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Abstract

The historically developed practice of learning to play a music instrument from notes instead

of by imitation or improvisation makes it possible to contrast two types of skilled musicians

characterized not only by dissimilar performance practices, but also disparate methods of

audiomotor learning. In a recent fMRI study comparing these two groups of musicians while

they either imagined playing along with a recording or covertly assessed the quality of the

performance, we observed activation of a right-hemisphere network of posterior superior

parietal and dorsal premotor cortices in improvising musicians, indicating more efficient

audiomotor transformation. In the present study, we investigated the detailed performance

characteristics underlying the ability of both groups of musicians to replicate music on the

basis of aural perception alone. Twenty-two classically-trained improvising and score-

dependent musicians listened to short, unfamiliar two-part excerpts presented with head-

phones. They played along or replicated the excerpts by ear on a digital piano, either with or

without aural feedback. In addition, they were asked to harmonize or transpose some of the

excerpts either to a different key or to the relative minor. MIDI recordings of their perfor-

mances were compared with recordings of the aural model. Concordance was expressed in

an audiomotor alignment score computed with the help of music information retrieval algo-

rithms. Significantly higher alignment scores were found when contrasting groups, voices,

and tasks. The present study demonstrates the superior ability of improvising musicians to

replicate both the pitch and rhythm of aurally perceived music at the keyboard, not only in

the original key, but also in other tonalities. Taken together with the enhanced activation of

the right dorsal frontoparietal network found in our previous fMRI study, these results under-

score the conclusion that the practice of improvising music can be associated with

enhanced audiomotor transformation in response to aurally perceived music.
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Introduction

Classical music offers an interesting window on motor learning, not only because of the high

level of motor control exhibited in performance [1], but especially because of the historically

developed practice in Western culture of using sheet music not only to learn specific pieces,

but also to learn how to play the instrument itself [2]. While in classical music education, great

emphasis is placed on aural skills such as the identification of intervals and triads and their

inversions, the skill of playing music ‘by ear’ is rarely taught or assessed. Classical musicians

are de facto ‘score-dependent’, a term which refers not only to the fact that the music per-

formed is an artistic representation of the music score, but also that it is learned from the

printed score and not by aural imitation. From a global perspective, however, score-depen-

dence may be considered to be the exception. All over the world, both in the past and in the

present, instrumental music was and is generally learned by imitation and improvisation [3], a

practice which intuitively seems more compatible with the learning of an audiomotor skill.

Surprisingly, however, little study has been made of the relationship of the practice of improvi-

sation with the development of audiomotor integration.

With few exceptions, neuroscientific studies to date have recruited mainly classically-

trained musicians [4–13]. Studies contrasting improvising with score-dependent musicians

are scarce. Tervaniemi and colleagues [14] noted an advantage for improvising musicians not

only in the conscious detection of changes in melodic patterns, but also in subsequent brain

responses to these changes during non-attentive listening. These results were corroborated

and extended in a study by Vuust and colleagues [15] contrasting non-musicians not only with

classical, but also with jazz and rock musicians. In contrast with all other groups, including

classical musicians, jazz musicians exhibited significantly higher mean mismatch negativity

(MMN) amplitudes to pitch, timbre, intensity, and rhythm. Behavioral scores as measured by

AMMA, the Advanced Measures of Musical Audition [16] were not higher for jazz musicians,

with the exception of the rhythm subtest. In a behavioral study, however, Woody and Leh-

mann [17] demonstrated that ‘vernacular’ musicians outperformed ‘formal’ musicians in aural

learning, the latter requiring twice the number of trials to achieve accuracy in vocal reproduc-

tion of a melody and almost three times as many trials to achieve accuracy in instrumental

reproduction of a melody (by ear).

The observed differences may be understood in the context of the procedural-declarative

model of learning and memory [18] and the associated dual-stream model of action and per-

ception [19] which propose that online recruitment of implicit, procedural knowledge via the

dorsal stream enhances performance without the prerequisite of declarative knowledge [20], a

phenomenon which can be observed in children who have clearly mastered the language, but

know little about grammar. Musicians who play ‘by ear’ would therefore be able to employ

procedural knowledge of music syntax to enhance audiomotor performance without knowing

much about music theory or harmony. At the same time, score-dependent musicians who

have acquired extensive declarative knowledge of music theory and harmony might not neces-

sarily have acquired comparable procedural knowledge of music syntax.

The transformation of imagined or perceived pitch into goal-directed movement while

playing a music instrument is a function of parietal cortex, just as the transformation of visu-

ally perceived music notation. The involvement of parietal cortex in audiomotor transforma-

tions has been demonstrated by imaging studies implicating the superior parietal cortex, in

particular the intraparietal sulcus (IPS), not only in music transposition [21] and retrograde

musical transformations [22], but also in pitch-to-space transformations [23]. Similar parietal

activations have also been observed in pianists while sight-reading music and have been inter-

preted as reflecting the visuomotor transformation of music notation into spatial keyboard

Audiomotor Transformations in Music Performance

PLOS ONE | DOI:10.1371/journal.pone.0166033 November 11, 2016 2 / 18



coordinates [24–25, 2]. It is not inconceivable that score-dependent performance practice

might bias sensorimotor learning in the direction of visuomotor learning, rather than audio-

motor learning. The inability to play ‘by ear’ would be a logical consequence.

In a recent fMRI experiment, we assessed cerebral activations in improvising and score-

dependent musicians while they imagined playing along with both familiar and unfamiliar

excerpts composed in the two-part, tonal style. A crucial difference between the two groups

was the significantly larger activation of a right hemisphere network of posterior superior pari-

etal and dorsal premotor areas observed in improvising musicians. This was interpreted as evi-

dence of enhanced pitch-to-keyboard space transformation, pointing towards the superior

ability of improvising musicians to perform audiomotor transformations while listening to

music [26].

In the present study, we investigated the instrumental performance of both groups of musi-

cians, quantifying their ability to organize playing movements cued by aurally perceived music

in an audiomotor alignment score. Our hypothesis was that improvising musicians would

exhibit superior ability to replicate and transpose aurally perceived music on their instrument.

Materials and Methods

This study was approved by the Medical Ethics Committee of the University Medical Center

Groningen, Groningen, The Netherlands. All subjects gave written informed consent in accor-

dance with the Declaration of Helsinki (2008), prior to participation.

Subjects

The improvising and score-dependent musicians who participated in this study had all previ-

ously participated in an fMRI study of audiomotor integration [26]. The group of improvising

musicians consisted of eleven organists and one pianist while the group of score-dependent

musicians consisted of ten pianists. All subjects were male. They were recruited from all over

The Netherlands. The distinction between improvising and score-dependent musicians was

not based on formal assessment of their ability to improvise, but on the nature of their perfor-

mance practice i.e. whether or not their professional keyboard performances involved

improvisation.

In The Netherlands, the eighteenth-century practice of keyboard improvisation has per-

sisted among church organists. Organists are accustomed to improvise preludes and postludes

before and after the service as well as introductions, intermezzos, and modulations while har-

monizing and accompanying psalms and hymns. Organ concerts feature improvisation and

many organists participate in improvisation competitions. Of the eleven organists, seven had

participated in international improvisation competitions and six had won prizes. By contrast,

the professional practice of the participating score-dependent pianists involved performance

of the repertoire as notated and did not include extemporization. Like most classically-trained

musicians, these pianists learn the pieces they perform from the printed score, frequently com-

mitting them to memory and performing by heart.

With the exception of two conservatory students (third and fourth year, one from each

group), subjects had all completed one or more conservatory degrees in classical music perfor-

mance in organ or piano. During their professional training, organists received the same

instruction in music theory and ear training as score-dependent pianists and performed com-

positions learned from music notation just as their score-dependent colleagues. As piano is the

required secondary instrument for organists in The Netherlands, all organists were able to play

both the piano and the organ, making it possible to compare performance in the two groups

using the same instrument. Mean age of the improvising group was 46 years (SD: ±14); one
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subject was left-handed, one subject had perfect pitch. In the score-dependent group, mean

age was 39 (SD: ±13); two subjects were left-handed, three had perfect pitch (see Table 1).

There was no significant difference between the two groups in age (T-value: 1.15; p = 0.265) or

years of professional experience (T-value: 0.96; p = 0.347). Professional experience was defined

as the number of years since completion of the propadeutic exam which, in the Dutch educa-

tional system, marks formal admission to the second year of the conservatory.

Experimental procedure

Subjects performed six different tasks on a digital piano on the basis of aural perception of

short (±6s) excerpts from polyphonic pieces in the two-part, tonal style consisting of a bass

and a treble voice of equal rhythmic and melodic salience. For examples of music excerpts, see:

S1 Transcriptions. Excerpts were presented in six blocks, each devoted to a separate task. With

the exception of the first excerpt in each block which was used to rehearse the task, the excerpts

could all be considered unfamiliar, having been selected from pieces composed specifically for

the fMRI experiment [26] and therefore heard only once in the scanner.

Twenty-seven different excerpts were presented. Excerpts were used only once during the

experiment with the exception of six excerpts without aural feedback in block 1 and 2 which

were later presented (with feedback) in a different tonality, four as the first motif of one of the

sequences in block 5 and two for a transposition task. Each excerpt was comprised of a com-

plete motif or phrase.

Tasks and conditions

Six tasks were performed on a digital piano under one of two conditions: with aural feedback

or without (silent keyboard mode). Tasks were presented in six blocks, each containing five to

eight excerpts (the number of excerpts is indicated in parentheses):

1. Play along [no aural feedback] (n = 8): subjects were instructed to play together (simulta-

neously) with two consecutively presented recordings of the excerpt, without aural feed-

back. The tonality, which was the same for all excerpts, was announced before the task

started.

2. Replicate [no aural feedback] (n = 5): subjects were instructed to listen to the excerpt twice

and then play it themselves, without aural feedback. The tonality, which was the same for all

five examples, was announced before the task started.

3. Replicate and then transpose to the relative minor [aural feedback] (n = 5): subjects were

instructed to listen to the excerpt twice, a) play it once in the same (major) key and then b)

transpose it to the relative minor.

4. Replicate, adding inner voices [aural feedback] (n = 5): subjects were instructed to listen to

the excerpt twice and then play it, adding inner voices belonging to the harmony.

Table 1. Subject attributes.

Group Right-handed Perfect pitch Age Years of professional experience

Improvising 11/12 1 subject 46 (±14) 22 (±13)

Score-dependent 8/10 3 subjects 39 (±13) 17 (±13)

Hand dominance, perfect pitch, age and years of professional experience (expressed in number of years since completion of the propadeutic exam): mean

(±SD).

doi:10.1371/journal.pone.0166033.t001
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5. Replicate [aural feedback] (n = 7): subjects were instructed to listen to the excerpt twice and

then play it in the same key. Subjects were informed that the excerpts used in this task each

contained a sequential repetition. For an example, see excerpt 5 (S1 Transcriptions).

6. Replicate and then transpose [aural feedback] (n = 5): subjects were instructed to listen to

the excerpt twice, a) play it once in the same key (all excerpts were in g minor) and then b)

transpose it to e minor.

While all tasks and conditions involved a form of replication of the aural model, they were

also designed to promote recruitment of implicit knowledge of music and music syntax. Per-

formance without aural feedback, for example, was designed to elicit top-down recruitment of

procedural knowledge of the tonality. The two-part style used in all tasks would induce disam-

biguation of the harmony based on prior experience, and the obligation to add inner voices in

block 4 might enhance this effect. The sequential repetition found in all excerpts in block 5

was designed to recruit knowledge of both harmony and tonality, just as the transposition

tasks in blocks 3 and 6.

Data acquisition

The music excerpts were performed by one of the researchers (RH), a professional pianist, on

an AKAI piano-action MPK88 MIDI (Musical Instrument Digital Interface) controller, with-

out pedal, using the Steinberg ‘The Grand 3’ Yamaha C7, and recorded as midi sequences in

Cubase AI5 using a Steinberg CI2 audio interface. Instead of recording the audio signal, MIDI

registers key depression and velocity, allowing digital analysis. The choice not to use pedal was

motivated by the fact that it might compromise the independence of the voices in the two-part

tonal style and/or confound the analysis of the midi sequences. Every effort was made to

achieve an ecologically valid concert performance despite the use of an electronic instrument.

Data acquisition made use of the same instrument used to record the aural model. Audio

was presented with Stagg SHP-2300 stereo headphones. Subjects familiarized themselves with

the keyboard prior to acquisition and adjusted the volume themselves. Before the experiment

started, the protocol was explained in detail, block by block, making use of printed instruction

material. Subjects then rehearsed the first excerpt from each block. Subjects were instructed

that each of the six blocks would consist of at least five examples, one previously rehearsed

excerpt and four or more unfamiliar excerpts.

During acquisition, the instructions for each block were repeated before it began, and the

subject was reminded that the first example had already been rehearsed. An oral prompt

announced that the recording was about to begin. Subjects then heard the pitches from the

first beat of the ensuing recording, or if the example began with an upbeat, both the upbeat

and the first beat. After a few seconds a woodblock (tuned to the first beat) would indicate the

tempo by playing a full bar in the tempo of the recording, one note to a beat. Then the presen-

tation of the music would begin. Subjects were allowed to hear each example twice, with an

empty bar between presentations. During the empty bar, the woodblock kept time, playing on

every beat. The amount of time given to perform each task was three times the length of the

aural model.

Analysis

Analysis consisted of a comparison between the original midi sequences used as the aural

model and the midi sequences produced by the subjects during acquisition. The original midi

sequences of the aural model were edited into a separate treble and bass midi sequence in

Cubase. In addition, for the transposition tasks, the sequences were transposed to the new key
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in Cubase and not re-recorded, in order to preserve timing and expression. The midi

sequences produced during acquisition were also edited into a separate treble midi sequence

and a bass sequence. The ‘finding of the right key’ was edited out of the midi sequence, as well

as false starts: subjects playing the first few beats, stopping and then beginning again. In a few

cases, subjects did not respond to the aural model and in a few cases, only one voice was

played, usually the treble. The inner voices from block 4 were edited out of the midi sequences

as well as all other extra improvised voices.

In block 1, a large number of subjects did not play along with the first presentation of each

excerpt. To avoid a bias, this first presentation was discarded before analysis, not only for the

subjects who did not respond, but also for the subjects who immediately played along with the

first presentation. The rehearsed excerpt from each block was also discarded before analysis.

Therefore, the total number of midi sequences came to a maximum of thirty-seven per subject,

per voice. After editing, the average number of midi sequences was 35.8 (±1.5) for the treble

voice and 35.4 (±1.7) for the bass. If no midi sequence was acquired, it was treated as a missing

value.

The similarity of the aural model and the performance of the subject was determined by the

construction of an alignment. This approach has often been used in musicology, especially in

folk song research where it has been used to study the variability of melodies in oral transmis-

sion [27]. Algorithmic alignment of melodies was proposed by Mongeau and Sankoff [28]. In

this approach, the steps to construct an alignment of two melodies are explicitly formulated

such that it can be executed by a computer. The general procedure is to provide the algorithm

with two sequences of symbols (notes in our case), after which the algorithm will return the

optimal alignment of the two sequences together with a score indicating the extent to which

the sequences were able to be aligned. In the present study, we used this score as a proxy for

the similarity between the aural model and the subject’s performance, both of which are repre-

sented as sequences of MIDI events.

In recent years, alignment algorithms have often been employed in Computational Musi-

cology and Music Information Retrieval [29–31]. The aim of an alignment algorithm is to find

the (or one of the) alignments(s) with the highest score. Since the solution space is quite large,

a dynamic programming approach is generally taken to find the optimal alignment efficiently.

In the simplest form, the optimal alignment and its score are found by filling a matrix D recur-

sively according to:

Dði; jÞ ¼ max

Dði � 1; j � 1Þ þ Sðxi; yjÞ

Dði � 1; jÞ þ g

Dði; j � 1Þ þ g

8
><

>:
; i 2 ½1; . . . n�; j 2 ½1; . . . m�

in which x: x1,. . .,xi,. . .,xn, and y: y1,. . .,yj,. . .,ym are the sequences to be aligned, S(xi, yj) is a

similarity measure for arbitrary symbols, and γ is the (fixed) gap score (the gap score is the

numerical score awarded to a note in the replication of the aural model that does or does not

correspond to a note in the aural model). D(0,0) = 0, D(i,0) = iγ and D(0,j) = jγ. D(i,j) contains

the score of the optimal alignment up to symbols xi and yj of sequence x and y respectively and

therefore D(n,m) contains the score of the optimal alignment of the complete sequences. The

algorithm has both time and space complexity O(nm), which is quadratic. This algorithm is

known as the Needleman-Wunsch algorithm [32]. For further details, see: S1 Appendix.

To apply this algorithm to melodies, or in this case midi sequences, the abstract elements of

the algorithm that need to be defined are 1) the symbols, 2) the substitution score function,

and 3) the gap score γ. In the present study, as we were dealing with MIDI, we took each ele-

ment from the midi sequence (onset, pitch, duration) as a symbol. We subsequently
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determined a substitution score function S(xi,yj) and the gap score γ. The intuitive meaning of

the substitution score function is: the higher the substitution score of two symbols, the more

we want them to be aligned. In general, this implies that the substitution score function will be

defined as a similarity measure for symbols. To define the function, we can of course use dif-

ferent properties of the notes. For the present study, we used exact pitch and IOR (interonset

interval ratio). Both are available in, or computable from, the MIDI-input. To represent pitch,

we used the MIDI-representation, which basically corresponds to the indices of the keys of the

keyboard in which a1 (A440) = 69.

The IOR of a given note is the ratio between the IOI (interonset interval) of the note and

the IOI of the previous note, where the IOI of a note is defined as the difference in time

between the onset of one note and the onset of the next. The IOR can be considered to be the

relative duration of a given note with respect to the previous note. For the last note in the

sequence we defined the IOI as the duration of that note. For the first note in the sequence, we

set IOR to 1.

We defined two substitution score functions:

Spitch ðxi; yjÞ ¼
1 if pðxiÞ ¼ pðyjÞ

� 1 if pðxiÞ 6¼ pðyjÞ

(

in which p(s) is the pitch of symbol x in MIDI encoding, and

Siorðxi; yjÞ ¼
� 1þ 2 � ðiorðyjÞ=iorðxiÞÞ if iorðxiÞ � iorðyjÞ

� 1þ 2 � ðiorðxiÞ=iorðyjÞÞ if iorðxiÞ < iorðyjÞ

(

where ior(xi) = ioi(xi)/ioi(xi-1), in which ioi(xi) is the time difference between the onsets of xi

and xi + 1. We defined the gap score as γ = -0.5 for exact pitch and γ = 0 for IOR. In the event

we used Spitch we obtained a value for the similarity of the aural model and the recorded midi

sequence with respect to the sequence of pitches, and when we used Sior we got a value for the

similarity of the aural model with the recorded midi sequence with respect to the sequence of

IORs, which reflects rhythmic similarity.

Since the score of an alignment depends on the length of the midi sequences, normalization

is needed to compare different alignment scores. Otherwise, the alignment of two similar long

sequences would result in a much higher score than the alignment of two short sequences. We

therefore divided the alignment score by the length of the alignment, which is the length of

sequence x increased with the number of gaps inserted in x (or the length of sequence y

increased with the number of gaps inserted in y). Thus, an exact match resulted in a score of 1,

as the maximum value of our substitution score functions is 1, and no gaps are needed, causing

the score of the alignment to equal the length of the sequences. Anything less than an exact

match resulted in a score lower than 1. The scores that are reported in this paper are the nor-

malized alignment scores.

Our main goal was assessment of the differing ability of improvising and score-dependent

musicians to replicate aurally perceived music at the piano. Accordingly, mean alignment

scores for the four variables (treble exact pitch, treble IOR (interonset ratio), bass exact pitch,

and bass IOR) were subjected to a one-way multivariate analysis of variance (MANOVA) to

determine significance of the difference between groups. Subsequently, differences of means

were tested for each of the four variables using one-way ANOVA. Interactions between the

factors group (improvising, score-dependent), voice (treble, bass), and parameter (exact pitch,

IOR) were studied using a three-way mixed (between-subjects/within-subjects/within-sub-

jects) analysis of variance (ANOVA).
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For the comparison of replication and transposition, the replication tasks from block 3 and

6 (3a and 6a) were contrasted with the transposition tasks from the same blocks (3b and 6b),

based on identical stimuli. Two-way mixed ANOVA was used to investigate the interaction

between group (between-subjects) and task (within-subjects) for each of the four variables.

Similarly, for the comparison of performance with and without aural feedback, the replication

tasks from block 1 and 2 without feedback were contrasted with all replication tasks from

blocks 3–6 with aural feedback (3a, 4, 5, and 6a). Again, two-way mixed ANOVA was used to

investigate the interaction between group (between-subjects) and condition (within-subjects)

for each of the four variables.

Results

Summarizing tasks and conditions, improvising and score-dependent subjects listened to

short music excerpts composed in the two-part tonal style and performed various replication

tasks, either 1) playing along with the excerpt, 2) listening and then replicating it in the same

key, 3) listening and replicating a major-key excerpt, first in the same key and then in the rela-

tive minor, 4) listening and replicating the excerpt while adding inner voices, 5) listening to an

excerpt containing a sequential repetition and replicating it in the same key, or 6) listening and

replicating the excerpt, first in the same key and then in a different key. Tasks were performed

under two contrasting conditions: with aural feedback (blocks 3–6) or without (blocks 1 and

2). Alignment scores were computed for exact pitch and IOR (which reflects rhythmic similar-

ity) for the treble and bass voices separately. Mean alignment scores of the participants are pre-

sented in the Supporting Information (S1 Alignment Scores). MIDI sequences of the aural

model and the individual participants have been made available in the Supporting Informa-

tion (S1 Research Data).

Group: improvising vs. score-dependent musicians

One-way multivariate analysis of variance (MANOVA) revealed a significant difference

between improvising and score-dependent musicians based on their combined audiomotor

alignment scores, F(4, 17) = 3.309, p = 0.035. Subsequent one-way ANOVA indicated that

improvising musicians’ mean treble alignment scores were significantly higher than those of

score-dependent musicians, both for exact pitch and IOR (Fig 1, see Table 2 for exact values

and parameters of significance tests). Mean bass alignment scores were also significantly

higher for improvising musicians, however only for IOR. The range of alignment scores was

larger for score-dependent musicians, particularly for exact pitch, although there was no sig-

nificant difference of variance. Score-dependent musicians exhibited not only the lowest

scores, but also a few of the highest, both in the treble and the bass.

Interactions

A three-way mixed (between-subjects, within-subjects, within-subjects) ANOVA was con-

ducted to investigate interaction between group, voice, and parameter which, however, was

not observed. A significant two-way interaction was observed between parameter and voice,

F(1, 20) = 102.636, p< 0.0001 (see Fig 2).

In addition to the two-way interaction, a statistically significant main effect of both voice

(treble > bass), F(1,20) = 116.508, p< 0.0001 and parameter (IOR > exact pitch), F(1,20) =

66.584, p< 0.0001 was observed. The latter was not further explored as we considered a pitch-

rhythm comparison to be conceptually non-informative. One-way ANOVA indicated that the

effect of voice (treble > bass) pertained to both exact pitch and IOR and was significant for

both groups (Table 3).
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Task: replication vs. transposition

In blocks 3 and 6, the same stimulus was used for two different tasks, enabling a direct compari-

son between replication (in the original key) and transposition (to a different key or to the rela-

tive minor). Two-way mixed ANOVA revealed significant interaction between group (between-

subjects) and task (within-subjects), but only for treble exact pitch, F (1, 20) = 4.483, p = 0.047

(Fig 3). A significant main effect was found for task (treble exact pitch: replication > transposi-

tion), F (1, 20) = 121.364, p< 0.00001. As can be seen in Fig 3, the difference in replication of

exact pitch in the original key by the two groups of musicians was relatively small (top line). The

steeper bottom line, however, illustrates the fact that score-dependent musicians performed less

well when transposing to a different key. Perusal of individual treble alignment scores revealed

that only two of the twelve improvising musicians actually exhibited significantly lower align-

ment scores for treble exact pitch transposition, compared to replication, while six out of ten

score-dependent musicians exhibited significantly lower scores for transposition versus replica-

tion. With the exception of bass exact pitch, alignment scores for transposition were all signifi-

cantly higher in improvising musicians, similar to the group difference for the replication of

treble and bass IOR (Table 4).

Fig 1. Treble audiomotor alignment: comparison of groups. Improvising vs. score-dependent musicians (mean ± SD). The

comparison concerns the treble voice, all tasks (both conditions). A: exact pitch: improvising > score-dependent and B: IOR (interonset

interval ratio): improvising > score-dependent. See Table 2 for exact values and parameters of significance tests.

doi:10.1371/journal.pone.0166033.g001

Table 2. Audiomotor alignment: comparison of groups.

Parameter Voice Improvising Score-dependent F p-value

Exact pitch Treble 0.5311 (±0.11) 0.3592 (±0.19) 7.028 0.015

IOR Treble 0.5864 (±0.06) 0.4699 (±0.09) 14.534 0.001

Exact pitch Bass 0.1323 (±0.19) 0.0191 (±0.21) 1.734 0.203

IOR Bass 0.4560 (±0.05) 0.3576 (±0.10) 8.535 0.008

Audiomotor alignment: improvising > score-dependent musicians. Values represent the group mean (± SD). Alignment is expressed in an audiomotor

alignment score, maximum = 1 (see methods). IOR: interonset interval ratio. Significance was determined using one-way ANOVA.

doi:10.1371/journal.pone.0166033.t002

Audiomotor Transformations in Music Performance

PLOS ONE | DOI:10.1371/journal.pone.0166033 November 11, 2016 9 / 18



Condition: aural feedback vs. no aural feedback

In blocks 1 and 2, subjects had no access to aural feedback during performance of the tasks.

Two-way mixed ANOVA revealed interaction between group (between-subjects) and

Fig 2. Interaction between parameter and voice. Alignment scores were higher for the treble voice (top line) than for the bass

(bottom line), both for exact pitch and IOR. The effect of parameter on alignment was larger in the bass (steeper bottom line)

than in the treble voice. Significance of the interaction, F(1, 20) = 102.636, p < 0.0001, was determined using three-way mixed

ANOVA.

doi:10.1371/journal.pone.0166033.g002

Table 3. Treble vs. bass.

Group Parameter Treble Bass F p-value

All subjects Exact pitch 0.4530 (±0.17) 0.0808 (±0.20) 42.809 < 0.0001

All subjects IOR 0.5335 (±0.09) 0.4113 (±0.09) 19.556 < 0.0001

Improvising Exact pitch 0.5311 (±0.11) 0.1323 (±0.19) 39.419 < 0.0001

Improvising IOR 0.5864 (±0.06) 0.4560 (±0.05) 37.841 < 0.0001

Score-dependent Exact pitch 0.3592 (±0.19) 0.0191 (±0.21) 14.241 0.001

Score-dependent IOR 0.4699 (±0.09) 0.3576 (±0.10) 6.822 0.018

Audiomotor alignment: treble > bass, all tasks and conditions. Values represent the group means (±SD). Alignment is expressed in an audiomotor alignment

score, maximum = 1 (see methods). IOR: interonset interval ratio. Significance was determined using one-way ANOVA.

doi:10.1371/journal.pone.0166033.t003
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condition (within-subjects), but only for treble IOR, F(1, 20) = 6.254, p = 0.021 (Fig 4). Subse-

quently, one-way ANOVA indicated that improvising musicians scored higher than score-

dependent musicians on treble exact pitch and IOR as well as bass IOR, both with and without

feedback (Table 5).

Fig 3. Interaction between group and task: treble exact pitch. Treble exact pitch alignment scores were higher for replication (top line)

than for transposition (bottom line). The effect of group (improvising > score-dependent) was larger for transposition (steeper bottom line)

than for replication in the original key. Significance of the interaction, F (1, 20) = 4.483, p = 0.047, was determined using two-way mixed

ANOVA.

doi:10.1371/journal.pone.0166033.g003

Table 4. Improvising vs. score-dependent: task.

Task Voice Parameter Improvising Score-dependent F p-value

Replication Treble Exact pitch 0.7497 (±0.08) 0.6333 (±0.18) 4.115 0.056

Transposition Treble Exact pitch 0.5204 (±0.14) 0.2948 (±0.26) 6.654 0.018

Replication Treble IOR 0.6433 (±0.04) 0.5345 (±0.08) 18.930 < 0.0001

Transposition Treble IOR 0.6260 (±0.08) 0.4849 (±0.14) 9.292 0.006

Replication Bass Exact pitch 0.2259 (±0.22) 0.1231 (±0.31) 0.827 0.374

Transposition Bass Exact pitch 0.0884 (±0.26) -0.0174 (±0.30) 0.788 0.385

Replication Bass IOR 0.4891(±0.07) 0.3967 (±0.13) 4.702 0.042

Transposition Bass IOR 0.4780 (±0.08) 0.3662 (±0.14) 5.713 0.027

Group comparison per task: improvising > score-dependent. Values represent the group mean (± SD). Alignment is expressed in an audiomotor alignment

score, maximum = 1 (see methods). IOR: interonset interval ratio. Means were compared using one-way ANOVA.

doi:10.1371/journal.pone.0166033.t004
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Correlations

No significant correlations were found between mean alignment scores and either age (treble

exact pitch: rs = 0.02; treble IOR: rs = 0.19; bass exact pitch: rs = -0.22; bass IOR: rs = -0.08) or

Fig 4. Interaction between group and condition: treble IOR. Treble IOR scores were higher for performance with feedback (top line)

than without feedback (bottom line). The effect of group (improvising > score-dependent) was larger for performance with feedback

(steeper top line) than for performance without feedback. Significance of the interaction, F(1, 20) = 6.254, p = 0.021, was determined

using two-way mixed ANOVA.

doi:10.1371/journal.pone.0166033.g004

Table 5. Improvising vs. score-dependent: condition.

Condition Voice Parameter Improvising Score-dependent F p-value

Feedback Treble Exact pitch 0.6263 (±0.10) 0.4717 (±0.17) 7.099 0.015

No feedback Treble Exact pitch 0.4972 (±0.16) 0.3209 (±0.21) 4.934 0.038

Feedback Treble IOR 0.6219 (±0.05) 0.4961 (±0.08) 20.195 < 0.0001

No feedback Treble IOR 0.5217 (±0.07) 0.4480 (±0.08) 5.208 0.034

Feedback Bass Exact pitch 0.1682 (±0.20) 0.0589 (±0.24) 1.336 0.261

No feedback Bass Exact pitch 0.1635 (±0.19) 0.0424 (±0.17) 2.494 0.130

Feedback Bass IOR 0.4715 (±0.06) 0.3698 (±0.11) 8.354 0.009

No feedback Bass IOR 0.4378 (±0.0.04) 0.3490 (±0.10) 8.466 0.009

Group comparison per condition: improvising > score-dependent (treble alignment). Values represent the group mean (± SD). Alignment is expressed in an

audiomotor alignment score, maximum = 1 (see methods). IOR: interonset interval ratio. Means were compared using one-way ANOVA.

doi:10.1371/journal.pone.0166033.t005
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years of professional experience, expressed in number of years since completion of the propa-

deutic exam (treble exact pitch: rs = 0.02; treble IOR: rs = 0.17; bass exact pitch: rs = -0.14; bass

IOR: rs = -0.02). One of the highest scoring organists was actually still completing his bachelor

in organ performance at the time of the study.

Discussion

The results of the present study indicate that improvising musicians can be distinguished from

their score-dependent counterparts on the basis of their superior ability to replicate both the

pitch and the rhythm of aurally perceived music on their instrument. While this ability is par-

ticularly evident in the treble voice, it also extends to the bass voice in the temporal domain.

Higher treble alignment scores in improvising musicians could be associated with their supe-

rior ability to replicate both the pitch and rhythm of the treble voice in other tonalities (aural

transposition). With the exception of treble IOR, aural feedback did not contribute signifi-

cantly to higher alignment scores in improvising musicians, however, a possible effect of aural

feedback on transposition was not assessed. The higher audiomotor alignment scores found

here can be seen as evidence of enhanced audiomotor transformations, a notion that is sup-

ported by the significantly larger activation of the right dorsal parietal-premotor network iden-

tified with fMRI in improvising musicians while the participants imagined playing along with

a recording or covertly assessed the quality of the performance [26].

The superior ability to replicate aurally perceived music ‘by ear’, particularly the ability to

do so in different contexts, for example during aural transposition, may possibly be associated

with enhanced employment of procedural knowledge of music syntax during performance.

SRT (Serial Reaction Time) studies have demonstrated that implicit knowledge of low-level

action syntax can be acquired non-consciously during the mere repetition of motor sequences

[33–35]. SRT studies of hierarchically more complex syntax, however, show that mere repeti-

tion is not sufficient for implicit acquisition to take place [36–38].

The apparent distinction between low- and high-level syntax is reflected by the existence of

specific processing networks in the brain dedicated to low- and high-level syntax. Imaging

studies indicate that processing of low-level syntax activates a ventral network comprised of

the frontal operculum and anterior temporal cortex [39] while complex syntax additionally

activates a dorsal network involving posterior inferior frontal gyrus (caudal Broca) and poste-

rior superior temporal cortex [40].

‘String parsing’ has been proposed as the mechanism by which ‘program-level imitation’ of

behavior leads to the acquisition of hierarchically complex syntax [41]. It also offers a ‘parsi-

monious’ explanation for the beneficial effects of improvisation on the acquisition of hierar-

chically complex music syntax. An important characteristic of the practice methods employed

in classical music is the frequent repetition of the notes in the exact order in which they are to

be played. While repetition may be expected to lead primarily to segmentation and chunking

of the sequence i.e. to the implicit acquisition of low-level syntax, syntax-congruent manipula-

tion of the serial order while playing ‘by ear’ might lead to implicit parsing of the hierarchical

structure.

The large individual differences in alignment scores found in the score-dependent group

suggest that practice strategies in classical music might not be as uniform as one would think.

It would seem that practice methods fostering implicit, non-conscious audiomotor learning

are actually employed by a minority of score-dependent musicians and can be said to have a

beneficial effect on the implicit acquisition of hierarchical music syntax. Although improvisa-

tion, like immersion in language acquisition [42], is a fertile ground for the type of implicit,

non-conscious learning that is involved in audiomotor integration [43], parsing of the
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hierarchical structure is apparently also achieved during the practice of repertoire, given the

right approach.

Treble alignment scores for replication were significantly higher than for transposition in

both groups, but only for exact pitch, suggesting that transposition may not be just another

form of pitch replication. Recent studies have implicated the right intraparietal sulcus (IPS) in

transposition [21], retrograde musical transformations [22], and pitch-to-space transforma-

tions [23]. The fact that, during transposition, improvising musicians scored significantly

higher than score-dependent musicians on both treble exact pitch and IOR indicates that they

are more capable of performing such pitch-to-space transformations. It seems quite likely that

improvising musicians’ greater success in replicating aurally perceived music at the original

pitch is also based on the same type of audiomotor transformations they are employing during

transposition. The smaller difference between replication and transposition exhibited by most

improvising musicians in this study supports that view.

The observation that treble alignment scores were significantly higher than bass alignment

scores, despite the use of two-part polyphonic excerpts, corroborates the high-voice superiority

effect found in both behavioral and neural studies. A higher-pitch advantage for melody recog-

nition was found in infants [44] as well as in musically trained and untrained individuals [45].

Auditory brainstem response to intervals has revealed heightened responses to harmonics of

the upper tone [46]. MMN response to higher-pitched deviants is larger and earlier [47–48].

Seventh-month old infants show earlier and larger MMN to changes in the higher voice [49].

MMN in even younger (3-month old) infants was smaller and later than 7 month infants, but

size of MMN difference was similar across ages, supporting the hypothesis of an innate origin

of the high-voice superiority effect [50].

The high-voice superiority effect has been shown to be subject to neuroplasticity. MMN

caused by pitch deviants in the bass has been found to be equal (but not larger) to that elicited

by the treble voice in double bass players [51]. In addition, lower-voice superiority has been

found for temporal deviants in players of bass instruments [52]. The significantly higher scores

for bass IOR observed in improvising musicians and the fact that bass IOR alignment scores

were higher than those of score-dependent musicians both with and without aural feedback,

suggests that they may also be subject to a lower-voice superiority effect. This is one group dif-

ference that could possibly be attributed to the instrument the subjects played, rather than to

the practice of improvisation. Organists commonly use the pedals to play the bass line, while

pianists incorporate the bass line in the left-hand part. In that sense, organists can be said to

play a bass instrument and may therefore also be subject to the lower-voice superiority effect.

An advantage of aural feedback was observed for the replication of treble IOR, but only for

improvising musicians. At first sight, this might seem to conflict with studies that have demon-

strated that musicians are largely independent of aural feedback [53]. Performance without

aural feedback is not only as accurate, but also almost as expressive as with feedback [54]. The

concept that aural feedback might not be essential is supported by a study using event-related

potentials (ERP) during the performance of memorized music, revealing early error signaling,

before the actual error, independent of aural feedback [55]. Aural feedback has been shown to

be more important during the learning phase than during music performance itself [56].

While musicians are quite able to perform without aural feedback, asynchronously altered

feedback (AAF) may compromise performance during both singing and playing. Delaying

feedback until the next tone is being sung or played (serial shift), however, compromises per-

formance in singers but not in score-dependent pianists [57]. While the singers in the cited

study had learned the melodies aurally, the pianists, being unable to play the melodies ‘by ear’,

had learned them from music notation. The authors argue that the disruptive effects of altered

feedback are ‘based on abstract, effector-independent, associations between perception and
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action’, suggesting that action-perception associations are stronger in singers than in score-

dependent pianists. Though the experimental paradigm was considerably different, stronger

action-perception associations in improvising musicians might also be responsible for the

larger benefit from aural feedback experienced by improvising musicians in the present study

during replication of the rhythm of the melody. Further study is necessary to determine the

effect of feedback on aural transposition.

Conclusions

The present study has found behavioral evidence for superior audiomotor transformation dur-

ing the replication and particularly the transposition of aurally perceived music in improvising

musicians. These results are consistent with the associated fMRI study [26], providing argu-

ments suggesting that improvisation supports audiomotor learning in music performance.

The present findings underscore the notion that the gradual disappearance of improvisational

task requirements in the field of classical music since the middle of the nineteenth century [58]

has had a large impact not only on concert practice but, more importantly, also on the audio-

motor characteristics of the musicians themselves. Nevertheless, the high alignment scores

exhibited by a small number of score-dependent musicians indicate that, besides improvisa-

tion, specific practice strategies may also have an important impact on audiomotor integration

[59].
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ory traces for melodic patterns in musicians. Learning & Memory. 2001 Sep 1; 8(5):295–300.
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