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Abstract 

Background: Coronary artery disease (CAD) is a metabolically perturbed pathological condition. However, the 
knowledge of metabolic signatures on outcomes of CAD and their potential causal effects and impacts on left ven-
tricular remodeling remains limited. We aim to assess the contribution of plasma metabolites to the risk of death and 
major adverse cardiovascular events (MACE) as well as left ventricular remodeling.

Results: In a prospective study with 1606 Chinese patients with CAD, we have identified and validated several inde-
pendent metabolic signatures through widely-targeted metabolomics. The predictive model respectively integrat-
ing four metabolic signatures (dulcitol, β-pseudouridine, 3,3ʹ,5-Triiodo-l-thyronine, and kynurenine) for death (AUC 
of 83.7% vs. 76.6%, positive IDI of 0.096) and metabolic signatures (kynurenine, lysoPC 20:2, 5-methyluridine, and 
l-tryptophan) for MACE (AUC of 67.4% vs. 59.8%, IDI of 0.068) yielded better predictive value than trimethylamine 
N-oxide plus clinical model, which were successfully applied to predict patients with high risks of death (P = 0.0014) 
and MACE (P = 0.0008) in the multicenter validation cohort. Mendelian randomisation analysis showed that 11 geneti-
cally inferred metabolic signatures were significantly associated with risks of death or MACE, such as 4-acetamidobu-
tyric acid, phenylacetyl-l-glutamine, tryptophan metabolites (kynurenine, kynurenic acid), and modified nucleosides 
(β-pseudouridine, 2-(dimethylamino) guanosine). Mediation analyses show that the association of these metabolites 
with the outcomes could be partly explained by their roles in promoting left ventricular dysfunction.

Conclusions: This study provided new insights into the relationship between plasma metabolites and clinical out-
comes and its intermediate pathological process left ventricular dysfunction in CAD. The predictive model integrating 
metabolites can help to improve the risk stratification for death and MACE in CAD. The metabolic signatures appear to 
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increase death or MACE risks partly by promoting adverse left ventricular dysfunction, supporting potential therapeu-
tic targets of CAD for further investigation.

Keywords: Metabolomics, Coronary artery disease, Death, Major adverse cardiovascular events, Metabolic signature, 
Left ventricular remodeling, Mendelian randomisation
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Background
Coronary artery disease (CAD) imposes a major burden 
on modern society with annual morbidity and mortal-
ity comparable to cancer [1–3]. Despite the advances in 
pharmaceutical and operative treatments, the mortality 
of CAD remains unacceptably high. It is well-known that 
significant left ventricular (LV) remodeling is a severe 
and common issue in CAD [4], which contributes to the 
development of heart failure and the noticeably elevated 
risk of mortality and cardiovascular events [5, 6]. How-
ever, available molecular biomarkers in reflecting pro-
gressive worsening cardiac function and the long-term 
outcomes during CAD progression are still limited [7–9]. 
Incorporating novel molecular biomarkers to explain 
detailed molecular processes and pathophysiological 
mechanisms involving adverse outcomes, may improve 
early risk stratification and indicate novel targets in pre-
ventive therapies for CAD patients.

CAD is a metabolically perturbed pathological condi-
tion [10, 11]. Plasma metabolites reflect a functional out-
put for genetic makeup and environmental exposure to 
disease phenotypes [12, 13]. Metabolomics profiling can 
assist in shedding light on underlying molecular mecha-
nisms involving the pathophysiology of disease states and 
support personalized risk prediction for disease develop-
ment and prognosis [13]. In the setting of prevalent CAD, 
emerging metabolomic profiling has begun to illustrate 
specific molecular signatures relating to CAD charac-
terization [10]. Besides, previous studies have also iden-
tified a few metabolic markers for cardiovascular events 
or all-cause mortality [14–18], mainly in Westerners or 
free of cardiovascular disease. Moreover, researchers 
have indicated that different study populations may lead 
to different molecular signatures and conflicting find-
ings [19–22]. While most metabolomic studies have lit-
tle focus on further explanation of the causal effects and 
potential pathophysiologic mechanisms of metabolic 
markers. The mechanism promoting death and major 
adverse events (MACE) occurrence in CAD patients are 
heterogeneous, the potential pathological mechanism 
of adverse LV remodeling during CAD progression has 
become one of the hot issues [23]. However, few studies 
have examined the association of metabolites with clini-
cal outcomes and cardiac remodeling in CAD, and the 
potential causal roles that the spectrum of metabolites 
play during the disease progression, before clinical end-
points onset, is thus unclear.

Given the fact that metabolism has been closely impli-
cated in CAD pathogenesis and development, there is 
a need to identify novel metabolic signatures and inte-
grate the genetic regulation of circulating metabolites 
to improve understanding in causality, and thus provide 
potential pathological insights and therapeutic targets 

to improve CAD survival and prognosis. Therefore, we 
performed a study on 1606 Chinese patients with CAD 
through metabolomic profiling in plasma to evaluate 
the contribution of metabolites to the risks of death or 
MACE as well as LV remodeling and then built a good 
prognostic model based on metabolic signatures. More-
over, we further conducted Mendelian randomisation 
(MR) analysis by integrating genomic data to infer the 
potential causal effects of metabolites, and mediation 
analysis to explore possible mediation effects through 
promoting LV remodeling.

Results
Patient characteristics
The baseline characteristics are listed in Table  1. We 
recruited 1606 patients with CAD, including 1040 
patients for the discovery cohort (63.03  years, 79.62% 
male), and 566 multicentre patients for the multicenter 
validation cohort (62  years, 74.16% male). Patients with 
high death and MACE risks were commonly old, suffered 
from diabetes, high aspartate aminotransferase, SYN-
TAX scores, N-terminal-pro brain natriuretic peptide 
(proBNP) and LVMI, and low estimated glomerular fil-
tration rate and LVEF, see Additional file 1: Table S1.

It is noteworthy that adverse LV remodeling mani-
fested as low LVEF and high LVMI was strongly related 
to increased death or MACE risks in CAD (Additional 
file  2: Fig. S1), compared with other clinical character-
istics including coronary lesion score. The association 
between characteristics with LVEF and LVMI is included 
in Additional file 1: Table S2.

Metabolomic associations with the clinical outcomes
In the discovery phase, among the 202 metabolites, we 
identified 35 plasma metabolites that were significantly 
associated with the risks of death, and 24 metabolites 
remained significant after adjustment for confounding 
factors (FDR < 0.05), see Fig.  1A and Additional file  1: 
Table  S3. The most significant metabolites including 
4-acetamidobutyric acid (HR, 1.60; 95% CI 1.38–1.87; 
FDR = 3.27E−08), β-pseudouridine (HR, 1.77; 95% CI 
1.41–2.23; FDR = 9.64E−06), dulcitol (HR, 1.44; 95% CI 
1.25–1.67; FDR = 7.10E−06), (2-(dimethylamino) guano-
sine (HR, 1.73; 95% CI 1.29–2.31; FDR = 6.73E−04), 
S-(5-adenosy)-l-homocysteine (HR, 2.03; 95% CI 1.49–
2.77; FDR = 3.92E−05) and kynurenine (HR, 2.07; 95% CI 
1.41–3.03; FDR = 6.65E−04). In the multicenter valida-
tion cohort, 15 metabolites positively associated with the 
death risk were reproduced, including 4-acetamidobu-
tyric acid, β-pseudouridine, 2-(dimethylamino) guano-
sine, S-(5-Adenosy)-l-homocysteine, kynurenine, cyclic 
AMP, adipic acid, 3-methylcrotonyl glycine, 5ʹ-deoxy-5ʹ-
(methylthio) adenosine, Dl-P-hydroxyphenyllactic acid, 
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D-sorbitol, Dulcitol, kynurenic acid, N6-succinyl adeno-
sine, and N6-acetyl-l-Lysine.

Twenty-one metabolites were significantly associated 
with the risks of MACE after adjustment for confounders 
(FDR < 0.05) in the discovery phase, see Fig. 1B and Addi-
tional file  1: Table  S4. Notably, 4-acetamidobutyric acid 
(HR, 1.42; 95% CI 1.25–1.60; FDR = 8.87E−06) was also 
the most significant metabolites. During multicenter vali-
dation, 2-(dimethylamino) guanosine (HR, 1.27; 95% CI 

1.10–1.47; FDR = 1.19E−02), dulcitol (HR, 2.20; 95% CI 
1.25–3.90; FDR = 2.82E−02), d-sorbitol (HR, 2.27; 95% 
CI 1.27–4.05; FDR = 3.17E−02) and kynurenine (HR, 
1.78; 95% CI 1.43–2.22; FDR = 5.88E−06) were well-
replicated to be positively associated with MACE risks. 
4-Acetamidobutyric acid, β-pseudouridine, kynurenic 
acid, and l-tryptophan were significant only before 
adjustment. In particular, kynurenine was validated to be 
robustly associated with both death and MACE risks.

Table 1 Baseline characteristics in 1606 CAD patients

Data are number (%) or mean ± SD when appropriate

SD standard deviation, BMI body mass index, SBP systolic blood pressure, CVD cardiovascular disease, DM diabetes, HyperT hypertension, ALT alanine aminotransferase, 
AST aspartate aminotransferase, eGFR estimated glomerular filtration rate, GLUC glucose, CHOL cholesterol, LDLC low-density lipoprotein cholesterol, HDLC 
high-density lipoprotein cholesterol, TRIG triglyceride, CKMB creatine kinase MB, proBNP N-terminal pro brain natriuretic peptide, BB β-blockers, ACEI angiotensin 
converting enzyme inhibitors, CCB calcium channel blockers, PPI proton pump inhibitors, SYNTAX score Synergy between PCI with TAXUS and Cardiac Surgery score, 
LVEF left ventricular ejection fraction, LVMI left ventricular mass index

Characteristics Discovery cohort (n = 1040) Multicenter validation cohort (n = 566)

Demographic data

 Age 63.03 ± 10.04 62.29 ± 10.18

 Sex (male) 828 (79.62) 419 (74.16)

 BMI, kg/m2 24.28 ± 4.79 24.06 ± 3.38

 SBP, mm Hg 130.66 ± 18.89 133.04 ± 20.29

 DBP, mm Hg 76.19 ± 11.03 76.46 ± 12.05

 Current smoking 294 (28.52) 160 (28.73)

 Family of CVD 29 (2.79) –

Comorbidities

 Arrhythmia 92 (8.86) 51 (9.17)

 DM 286 (27.55) 164 (29.39)

 HyperT 627 (60.35) 340 (60.93)

 Dyslipidemia 729 (72.54) 400 (74.07)

Biomedical measurements

 ALT, U/L 27.41 ± 13.18 27.65 ± 24.56

 AST, U/L 26.64 ± 10.62 32.12 ± 55.48

 eGFR, mL/min/1.73  m2 94.32 ± 73.69 91.37 ± 110.84

 GLUC, mmol/L 6.74 ± 2.73 6.21 ± 3.82

 CHOL, mmol/L 4.28 ± 1.12 4.29 ± 1.77

 LDLC, mmol/L 2.58 ± 0.93 2.7 ± 1.00

 HDLC, mmol/L 0.97 ± 0.26 0.99 ± 0.25

 TRIG, mmol/L 1.62 ± 1.14 1.85 ± 1.85

 CKMB, U/L 7.48 ± 5.92 19.37 ± 52.83

 proBNP, pg/mL 774.51 ± 1597.35 1299.46 ± 4922.09

Medications

 BB 929 (89.5) 477 (84.57)

 ACEI 660 (63.58) 286 (50.71)

 CCB 295 (28.42) 165 (30.05)

 PPI 506 (48.75) 380 (67.26)

SYNTAX score 16.43 ± 10.74 16.45 ± 13.09

LVEF, % 60.1 ± 11.54 59.43 ± 11.63

LVMI, g/m2 122.13 ± 36.05 116.54 ± 35.08
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Independent metabolic signatures and optimized 
prediction model for clinical outcomes
To identify a minimal set of metabolites and develop a 
prognostic model, we firstly selected independent meta-
bolic signatures based on the 24 metabolites associated 
with the risks of death from the discovery cohort, using 
lasso Cox regression adjusting for potential confound-
ers (200 repeats, Table  2). Then, irrelevant metabolites 
were filtered out and 13 endogenous metabolites were 
retained, including 4-acetamidobutyric acid, dulcitol, 
N6-succinyl adenosine, l-cystine, β-pseudouridine, 
2-(dimethylamino) guanosine, kynurenine, 3,3ʹ,5-triiodo-
l-thyronine, d-sorbitol, DL-P-hydroxyphenyllactic acid, 
phenyllactate, cyclic AMP, and S-(5-Adenosy)-l-ho-
mocysteine. Besides, among the 21 metabolites associ-
ated with MACE risk, 11 endogenous metabolites were 

identified as independent metabolic signatures, including 
4-acetamidobutyric acid, l-cystine, l-tryptophan, dulci-
tol, 5-methyluridine, kynurenine, phenyllactate, lysoPC 
20:2, d-sorbitol, lysoPC 20:1, N6-succinyl adenosine.

Then, we developed prognostic models for predict-
ing risks of clinical endpoints in the discovery cohort, 
using a multivariate Cox regression model based on 
minimal AIC. For the risk of death, a clinical model 
was built based on 17 clinical risk factors, and eight 
factors were retained in the final model. The trimeth-
ylamine oxide (TMAO) model consisted of TMAO 
and five clinical variables. The metabolomic model 
was built only based on the metabolites screened after 
lasso Cox regression and finally included five metab-
olites (3,3ʹ,5-Triiodo-l-thyronine, β-pseudouridine, 
Cyclic AMP, dulcitol, and kynurenine), see Additional 
file  1: Table  S5. The metabolomic plus clinical model 
combining variables of the metabolomic and clinical 
model, in the final included four metabolites (3,3ʹ,5-
Triiodo-l-thyronine, β-pseudouridine, dulcitol, and 
kynurenine) and five clinical variables. The metabo-
lomic model yielded higher predictive efficiency than 
the clinical model (AUC, 80.9% vs. 77.0%). Moreover, 
the model combining metabolomics and the clini-
cal model for death yielded an improved predictive 
efficiency than the TMAO and the clinical model 
(Table  3), with increased AUC (83.7% vs. 76.6% vs. 
77.0%, Fig.  2A), positive IDI of 0.096, continuous 
NRI of 0.230 and 0.121. In addition, a metabolomic 
model for MACE contains six metabolites (Additional 
file  1: Table  S5) that performed well than the clinical 
model (AUC, 66.0 vs. 58.4%). Furthermore, adding 
four metabolomic variables (kynurenine, lysoPC 20:2, 
5-methyluridine, and l-tryptophan) to the clinical 
model was also with better predictive value than that 
of the TMAO and the clinical model (Table  3), with 
increased AUC (67.4% vs. 59.8% vs. 58.4%, Fig.  2B), 
positive IDI of 0.068 and 0.072, and continuous NRI of 
0.144 and 0.106.

Subsequently, the optimized prediction model was 
used to estimate survival probabilities from death and 
MACE of each patient in the multicenter validation 
cohort. Survival curves showed that the model com-
bining multiple metabolites with clinical factors could 
successfully differentiate patients with a low, mid-
dle, and high risk of death (log-rank test, P = 0.0014; 
Fig. 2C) and MACE (P = 0.0008, Fig. 2D).

Metabolomic associations with LV remodeling
Network analysis of metabolites associated with risks 
of death (Fig. 3A, Additional file 1: Table S6) or MACE 
(Additional file  1: Table  S7, Additional file  2: Fig. S2) 
not only showed the importance of hub metabolites of 

Table 2 Independent metabolic signature selection using 
LASSO

The regression coefficients were calculated by averaging the coefficients 
obtained from tenfold cross-validation lasso Cox regression with 200 repeats, 
adjusted for 17 main clinical confounders. The confounders included age, 
sex, AST, eGFR, DM, HyperT, CHOL, HDLC, PPI, ACEI, BB, CCB, current smoking, 
family history of CVD, SYNTAX, SBP, and GLUC. The variables that appear zero 
times were removed and the variables left were further selected to develop a 
predictive model, abbreviations are as in Table 1

Terms Coefficient (β) HR Frequency

LASSO based signature selection for death

 Dulcitol 0.22 1.25 200

 4-Acetamidobutyric acid 0.29 1.34 200

 N6-succinyl adenosine 0.05 1.05 195

 l-Cystine 0.08 1.08 191

 β-Pseudouridine 0.05 1.05 173

 2-(Dimethylamino) guanosine 0.02 1.02 137

 Kynurenine 0.04 1.04 43

 3,3ʹ,5-Triiodo-l-thyronine − 0.12 0.89 43

 d-Sorbitol 0.04 1.04 21

 DL-P-hydroxyphenyllactic acid 0.02 1.03 21

Phenyllactate (PLA) 0.01 1.01 11

 Cyclic AMP 0.02 1.02 5

 S-(5-Adenosy)-l-homocysteine 0.02 1.02 2

LASSO based signature selection for MACE

 4-Acetamidobutyric acid 0.06 1.06 200

 l-Cystine 0.06 1.06 200

 l-Tryptophan − 0.24 0.79 200

 Dulcitol 0.10 1.10 200

 5-Methyluridine 0.28 1.33 200

 Kynurenine 0.22 1.25 200

 Phenyllactate (PLA) 0.10 1.11 200

 LysoPC 20:2 − 0.51 0.60 200

 d-Sorbitol 0.02 1.02 199

 LysoPC 20:1 − 0.04 0.96 193

 N6-succinyl adenosine − 0.01 0.99 2
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2-dimethylguanosine and kynurenine, but also important 
roles in reduced LVEF and increased proBNP. The rela-
tionships between metabolites with LVEF (Fig.  3B) and 
LVMI (Fig.  3C) in the discovery cohort were revealed, 
32 metabolites were associated with LVEF after adjust-
ment (FDR < 0.05), and 20 metabolites were validated 
during multicenter validation (P < 0.05, Additional 
file  1: Table  S8). Besides, 16 metabolites were associ-
ated with LVMI and eight metabolites were validated 
(P < 0.05, Additional file  1: Table  S9). Interestingly, the 
hub metabolites, 2-(dimethylamino) guanosine was the 
most significant metabolite associated with reduced 
LVEF and increased LVMI. Another modified nucleo-
side, β-pseudouridine also showed a similar finding. In 
particular, 15 metabolites were not only associated with 
increased death risks but also reduced LVEF, 10 metab-
olites were associated with increased MACE risks and 
reduced LVEF (Fig. 4A). Moreover, five metabolites were 
shared by increased LVMI and death risks, three metab-
olites were shared by increased LVMI and MACE risks. 
For example, 2-(dimethylamino) guanosine (estimate 
[SE], −  4.75 [0.69]; FDR = 4.72E−10), β-pseudouridine 
(estimate [SE], − 2.80 [0.56]; FDR = 9.56E−6), kynure-
nine (estimate [SE], − 3.15 [0.68]; FDR = 2.82E−05), 
N6-succinyl adenosine (estimate [SE], − 2.58 [0.64], 
FDR = 1.95E−04), 4-acetamidobutyric acid (estimate 

[SE], − 1.79 [0.46]; FDR = 3.55E−04), dulcitol (esti-
mate [SE], − 1.67 [0.46]; FDR = 7.49E−04), kynurenic 
acid (estimate [SE], − 2.16 [0.61]; FDR = 9.15E−04), 
phenylacetyl-l-glutamine (estimate [SE], − 1.86 [0.58]; 
FDR = 2.62E−03), adipic acid (estimate [SE], − 2.30 
[0.74]; FDR = 3.35E−03), DL-P-hydroxyphenyllactic acid 
(estimate [SE], − 1.41 [0.58]; FDR = 1.86E−02), and cyclic 
AMP (estimate [SE], − 1.36 [0.68]; FDR = 4.82E−02) 
were validated to be associated with reduced LVEF. 
Besides, 2-(dimethylamino) guanosine (estimate [SE], 
7.89 [2.46]; P = 1.38E−03), cyclic AMP (estimate [SE], 
5.27 [2.35]; P = 2.53E−02), kynurenine (estimate [SE], 
4.88 [2.35]; P = 3.83E−02) and phenylacetyl-l-glutamine 
(estimate [SE], 4.20 [2.05]; P = 4.12E−02) was confirmed 
to be related to increased LVMI.

Causality and mediation effects inference 
between metabolites, LV remodeling and clinical outcomes 
by MR analyses and mediation model
As secondary analyses, we performed MR analyses using 
genetic variants as the instrumental variables, to rule out 
the influences from confounders, thus providing infer-
ence of causality between the important metabolic sig-
natures and clinical outcomes as well as LV remodeling 
(Fig. 4B and Additional file 1: Table S10). The MR analyses 

Table 3 Model performance measures for mortality and MACE risks in the discovery phase

The metabolic variables screened from LASSO, TMAO, and the 17 traditional clinical factors including age, sex, AST, eGFR, DM, HyperT, CHOL, HDLC, PPI, ACEI, BB, 
CCB, current smoking, family history of CVD, SYNTAX, SBP, and GLUC were input into multivariate Cox proportional hazards regression analysis to fit model, using a 
forward and backward stepwise process based on AIC (Akaike information criterion). The model with the smallest AIC value was considered the best and variables 
with P < 0.1 were retained. IDI (integrated discrimination improvement) and continuous NRI (net reclassification improvement) were calculated by comparing the 
Metabolomic + clinical model with TMAO + clinical and Clinical model, and the Metabolomic model with Clinical model, 95% CIs were calculated by 1000 bootstrap 
resampling
a Metabolomic + clinical model = Dulcitol, β-Pseudouridine, 3,3ʹ,5-Triiodo-l-thyronine, Kynurenine, age, current smoking, GLUC, AST, SBP
b Metabolomic model = Dulcitol, Kynurenine, Cyclic AMP, 3,3ʹ,5-Triiodo-l-thyronine, β-Pseudouridine
c TMAO model = TMAO, age, AST, current smoking, SBP, GLUC
d Clinical model = age, AST, HDLC, CCB, current smoking, SYNTAX, SBP, GLUC
e Metabolomic + clinical model = lysoPC 20:2, 5-methyluridine, kynurenine, L-tryptophan, AST, DM, PPI, SYNTAX
f Metabolomic model = lysoPC 20:2, 5-methyluridine, kynurenine, l-tryptophan, d-sorbitol, phenyllactate
g TMAO + clinical model = TMAO, AST, DM, PPI, CCB, SYNTAX
h Clinical model = AST, DM, PPI, CCB, SYNTAX. AUC = area under the curve, other abbreviations are as in Table 1

Predictive model AUC IDI (95% CI) Continuous NRI (95% CI)

Prediction of death

 Metabolomic +  clinicala 83.7

  Metabolomicb 80.9 0.072 (− 0.067 to 0.238) 0.013 (− 0.259 to 0.263)

 TMAO +  clinicalc 76.6 0.096 (0.031–0.235) 0.230 (− 0.032 to 0.446)

  Clinicald 77.0 0.096 (0.012–0.231) 0.121 (− 0.127 to 0.369)

Prediction of MACE

 Metabolomic +  clinicale 67.4

  Metabolomicf 66.0 0.066 (0.005–0.124) 0.097 (−0.049 to 0.238)

 TMAO +  clinicalg 59.8 0.068 (0.029–0.118) 0.144 (0.005–0.324)

  Clinicalh 58.4 0.072 (0.034–0.128) 0.106 (− 0.001–0.321)
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identified that N6-Succinyl adenosine (HR, 1.88 and 1.51), 
phenyllactate (HR, 2.71 and 1.79), and kynurenine (HR, 
4.40 and 2.19) were associated with increased death and 
MACE risks (P < 0.05). DL-P-hydroxyphenyllactic acid 
with HR of 3.11, adipic acid (HR = 4.67), S-(5-Adenosy)-
l-homocysteine (HR = 2.88), trimethylamine N-oxide 
(HR = 1.76), 3,3ʹ,5-Triiodo-l-thyronine (HR = 0.11), and 

4-acetamidobutyric acid (HR = 2.34), were linked to 
the risks of death. d-Sorbitol with HR of 1.76 and phe-
nylacetyl-l-glutamine with HR of 1.74 were linked to 
increased risk of MACE. Moreover, we still observed 14 
metabolites, including 4-acetamidobutyric acid (estimate 
[SE], −  4.19 [1.18]), phenylacetyl-l-glutamine (estimate 
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[SE], − 4.53 [1.32]), phenyllactate (estimate [SE], − 2.68 
[1.09]), kynurenine (estimate [SE], − 4.24 [1.80]), adipic 
acid (estimate [SE], − 4.29 [2.11]), kynurenic acid (esti-
mate [SE], − 3.55 [1.51]), 2-(dimethylamino) guanosine 
(estimate [SE], − 4.97 [1.48]), β-pseudouridine (estimate 
[SE], − 3.07 [1.35]) were associated with decreased LVEF, 
and Dl-2-aminooctanoic acid (estimate [SE], − 9.63 
[4.53]) were associated with decreased LVMI.

Moreover, mediation analysis of LVEF was performed 
to further explain the associations between the metabo-
lites and the clinical endpoints. Here, only those metabo-
lites that were observed to have causal effects on LVEF 
in MR analysis were focused on. Mediation analysis 
proposed that the seven metabolites increase death and 
MACE risks could partly through impair LVEF (P value 
of Total effect and Med-eff < 0.05, Fig. 4C and Additional 
file 1: Table S11). The percentage of the total effect medi-
ated by decreased LVEF on both death and MACE of 
β-pseudouridine was estimated at 18–20%, 2-(dimeth-
ylamino) guanosine and phenylacetyl-l-glutamine was 
at 18–19%, phenyllactate was at 19% (death) and 13% 
(MACE), kynurenine was at 18% on death and 14% on 
MACE, 4-acetamidobutyric acid and kynurenic acid were 
at 13–15%.

Discussion
In this prospective cohort of Chinese CAD patients, 
we described a comprehensive metabolomic study to 
identify endogenous metabolites that were associated 
with the major clinical outcomes of CAD, i.e. death 
and MACE. Based on these findings, we built prognos-
tic models and found that combining metabolic signa-
tures and clinical factors outperformed other models 
that used solely clinical risk factors, or clinical factors 
with established biomarker TMAO. Subsequently, we 
performed MR analysis to assess the potential causal 
effects of the metabolites on clinical outcomes. We 
observed that 11 metabolites were causally associated 
with the risk of death or MACE, including kynurenine, 
N6-Succinyl adenosine, phenyllactate, DL-P-hydroxy-
phenyllactic acid, 3,3ʹ,5-Triiodo-l-thyronine (T3), adipic 
acid, S-(5-Adenosy)-l-homocysteine, TMAO, 4-acetami-
dobutyric acid, d-sorbitol, and phenylacetyl-l-glutamine. 
In addition, we proposed for the first time that 7 meta-
bolic signatures inferred as causal on the reduced LVEF 
by MR analysis increased the risks of death and MACE 
possibly partly through impairing LV function, including 
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kynurenine, phenylacetyl-l-glutamine, 4-acetamidobu-
tyric acid, phenyllactate, kynurenic acid, and two modi-
fied nucleosides. To our knowledge, our study provided 
the most comprehensive metabolomic and causal infer-
ence for the major clinical outcomes of CAD to date, sug-
gesting potential pathological mechanisms, and offering 
biomarkers and potential therapeutic targets for the sec-
ondary prevention of CAD.

Deciphering the details of the circulating metabolome 
could help to predict the risk of CAD and subsequent 
cardiovascular events [24]. To date, many studies have 
already identified some biomarkers for CAD risk, such 
as sphingolipids [25] and TMAO [26]. Moreover, prior 
studies identified several metabolic markers for all-cause 
mortality in CAD patients of European ancestry [14, 15]. 
However, the metabolomic biomarkers have not been 
well studied for clinical outcomes of CAD in Asian popu-
lation especially Chinese at present [27]. In our study on 
Chinese CAD patients, we replicated several of them, 
including kynurenine, T3, S-(5-adenosy)-l-homocyst-
eine), TMAO, and phenylacetyl-l-glutamine. Interest-
ingly, the impacts of these metabolites on the death or 
MACE risk were further confirmed by our MR analysis. 
Their potential biological mechanisms in CAD were dis-
cussed as follows. Increased catabolism of tryptophan 
to kynurenine was related to cardiovascular events and 
mortality [28, 29], and activation of tryptophan–kynure-
nine pathway was correlated with LV dysfunction [30]. 
Consistent with this, our mediation analysis showed 
that 13–18% of adverse effects of kynurenine and its 
metabolites kynurenic acid on death and MACE risks 
could be explained by reduced LVEF. Kynurenine and 
several of its downstream can bind to transcription fac-
tor aryl hydrocarbon receptor and mediate T cell apop-
tosis and vascular inflammation, which in turn regulates 
inflammation-induced CVD [31]. Therefore, dysregula-
tion of tryptophan metabolism represents a functional 
mechanism and generates biomarkers for early prog-
nosis and therapeutic intervention. Low T3 level was 
associated with an increased risk of death, indicating an 
important role of thyroid function in CAD, which was 
consistent with a previous meta-analysis that low serum 
T3 level was related to increased risk of all-cause mortal-
ity and MACE [32]. S-(5-adenosy)-l-homocysteine) was 
reported as a strong predictor of mortality in cirrhosis 
[33], and as a more sensitive biomarker than homocyst-
eine for cardiovascular events [34, 35].

TMAO and phenylacetyl-l-glutamine were two well-
known gut microbiota-derived metabolites. TMAO is 
an established biomarker for cardiovascular events and 
mortality [36–39]. TMAO impacts multiple aspects of 
‘patient vulnerability’, including atherosclerotic plaque 
development, platelet hyperresponsiveness [37, 40], and 

variation in macrophage and endothelial cell phenotype 
[41]. More recently, phenylacetyl-l-glutamine began 
to attract attention as a novel marker for CAD [42] and 
other cardiovascular diseases [43]. It was derived from 
gut microbiota, and via adrenergic receptors, it could 
enhance platelet responsiveness and athero-thrombosis, 
resulting in cardiovascular events. Here we reported for 
the first time that phenylacetyl-l-glutamine increased 
the risks of death and MACE in CAD could be explained 
at 18–19% by reduced LVEF, indicating a novel mecha-
nistic link to cardiovascular events. The phenylacetyl-
l-glutamine is regarded as a predictor of the event of 
heart failure [44], the accumulation of phenylacetylglu-
tamine in heart failure may be due to increased amino 
acid degradation. Taken together, these findings support 
the notion that gut microbiota-derived metabolites are 
closely associated with cardiovascular health, and pro-
vide clues for developing novel therapeutic strategies in 
the cardiovascular field.

In addition to the known metabolic markers, we dis-
covered additional markers that were not reported in 
previous CAD studies yet were revealed through our 
comprehensive study design of recruiting patients from 
multiple clinical centers. These novel markers included 
modified nucleosides, aromatic lactic acids, 4-acetami-
dobutyric acid, etc. The finding that increased plasma 
levels of modified nucleosides in CAD patients at high 
risk of major clinical outcomes is intriguing. Two modi-
fied nucleosides, 2-(dimethylamino) guanosine and 
β-pseudouridine, were found in our study as robust 
metabolic signatures for high risks of death and MACE, 
despite no causal relationship being observed in the MR 
analysis. Importantly, they displayed the strongest cor-
relation with LV remodeling and were causally associ-
ated with reduced LVEF in MR. Furthermore, mediation 
analysis also inferred that their associations with clini-
cal outcomes could be explained about 18–20% through 
impaired LVEF. It was consistent with recent studies that 
increased levels of 2-(dimethylamino) guanosine and 
β-pseudouridine levels were related to incident heart fail-
ure and LV remodeling [45, 46]. Furthermore, 2-(dimeth-
ylamino) guanosine has been linked to increased risk 
of coronary artery calcium [47] and all-cause mortal-
ity in diabetes [48], and elevated circulating levels of 
β-pseudouridine were associated with atrial fibrillation 
[49], heart failure [50] and CAD [51]. Here we report 
for the first time that β-pseudouridine was also a meta-
bolic marker for the risks of death and MACE in CAD. 
Moreover, increased circulating modified nucleosides 
were also associated with the development of pulmonary 
hypertension, reflecting elevated stress and increased 
proliferation of pulmonary vascular cell [52]. Modified 
nucleosides consist of various RNA species, reflecting 
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the upregulation of translation and hypercatabolism in 
general [53]. Taken together, our findings suggested that 
CAD patients may experience disorders of modified 
nucleoside, causing excessive damaging stress in cardio-
myocytes, which in turn promoted cardiac remodeling 
and major clinical outcomes.

4-Acetamidobutyric acid appeared in our study as 
the metabolite most strongly associated with both risks 
of death and MACE, and about 14–15% of these effects 
could be mediated by promoting LV malfunction. Recent 
studies also found that 4-acetamidobutyric acid was asso-
ciated with incident heart failure and LVMI [46], rheuma-
toid arthritis [54], and severity of liver and kidney disease 
in cirrhosis [33]. 4-Acetamidobutyric acid is a product of 
polyamine, arginine and proline metabolism. Polyamines 
play important roles in cell proliferation, apoptosis, and 
tumor growth, thus serving as a target for cancer preven-
tion and treatment [55]. Polyamine stress response could 
be activated by acute ischemia, leading to polyamine 
accumulation and cardiac cell death [56, 57]. The primary 
pathophysiological mechanisms of polyamines during 
ischemia/reperfusion injury and cardiac failure were in 
regulating cardiomyocyte death. Moreover, inhibition of 
polyamine biosynthesis could protect cardiac cells from 
norepinephrine‐mediated apoptosis [58]. Therefore, we 
speculated that 4-acetamidobutyric acid is a key polyam-
ine underlying the progression of heart failure and CAD, 
which warrants further investigation.

In addition, it is interesting to note that two elevated 
aromatic lactic acids, phenyllactate, and DL-P-hydroxy-
phenyllactic acid, were inferred being causally associ-
ated with the adverse outcomes in CAD. They have 
been reported to be produced by the human gut micro-
biome [59] and were positively associated with hepatic 
steatosis [60], cirrhosis [33], and hepatocellular carci-
noma development [61]. Recent studies reported that 
3-(4-hydroxyphenyl) lactacte significantly increased the 
risk of diabetes [62], and in rodents, hydroxyphenyllac-
tate may decrease the production of reactive oxygen spe-
cies in mitochondria and neutrophils [59]. While their 
biological linkage with CAD and heart failure needs fur-
ther study. N6-succinyl adenosine, a purine metabolite, 
was reported to accumulate in the fluid of patients with 
adenylosuccinase deficiency, causing severe neurological 
impairment [63]. N6-succinyladenosine was reported to 
promote inflammasome activity and IL-1β production in 
subjects with high expression of the inflammasome mod-
ule, which was related to all-cause mortality [64]. Moreo-
ver, N6-succinyl adenosine was dramatically increased 
following myocardial infarction [65] in rats and signifi-
cantly elevated in patients with chronic thromboembolic 

pulmonary hypertension [66], providing clues to the 
association with CAD. Adipic acid is a product of lipid 
oxidation and could predict the development of islet 
autoantibodies [67]. A study reported that accumulated 
adipic acid as toxic metabolites from medium-chain acyl-
CoA dehydrogenase deficiency-induced significant DNA 
damage in vitro [68].

Understanding the effects of these metabolic mark-
ers on the clinical events to be causal or merely associ-
ated could shed light on potential novel intervention 
targets for CAD. Therefore, unique in this study, we have 
explored whether there are potential causal effects of 
metabolic markers on the prognosis and LV remodeling 
of CAD using MR analysis. MR analysis is a popular cau-
sality inference tool that uses the inherent genotype as 
the instrumental variable which follows Mendelian laws 
of inheritance [65]. Genotypes as instrumental variables 
are not affected by confounding factors such as diet and 
other environmental factors. Hence, MR analysis could 
help us to rule out the influences from confounders and 
have causal timing, thus providing unbiased estimates 
of causality between exposure and outcome. However, 
although MR analysis and mediation analysis provided 
important causal inference for our findings, those newly 
identified metabolic markers, are still worth-well to fur-
ther causality confirmation and mechanism study.

In addition, a recent study revealed that heterogene-
ous metabolic deviation profiles were evident even in 
a homogenous subgroup of acute coronary syndrome 
patients, which emphasizes that personalized risk strati-
fication and preventative measures are essential in CAD 
[69]. Our study confirmed that combining metabolic sig-
natures and clinical risk factors yields a better prognos-
tic prediction for the clinical endpoints in CAD patients, 
compared to using metabolic signatures or clinical risk 
factors alone. Furthermore, it outperformed the model 
of the established marker TMAO plus clinical risk fac-
tors, even though the plasma level of TMAO was pre-
viously suggested as a predictor of death and MACE in 
CAD [17, 36]. It was also reported that the model includ-
ing TMAO, for predicting clinical endpoints resulted 
in limited C-statistics and no significant improvement 
compared with the traditional risk factors [36]. The pro-
gression of CAD is multifactorial with complex physi-
opathology, which concurrently alters multiple metabolic 
pathways. Therefore, a joint metabolic signature has bet-
ter strength to capture the complex changes, leading to 
improved tools for early risk stratification for the second-
ary prevention of CAD. Future investigations will help 
evaluate and improve the clinical utility of our model for 
different patient populations.
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Limitations
First, the study was based on Chinese patients, and the 
sample size of the validation cohort was relatively small, 
therefore we only validated the results with strong sig-
nals and could miss the weak signals that were weak. 
Studies expanding to other ethnicities and large-scale 
cohorts were also needed. Secondly, due to the metabo-
lomic platform and method updating, the conditions for 
metabolite detection between the two cohorts were dif-
ferent, leading to 600 metabolites being detected in the 
multicenter validation cohort, while only 160 metabolites 
were identical to the discovery cohort. If more metabo-
lites were added, then more novel metabolic signatures 
could be found. Another limitation is that the effect of 
CAD severity on the clinical outcomes was controlled by 
adjusting the SYNTAX scores in the discovery cohort, 
but the multicenter cohorts did not eliminate this bias 
since the data was unavailable. Finally, even though this 
study is prospective research based on observational data 
and explored the potential causal relationship between 

the key metabolites with LV remodeling traits and the 
outcomes, further mechanistic experiments are needed 
to verify the biological linkage and whether the bio-
markers we identified precede LV remodeling incidence 
or concomitant result. Future studies using improved 
metabolomic detection methods can leverage the analy-
sis framework we described in this study for discovering 
more novel metabolic signatures and better prognostic 
models.

Conclusions
This study provided new insights into the relationship 
between plasma metabolites and clinical outcomes and 
LV remodeling in CAD. The prediction model based on 
the metabolic signatures and clinical risk factors can sig-
nificantly improve the risk stratification for death and 
MACE, serving as a potential prognostic tool. Several 
metabolic markers such as kynurenines, phenylacetyl-
L-glutamine, 4-acetamidobutyric acid, and modified 
nucleosides may causally increase the risk of death and 
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MACE, and these impacts appear to be partly mediated 
by impaired cardiac function, which still merits further 
study. These findings suggest important risk markers and 
potential therapeutic targets for the secondary preven-
tion of CAD.

Methods
Study cohort
The study flow is depicted in Fig. 5. A total of 1606 Chi-
nese patients with CAD were enrolled, including a dis-
covery cohort and a multicenter validation cohort. 
Patients of the discovery cohort were sequentially 
enrolled from Guangdong Provincial People’s Hospital 
between January 2010 and December 2013 and followed 
up for the primary endpoint (all-cause death) and sec-
ondary endpoint (MACE) from June 2010 through April 
2017 for a median of 3.5  years, with 63 deaths and 183 
MACEs. Patients in the multicenter validation cohort 
were enrolled from Guangdong Provincial People’s Hos-
pital (n = 354), Xiangya Hospital of Central South Uni-
versity (n = 178), and First Affiliated Hospital of Sun 
Yat-sen University (n = 34) from September 2017 to 
October 2018 and followed up until August 2020 for a 
median of 1.5 years, with 23 deaths and 51 MACEs. Most 
patients of this study were also included in our previous 
published lipidomic study [70].

Patients who were diagnosed with CAD (50% steno-
sis on coronary angiography) or received the percu-
taneous coronary intervention (PCI) were included. 
The exclusion criteria for patients in the discovery 
cohort included the following: (1) age < 18  years or 
> 80  years, (2) renal insufficiency (defined as serum 
creatinine concentration > 2 times the upper limit of 
normal [230  μmol/L], history of renal transplantation 
or dialysis), (3) hepatic insufficiency (defined as serum 
transaminase concentration > 2 times the upper limit of 
normal [80 U/L], or a diagnosis of cirrhosis), (4) being 
pregnant or lactating, (5) advanced cancer or haemo-
dialysis, (6) history of thyroid problems and taking 
antithyroid drugs or thyroid hormone medication, (7) 
incomplete information about cardiovascular events 
during follow-up. The exclusion criteria for patients in 
the multicenter validation cohort was the seventh cri-
terion above. Baseline informations, including demo-
graphics, medical history, biochemical measurements, 
and medication, were obtained from the hospital infor-
mation database.

The primary outcome was death and the second was 
MACE (including death, nonfatal myocardial infarctions, 
coronary revascularization, and cerebral infarction). 
Coronary angiography was performed, and the Synergy 
between PCI with TAXUS and Cardiac Surgery (SYN-
TAX) score was calculated to assess the severity of CAD. 

The echocardiography was conducted to determine left 
ventricular ejection fraction (LVEF) and left ventricular 
mass index (LVMI). For detailed information see Addi-
tional file 2: Methods.

Metabolite quantification
Widely targeted metabolomic profiling was conducted 
in the discovery cohort (UPLC, Shim-pack UFLC SHI-
MADZU CBM30A; MS, Applied Biosystems 4500 
QTRAP) and the multicenter validation cohort (UPLC, 
Shim-pack UFLC SHIMADZU CBM30A; MS, Applied 
Biosystems 6500+ QTRAP) by Wuhan Metware Biotech-
nology, detailed information sees Additional file 2: Meth-
ods and Fig. S3. The ionisation modes and ion pairs of all 
metabolites see Additional file  1: Table  S12. Due to the 
metabolomic platform and method updating, the condi-
tions for metabolite detection between the two cohorts 
were different, mainly including changed MS system, ESI 
source operation parameters, flow rate, and injection vol-
ume. So, this led to 600 metabolites being detected in the 
multicenter validation cohort, while only 202 metabolites 
were detected in the discovery cohort, with 160 identical 
metabolites.

Statistical analysis
The analytical method of this study was similar to our 
previous published lipidomic research [70]. Firstly, data 
were presented using the number (percent) for categori-
cal variables and mean ± standard deviation (SD) for con-
tinuous variables. For metabolomic analysis, raw signals 
with a coefficient of variation (CV) > 50% in the quality 
control (QC) samples were removed, and missing values 
below the limit of detection were assigned to the mini-
mum detection level for the metabolites. The CV of all 
metabolites see Additional file 1: Table S13. The Quality 
Control–Robust Loess Signal Correction algorithm was 
used for correction and integration to reduce the bias 
from a batch effect [71]. QC-RLSC is an effective way 
to normalize the metabolite features of the QC samples 
within an analytical block. Each block of the metabo-
lomic data was scaled using Pareto scaling [72]. Detailed 
information to reflect our data improvement after batch 
correction see Additional file 2: Figs. S4 and S5.

Univariate and adjusted Cox regression analysis was 
performed to identify the clinical characteristics and 
metabolites that were associated with clinical endpoints 
and to estimate the hazard ratio (HR) and 95% confidence 
intervals (CI). Univariate and adjusted Linear regres-
sion was used to reveal the clinical characteristics and 
metabolites that were related to LVEF and LVMI with 
results presented as estimates ± standard errors (SE). In 
the adjusted analysis, covariates included 17 potential 
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confounders, including age, sex, aspartate aminotrans-
ferase, estimated glomerular filtration rate, diabetes, 
hypertension, systolic blood pressure, glucose, choles-
terol, high-density lipoprotein cholesterol, proton pump 
inhibitors, angiotensin-converting enzyme inhibitors, 
β-blockers, calcium channel blockers, current smoking, 
family history of cardiovascular disease (CVD) and SYN-
TAX. A two-tailed P of 0.05 was considered for statistical 
significance, and Benjamini–Hochberg method was used 
to control the false discovery rate (FDR) for correcting 
the number of metabolites in multiple hypothesis testing.

Time-to-event free survival was shown using Kaplan–
Meier curves, and the P-values were analyzed using the 
log-rank test. The Spearman correlations in the metabo-
lites associated with death and MACE risks in the adjusted 
analysis, together with traditional clinical factors (age, 
pro-brain natriuretic peptide, blood lipids, LVEF, LVMI, 
SYNTAX, glucose, blood pressure), correlations above the 
significant level of P < 0.01 and |rho|> 0.1 for clinical fac-
tors and |rho|> 0.2 for metabolites, were visualized using 
Cytoscape (version 3.7) to construct a correlation net-
work. The metabolites with FDR < 0.05 in the adjusted Cox 
regression analysis were used for least absolute shrink-
age and selection operator (lasso) Cox regression analysis 
(“glmnet” package) to reduce the dimensions of variables 
and select the powerful metabolic features to build a multi-
variable prognostic model. This procedure was performed 
within a tenfold cross-validation framework (200 repeats), 
and the variables with repeats zero were removed and the 
metabolites left were selected to establish the prognostic 
model using multivariate Cox regression, based on the 
Akaike Information Criterion (AIC) with a forward and 
backward stepwise process.

To evaluate the prediction efficiency of the multi-
variate model, hazard estimates of individuals were 
calculated using the following formula: h (X) = exp 
(β1X1 + β2X2 + …… + βiXi), where β is the regression 
coefficient, and  Xi is the selected marker. Time-depend-
ent receiver-operating characteristic (ROC) analysis (by 
‘timeROC’ package in R) was used to assess the prognos-
tic abilities of the hazard models. The model performance 
was assessed by calculating the area under the curve 
(AUC), continuous net reclassification indices (continu-
ous NRI by ‘survIDINRI’ package in R), and integrated 
discrimination improvement (IDI by ‘survIDINRI’ pack-
age in R). The sensitivity and specificity of each model 
were calculated, and the corresponding optimal cut off 
values (Youden’s index) were determined according to 
the formula: sensitivity + specificity − 1 [73]. The multi-
center validation of the predictive model was performed 
in another multicenter cohort based on the individually 

hazard estimates calculation, and the hazard stratifica-
tion amongst the low (< Q1), middle (≥ Ql and ≤ Q3), and 
high (> Q3) hazard estimate groups were shown using 
Kaplan–Meier curves.

Statistical analyses were performed using GraphPad 
Prism 7 and R (version 4.1.0, http:// www.R- proje ct. org/).

Mendelian randomisation analysis
In secondary analyses, we performed a one-sample 
MR analysis to infer the potential causal relationships 
between the metabolites and the outcomes of CAD as 
well as indicators of LV remodeling (LVEF and LVMI). A 
schematic diagram sees Additional file 2: Fig. S6.

Association results between genotypes and the metabo-
lites were obtained from our previous metabolome-based 
genome-wide association study [74], and the results 
used in this study were provided in Additional file  1: 
Table  S14. The association analysis between genotypes 
and LV remodeling was subjected to a linear model based 
on additive mode, adjusting for age, sex, aspartate ami-
notransferase, estimated glomerular filtration rate, anti-
hypertensive drugs medication, hypertension, diabetes, 
and the first ten principal components. For each associa-
tion analysis, we adopted a commonly used P < 1 ×  10–5 
as a threshold [75, 76] to select the single nucleotide pol-
ymorphisms (SNPs) in the discovery cohort [74] for the 
following analyses. Linkage disequilibrium (LD) analysis 
was conducted to retain the SNPs with the lowest P-value 
and the independent SNPs with them (LD  r2 < 0.001 in 
a 10,000  kb window or two SNPs beyond 10,000  kb) as 
the independent instruments. A two-stage least squares 
(2SLS) method was used in this MR analysis process and 
we calculated the 2SLS regression in R (version 3.6.3).

Briefly, in the first stage, we regressed by exposure (X) 
to the instrumental variable (IV) to derive fitted val-
ues for exposure to IV (G-X). In the second stage, we 
regressed the outcome (Y) based on the fitted values 
from the first stage regression (X–Y). The causal esti-
mated effect size is the regression coefficient for this sec-
ond stage that reflects the change in outcome due to a 
unit change in exposure. In the case of multiple IVs, the 
2SLS estimator can be viewed as a weighted average of 
the ratio estimates calculated from a single instrumental 
variable, with weights determined by the relative strength 
of the instrumental variable in the first stage regression. 
The outcome was regressed over the predicted values of 
exposure by using Cox regression to estimate HR and 
95% CI for risks of death and MACE, using Linear regres-
sion to calculate estimates and SE for LVEF and LVMI, 
P-value < 0.05 was used to define causality.

http://www.R-project.org/
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Mediation analysis
Mediation analysis decomposes the total exposure-
outcome effect into a direct effect and an indirect 
effect through a mediator variable [77, 78]. The media-
tion analysis models [79] were constructed to examine 
whether the association of metabolic signatures and 
risks of death and MACE could be mediated through 
their role in promoting LV remodelling and estimate 
mediation effects size. A schematic diagram sees Addi-
tional file 2: Fig. S6. Metabolites were continuous pre-
dictor variables (X); LVEF were continuous mediators 
(M); death and MACE were dichotomous outcome 
variables (Y). In this study, we performed the mediation 
analyses in the following four steps: (1) regressing out-
comes (death and MACE, respectively) on predictors 
(model 1 Y = cX), where c is total effect; (2) regressing 
mediators (LVEF) on predictors (model 2 M = β1X), 
where β1 is indirect effect 1; (3) regressing outcomes on 
mediators (model 3 Y = β2M), where β2 is indirect effect 
2; (4) regressing outcomes (death and MACE, respec-
tively) on predictors controlling for mediators (LVEF). 
The regression equation is Model Y = β2M + cʹX, where 
β2 is indirect effect 2, and c′ is direct effect; and calcu-
lating mediation effect as (β1 × β2)/c. Mediation analy-
ses were conducted using Lavaan package of R 4.0.5.
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