactive d-penetratin did not show brain delivery [166]. Moreover, intranasal
exendin-4/CPP solutions plus supplemental insulin resulted in a therapeutic response against severe
cognitive dysfunction in an SAMP8 mouse model of accelerated senescence [166].

Researchers have recommend the use of viscosity-building agents such as carboxymethylcellulose
to enhance the nasal residence time of nasal solutions, and thus increase drug transport through
the olfactory neurons [167]. It has been shown that when methotrexate solution containing
carboxymethylcellulose was administered through the nasal route in combination with oral
acetazolamide in a rat 9 L glioma model, significant tumor repression was observed when compared to
drug delivery via an intraperitoneal route [167].

7.2. Nanoparticles for Nose-to-Brain Delivery

With conventional nasal solutions, very low drug transfer levels have been observed. Therefore,
to address the low drug delivery problem, scientists are conducting experiments with nanoparticulate
formulations like nanoemulsions, lipids, or polymer particles, which offer enhanced penetration
and a longer residence time within the nasal cavity [156,168–176] (Table 2). It has been found
that 100 nm nanoemulsion particles penetrated the olfactory bulb and reached the brain to a small
extent, whereas 900 nm particles could not penetrate the brain, which indicated that a particle size
cut-off may be operational for the delivery of nanoformulations beyond the olfactory bulb [168].
A transformational effect is known to occur on the level of drugs detected in the brain following
intranasal delivery when it is converted from solution to particulate formulation [177]. The solution of
a delta selective opioid agonist, leucine-5-enkephalin (LENK), initially failed to reach the rat brains in
a considerable amount via the nasal route. However, the delivery was increased when LENK was
formulated as an absorption-enhancing chitosan-based nanoparticle [156]. Compared to an intranasal
dose of rivastigmine (a cholinesterase inhibitor used for the treatment of dementia) in solution,
the emulsion form when administered intranasally led to a 5-fold increase in brain exposure [178].
The intranasal delivery of an anti-psychotic drug, quetiapine, resulted in a 2.57-fold increased
Cmax when administered as chitosan-tripolyphosphate nanoparticles instead of the conventional
solution [179]. From the commercial point of view, solution-based formulations exhibit a short half-life
and are more prone to microbial contamination. Nanoformulations for nasal drug delivery can be
further divided into solid lipid nanoparticles and nanoparticles prepared from chitosan derivatives or
poly(l-lactide-co-glycolide), as described below [156,180–182].
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Table 2. List of nanoformulations for intranasal drug delivery, with their potential advantages
and limitations.

S. No Nanoformulation Advantages Limitations References *

1 Polymeric
nanoparticles Higher loading efficiency Biocompatibility issues [170]

2 Solid lipid
nanoparticles

better control upon drug release
pattern; Improved bioavailability of

incorporated drug molecules

Unpredictable gelatin tendency
and particle growth [173]

3 Microemulsions
and nanoemulsions

Thermodynamically stable; increased
rate of absorption; enhance

bioavailability

Stabilization of nanoemulsions
require large concentration of

surfactants as well as high
energy input

[169,183–191]

4 Nanostructured
lipid carriers

Non-toxic; high loading capacity;
controlled and targeted release Issues with physical stability [174]

5 Polymeric micelles Low toxicity; High stability; High
dose loading

Immature drug-entrapping
technology; complicated

polymer synthesis
[176]

6 Dendrimer-conjugate
nanoparticles

Better biodistribution and
pharmacokinetics; targeted, site

specific and controlled drug release
Toxic [174]

7
Polymer-lipid

hybrid
nanoparticles

Targeted delivery; minimum side
effects; sustained release drug; low

frequency of administration
Storage and stability issues [175]

8 Chitosan
nanoparticles

Non-toxic; stable; biodegradable;
biocompatible; enhanced absorption

Time consuming protocols of
synthesis; need organic solvents

in preparation method
[172]

9 PLGA
nanoparticles

Minimum toxicity; deeper
penetration into the tissues; high
loading capacity; extended drug

release

Toxicity issues [171]

* The numbers refer to the numbered references in the text.

7.3. Lipid Nanoparticles

Lipid nanoparticles comprise a lipid core stabilized by a surfactant. Lipid nanoparticles differ
from oil-in-water emulsions in that they are solids at room temperature. They are prepared by
melting the lipid, followed by size reduction and surfactant stabilization of the resulting particles in an
aqueous disperse phase [192]. Lipid nanoparticles can be loaded with hydrophobic drugs and may
be administered via the nasal route to deliver drugs to the brain. Valproic acid lipid nanoparticles,
compared to the drug in solution form, delivered high drug dose to the brain, and prevented tonic-clonic
partial seizures in a maximal electric shock seizure model; this effect was similar to intraperitoneal
phenytoin [180]. The lipid nanoparticles are supposed to protect the drug from biological and/or
chemical degradation, and from extracellular transport by P-gp efflux proteins, and may indeed
promote drug transport by unknown mechanisms [193].

7.4. Microemulsions and Nanoemulsions

Microemulsions (MEs) are pseudo ternary systems which consist of oil, water and surfactant.
They are frequently used in combination with co-surfactants. MEs are stable, single-phase swollen
micellar solutions which form spontaneously, and can be utilized to incorporate a larger quantity of
hydrophilic and/or lipophilic drug molecules [183]. Nanoemulsions (NEs) comprise of mixtures of oil,
water and surfactant. These are kinetically stable, non-equilibrium systems, which do not essentially
require the co-surfactants. NEs synthesis is not spontaneous but requires high energy input. NEs are
also called mini-emulsions, submicron emulsions, or ultrafine emulsions [184]. MEs and NEs share
similarity in size, however, they are different from each other regarding the method of preparation,
composition, and concentrations of the components. It has been suggested that MEs and NEs enhance
nose-to-brain delivery of drugs through the olfactory region [185,186]. Additionally, they offer dose
uniformity and better sprayability advantages over other nano vectors for intranasal administration.
It has been reported that compared to intravenous administration, ME of nimodipine (a calcium channel



Molecules 2020, 25, 1929 14 of 27

blocker) showed higher nimodipine concentration in the brain following intranasal administration [187].
A study has shown that olanzapine mucoadhesive NE resulted in high brain to plasma ratio than
olanzapine nanoemulsion and olanzapine following intranasal administration [186]. Additionally,
Vyas TK and co-workers reported similar findings with sumatriptan, clonazepam, resperidine and
zolmitriptan MEs [188–191]. These studies suggest that direct nose-to-brain delivery of MEs and NEs
may provide significant merits in many therapeutic situations where rapid and/or specific targeting of
drugs to the CNS is required.

7.5. Nanoparticles Composed of Chitosan and Chitosan Derivatives

Chitosan has been shown to act as a penetration enhancer by temporarily opening intercellular
tight junctions, and has been utilized in a number of nose-to-brain nanoformulations [194]. Although
various reports have shown the enhanced delivery of drugs using chitosan nanoparticles, the exact
mechanism of this enhanced drug delivery remains poorly understood [179]. Compared to an intranasal
solution, quetiapine chitosan nanoparticles enhanced the drug delivery to the brain by 34% [179]. It has
been reported that intranasal chitosan nanoparticles of pramipexole better controlled motor deficits in
a rotenone model of PD than the oral or solution dosage form of the drug [195]. Additionally, chitosan
nanoparticles have also been shown to be used in gene therapies via nasal administration. For instance,
chitosan-tripolyphosphate siRNA nanoparticles silenced galectin-1, a gene that drives chemoresistance
and immune-therapy resistance on intranasal administration, resulting in increased survival in a mouse
tumor model [181]. Chitosan nanoparticles prepared with a chitosan-mangafodipir (mangafodipir is
a manganese dipyridoxyl diphosphate chelator) electrostatic complex showed effective delivery of
siRNA to the olfactory bulb for gene silencing [196,197].

The delivery of nucleic acids to the brain via the nasal route is a breakthrough achievement.
A chitosan amphiphile has been shown to deliver a labile peptide to the brain. When N-palmitoyl-N-
monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (Nanomerics’ Molecular Envelope
Technology-MET) nanoparticles encapsulating LENK were administered intranasally, it produced
analgesia in all tested animals with exclusive central activity and no peptide detected in the
periphery [156]. A study has reported that intranasal administration of MET-propofol formulations
produced sedation in a healthy rat model [198]. Furthermore, MET is mucoadhesive, which prolongs
the residence time of the formulation within the nares, leading to extended duration of drug action;
however, it does not open tight junctions [164]. MET is also a penetration enhancer, and has shown
enhanced penetration in the gut epithelium via particle uptake mechanisms [199,200]. Chitosan-based
emulsions have been shown to improve drug deposition in the brain following intranasal delivery.
For instance, 0.3% (w/v) chitosan significantly increased the brain deposition of zolmitriptan when
administered in an oil-in-water emulsion [201]. It has been reported that when resveratrol lipid
microparticles were coated with chitosan and administered intranasally as lipid particles at the dose of
60 µm to a rat model, a dramatic and specific 6-fold increase, without any detectable systemic exposure,
was observed in its distribution to the cerebrospinal fluid [202].

7.6. Poly l-Lactide-co-Glycolide (PLGA) Nanoparticles

PLGA is a globally approved polymer for use in the human drug delivery system because
of its non-toxic and biodegradable nature [203]. PLGA may be used to prevent degradation of
drugs in the nasal cavity and may be loaded with hydrophobic drugs; these properties have been
exploited in nose-to-brain delivery [203]. It has been shown that olanzapine PLGA nanoparticles
resulted in 10-times more Cmax and drug delivery to the brain than olanzapine solution [182].
A study reported that oxcarbazepine PLGA nanoparticles showed better pharmacokinetic behavior
and superiorly reduced intraperitoneal pentylene tetrazole-induced seizures in a rat model than the
drug in solution form [204]. It was shown that upon intranasal administration, a PLGA-poly(ethylene
glycol) (PLGA-PEG) copolymer nanoparticle, conjugated with Solanum tuberosum lectin and loaded
with basic fibroblast growth factor, improved cognition in a mouse AD model [205]. Interestingly,
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although PLGA nanoparticles have not been reported to be mucoadhesive or penetration enhancers,
drug delivery to the brain is still enhanced through the nasal route. In a trial to coat the PLGA
nanoparticles with chitosan, it was observed that their brain transport was altered and positively
charged chitosan-coated PLGA nanoparticles appeared to move slower than plain negatively charged
PLGA nanoparticles from the caudal to the rostral regions of the brain [206]. Another study developed
huperzine A-loaded, mucoadhesive, and targeted PLGA nanoparticles with surface modification by
lactoferrin-conjugated N-trimethylated chitosan for efficient intranasal delivery of huperzine A to the
brain for AD treatment. These nanoparticles showed good sustained-release effect, adhesion, targeting
ability, and a broad application prospect as a nasal drug delivery carrier [207]. These studies suggest
that particle transport via the nose-to-brain route is highly affected by the particle surface chemistry.
Furthermore, clarification of the different biological mechanisms of nose-to-brain delivery will assist in
the design and development of various useful dosage forms.

8. Limitation and Safety Consideration for the Nasal Formulations

The intranasal-route of drug delivery is an attractive route which quickly and accurately accesses
the brain. The intranasal route of drug delivery has multiple advantages such as BBB evasion; being
non-invasive, convenient, and a patient-friendly route of drug administration; having faster onset
of action, more precise drug targeting, more significant area of drug absorption; circumventing the
hepatic first-pass metabolism of drug; and showing less systemic side effects [208–210]. However, the
clinical application of intranasal formulations for brain drug delivery still has a long way to go. Poor
drug permeability from the nasal mucosa, enzymatic degradation of the drug, mucociliary clearance,
low drug retention time, and nasomucosal toxicity are some of the common limitations of the intranasal
drug delivery [211,212]. Various controlled delivery systems, colloidal drug carriers, permeation
enhancers, and other novel approaches have been employed to improve the drug permeability
and absorption [213,214]. It has been shown that the use of a suitable mucoadhesive system like
mucoadhesive polymers, viscous formulation, in situ gelatins, and hydrogel enhances the retention
time and reduces mucociliary clearance [215]. Additionally, some protective measures are needed, like
encapsulation in a nanocarrier system, which prevent enzymatic degradation of the drug. All these
formulation strategies facilitate intranasal drug delivery; however, the clinical success of intranasal
therapy remains limited because of the high and frequent dose of the formulation, hence irritating the
nasal mucosa. Additionally, the protective barriers of the nasal mucosa limit the efficiency of intranasal
therapy, and only 1% or <1% of the drug reaches the brain after intranasal administration. Thus, it is
essential to focus on the development of a suitable formulation to overcome these barriers [216].

Furthermore, the nature and efficacy of the drug and excipients should also be considered.
Compared to the other routes, the nasal cavity allows only a small amount of formulation (100–200 µL)
at a time given its relatively low volume (25 cm3). Hence, a potent drug is required for intranasal drug
delivery to the brain. Moreover, it is very important for excipients in a formulation to be biocompatible
and not produce any aggressive odor [217]. Additionally, the tonicity, viscosity, and pH (5.0–6.5) of the
formulation also play key roles in drug development [216,218]. Another key factor to be considered is
the technique of administration that influences drug absorption by the brain. The formulation is prone
to mucociliary clearance if it is deposited on the floor of the nasal cavity. It has been shown that the
posterior and upper regions of the nasal cavity are responsible for drug absorption to the olfactory
region or the brain, whereas the anterior region of the nasal cavity tends to displace the drug towards
systemic circulation. Hence, a suitable delivery device such as a nasal dropper, needleless syringe,
or spray is required to deliver the formulation in the appropriate region of the nasal cavity [219].
The currently available devices to target drugs to the brain are OptiMist™ (a breath actuator) and
ViaNasa™ (electronic atomizer) [216,220,221].

Many researchers have claimed successful, direct, and effective drug transfer from the nasal cavity
to the brain although some reports have contradicted the hypothesis of direct drug delivery to the
brain. Scientists from Leiden University did not find any evidence of direct nose-to-brain delivery
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of melatonin, estradiol, and vitamin B12, whereas another group of researchers reported significant
amounts of these drugs in the brain after intranasal administration [222,223]. This discrepancy in
results is likely because of the experimental conditions and formulation factors, as well as variable
methodology used. Hence, it is essential to thoroughly understand all the formulation aspects for
successful clinical application of intranasal drug delivery to the brain [222]. Despite significant
successful research work, intranasal drug delivery requires more efforts for commercial availability of
these drugs. Recent and on-going research has only focused on few issues, whereas the development
of successful formulations requires an all-round and deep consideration and understanding.

9. Future Prospective of Nose-to-Brain Delivery

Treatment of neurological diseases remains one of the most significant challenges, and advances in
nanotechnology have provided promising solutions to this challenge [224]. Based on the past few years’
research, we can conclude that nanotechnology has gained considerable focus. Multiple nanocarriers
such as solid lipid nanoparticles, liposomes, polymeric nanoparticles, dendrimers, nanogels, micelles,
nanoemulsions, and nanosuspensions have been studied for the delivery of brain therapeutics [224].
It is expected that in the near future, more drugs in the form of nasal formulations intended for brain
disorders will be commercially available [225]. However, this functional drug delivery mechanism to
the brain is a potential area of research because there are still certain unresolved challenges during
intranasal delivery. These include handling large molecular weight polar drugs such as peptides and
proteins, low membrane permeability, mucocilliary clearance, and the possibility of an enzymatic
degradation of the molecule in the lumen of the nasal cavity. These problems can be solved by focusing
on bioadhesive excipients and absorption enhancers in the formulation. The current nanoparticle-based
drug delivery technology should be improved further, so that it can be target oriented, safe, effective,
and cost-effective. Additionally, development of CNS nanoformulations needs to focus on improving
their BBB permeability, reducing neurotoxicity, and increasing their drug-trafficking performance and
specificity for brain tissue using novel targeting moieties [224]. Furthermore, adequate clinical and
preclinical trials to improve the intranasal delivery system are required. It is also not entirely clear how
drugs are delivered directly to the brain; thus, further research is required to better understand the exact
mechanism of drug passage through the intranasal route to specific brain areas. It is also important
to pay attention to formulation strategies, drug delivery devices, new excipients development, and
mucoadhesive characteristics of polymers, all of which could potentially improve bioavailability,
prolong retention, and maximize the effects of the drugs. Additionally, toxicodynamic studies of drug
and excipients and nanotoxicity of nanocarriers should also be extensively investigated [225].

10. Conclusions

Drug carriage and accessing the brain has always remained a significant challenge in the treatment
of CNS disorders. The efficiency of CNS drugs becomes limited due to various physiological factors
such as first pass effect, enzymatic degradation, presence of the BBB, inadequate blood perfusion,
systemic clearance, peripheral side effects, and reduced bioavailability. The intranasal route offers
many advantages and can hence overcome some of the limitations; it is thus a preferred, alternative
drug administration route over the parental and oral routes. Currently, scientists have utilized different
novel strategies such as targeting ligands, nanoparticulate systems, and mucoadhesive formulations to
develop a promising intranasal drug delivery device with minimal toxicity and side effects. Most of the
investigations are currently in preclinical or early clinical stages, and the successful claims are limited
to animal models only. Very few investigations have expanded to human clinical trials; however, it is
estimated that the intranasal route could be a future method for drug delivery to the brain. Our review
has discussed the various scientific attempts in the development of an effective intranasal drug delivery
system for the treatment of brain disorders. A large number of drugs, proteins, peptides, biological
agents, and cells are presently under investigation for intranasal delivery awaiting successful outcomes.
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If clinical studies support such preclinical data, intranasal drug delivery can be a new beacon of hope
for treatment of brain disorders.
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