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Tensile strength, warping degree, and surface roughness are important indicators to evaluate the quality of fused deposition
modeling (FDM) parts, and their accurate and stable prediction is helpful to the development of FDM technology. 3us, a quality
prediction method of FDM parts based on an optimized deep belief network was proposed. To determine the combination of
process parameters that have the greatest influence on the quality of FDM parts, the correlation analysis method was used to
screen the key quality factors that affect the quality of FDM parts. 3en, we use 10-fold cross-validation and grid search (GS) to
determine the optimal hyperparameter combination of the sparse constrained deep belief network (SDBN), propose an adaptive
cuckoo search (ACS) algorithm to optimize the weights and biases of the SDBN, and complete the construction of prediction
model based on the above work. 3e results show that compared with DBN, LSTM, RBFNN, and BPNN, the ACS-SDBN model
designed in this article can map the complex nonlinear relationship between FDM part quality characteristics and process
parameters more effectively, and the CV verification accuracy of the model can reach more than 95.92%. 3e prediction accuracy
can reach more than 96.67%, and the model has higher accuracy and stability.

1. Introduction

Additive manufacturing (AM) is a rapid prototyping
technology born in the 1980s, which realizes the conversion
from a 3D digital model to a physical model by continuously
adding layers of materials. Compared with traditional
subtractivemanufacturing (cutting), additive manufacturing
has the characteristics of energy-efficient, green, and recy-
clable [1–3], which meets the market demand for rapid
product development and personalized customization.
Fused deposition modeling (FDM) has become one of the
most widely used additive manufacturing technologies at
home and abroad because of its simple molding equipment,
low production cost, and the ability to manufacture complex
parts without extra tools [4, 5]. At present, fused deposition
molding has been widely used in consumer products, au-
tomobiles, aerospace, and medical and construction fields
and has achieved huge economic benefits; however, FDM
technology still faces challenges. In the process of rapidly

preparing parts in the fused deposition process, the material
undergoes three stages of solid phase, molten state, and
cooling and solidification. In this process, the mechanical
properties of raw materials, changes in the forming tem-
perature field, and process forming parameters all have an
impact on the quality of the parts [6–9]. 3e main quality
problems of FDM parts include poor tensile strength,
warpage deformation, and insufficient surface accuracy.
3ese problems hinder the development of the fused de-
position process in industrial production and become a key
issue that needs to be solved urgently in the development of
the additive manufacturing industry.

To solve the above problems, much research focuses on
understanding and optimizing FDM process parameters to
enhance the performance characteristics of products and
expand the application fields of FDM technology. Wang
et al. [10] modeled the warpage deformation printed parts,
which considered the material properties and machine
settings of FDM, such as layer thickness, printing path,
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extrusion temperature, and speed. 3ey pointed out that the
warpage deformation could be effectively reduced by im-
proving the temperature and printing path. Nancharaiah
et al. [11] studied the effects of grating angle, layer thickness,
and width on the surface roughness of FDM parts by using
the Taguchi method and ANOVA technique. 3e experi-
mental results have shown that layer thickness significantly
affects the accuracy of FDM parts. Sahu et al. [12] et al.
analyzed the influence and interaction of process variables
such as layer thickness, printing direction, grating angle,
grating width, and air gap on the surface accuracy of parts.
Mohamed et al. [13] proposed the optimal standard for
optimizing the process parameters of FDM and studied the
nonlinear relationship between the process parameters and
dimensional accuracy. Zaman et al. [14] and Dev et al. [15]
designed experiments based on Taguchi’s method and
studied the influence of process parameters on the tensile
strength of FDM parts. Tura et al. [16] established a
mathematical prediction model of controllable input pa-
rameters using the response surface method to explore the
influence of FDM input parameters on the surface roughness
of ABS materials. Although traditional quality methods and
mathematical modeling can verify the influence of process
parameters on a certain performance of FDM parts, it is
difficult to accurately establish the mapping relationship
between input variables and output variables, so the im-
provement effect on product quality is not obvious.

3e data-driven prediction method has been widely used
in recent years due to its strong adaptability [17]. As a typical
data-driven method, machine learning constructs an ap-
proximate model based on real-time, historical, and rela-
tional data to approach the real situation and build a
prediction model. As an important branch of machine
learning, the neural network has been applied to product
performance prediction due to its powerful data and non-
linear processing capability [18–21]. 3erefore, some liter-
ature constructed quality prediction models to realize the
prediction of FDM parts quality. To improve the surface
roughness of FDM parts, Vahabli and Rahmati [22] built a
surface roughness distribution model and proposed a pre-
diction method of product surface roughness based on the
radial basis function neural network (RBFNN). Zhang et al.
[23] proposed the FDM parts quality prediction model based
on the long-short term memory network (LSTM) to predict
the tensile strength of parts. Ali and Chowdary [24], Paz-
hamannil et al. [25], and Manoharan et al. [26] all used the
artificial neural network (ANN) model to predict the tensile
strength of FDM parts. Zhang and Yang [27] used the ge-
netic algorithm to optimize the weights and thresholds of the
BP neural network (BPNN) and established a precision
prediction model for FDM parts based on process param-
eters. All the above prediction methods are shallow machine
learning models. Although these methods can be used to
predict the roughness, warping degree, or tensile strength of
FDM parts, they cannot adequately extract the effective
features of training samples, and it is difficult to accurately
map the complex nonlinear relationship between multiple
process parameters and multiple quality indicators, and the
model has poor stability.

Deep belief network (DBN) is a deep neural network
composed of several restricted Boltzmann machines
(RBMs). Compared with the neural network with a single
hidden layer structure, the DBN has better ability of feature
learning and nonlinear fitting. At present, various deep
learning models based on the DBN are widely used to solve
many challenging problems, such as quality prediction
[21, 28], fault diagnosis [29], flow prediction [30, 31], wind
energy prediction [32], image classification [33], prediction
of concrete compressive strength [34], and air quality as-
sessment [35]. 3e feature information extraction of the
DBN depends on the RBM. Inspired by the sparse repre-
sentation of visual cortex, the sparse concept is introduced
into the RBM to facilitate the upper neurons to extract the
most essential features in the stimulation and learn more
effective feature information. Experiments show that the
sparse deep belief network (SDBN) formed by sparse limited
Boltzmann mechanism (SRBM) can extract feature infor-
mation more effectively and avoid the problem of model
overfitting [36]. In addition, the above literature shows that
the network parameter setting of the DBN has a significant
impact on the model performance. 3ere are two types of
parameters in the DBN model. 3e first type is the value set
before the model starts the learning process, such as the
model learning rate, the number of hidden layers, and the
number of hidden elements. 3ese parameters are called
superparameters. 3e second category is the parameters
obtained by the model through learning and updating, such
as weights and bias. 3is study is based on the grid search
method to determine the optimal hyperparameter combi-
nation of the sparse deep belief network model. 3ere are
few studies on DBN hyperparameter optimization, and
researchers mostly use empirical methods to solve the
problem of the network structure [37], In this article, the
grid search (GS) method is used to search all possible
combinations of the SDBN model’s hyperparameters, and
the best combination of the model’s hyperparameters is
determined by taking the validation error value of 10-fold
cross-validation as the evaluation standard. For weights and
thresholds, heuristic algorithms are often used to optimize
[38]. Moreover, the prediction performance of the neural
network optimized with weights and thresholds is obviously
better than that of the single neural network without op-
timization [39]. Based on this, this article proposes an
adaptive cuckoo search (ACS) algorithm to optimize the
learning parameters of the SDBN. 3e significant advantage
of the ACS algorithm is that it involves fewer codes and
parameters and has a strong global search capability.

3e motivation of this research is to use a new pre-
diction model, which takes FDM process parameters as
model input, to realize the accurate prediction of the three
quality characteristics of FDM parts, namely, tensile
strength, warping degree, and surface roughness. 3e GS-
ACS-SDBN prediction model proposed in this article is
based on deep learning, and uses GS and 10-fold cross-
validation to determine model hyperparameters and the
ACS algorithm to optimize model weights and biases.
Compared with the prediction results of the DBN, LSTM,
RBFNN, and BPNN models, the GS-ACS-SDBN model has

2 Computational Intelligence and Neuroscience



more sufficient learning of data features and can achieve
accurate prediction of the quality of FDM parts. 3e ex-
perimental results are successful and proved the effec-
tiveness of this method.

3emain contributions and innovations of this study are
as follows: firstly, we construct a new quality prediction
model, which can predict the roughness, warpage, and
tensile strength of FDM parts at the same time; secondly, the
optimal learning rate, the number of hidden layers, and the
number of hidden elements of the SDBN model are de-
termined by grid search and cross-validation, and this
method can realize the automatic selection of model pa-
rameters; finally, an adaptive cuckoo search algorithm is
proposed by introducing the cosine diminishing strategy,
and the algorithm is used as the optimizer of the model to
improve the prediction accuracy of the model. In addition,
we discuss the performance of the GS-ACS-SDBN predic-
tion model.

3e rest of the article is organized as follows: in Section 2,
we introduce the ACS algorithm and SDBN. In Section 3, we
propose an FDM part quality prediction method based on
the GS-ACS-DBNmodel and compare the prediction results
of the GS-ACS-SDBN with other prediction models to verify
the superiority of our method.3e conclusions are discussed
in Section 4.

2. Sparse Deep Belief Network and Adaptive
Cuckoo Search

2.1.SparseDeepBeliefNetworkModelConstruction. DBN is a
probability graph model composed of several RBMs. DBN
training adopts the strategy of greed layer by layer, and the
output of the RBM of each layer is used as the input of the
next layer. Its structure is shown in Figure 1.

RBM is composed of multiple hidden layer neurons and
multiple visible layer neurons. 3e former layer neurons are
used for training data, whereas the latter layer neurons are
used for feature extraction. 3e probability of activation of
neurons in the visible layer (v) and the hidden layer (h) is 0
or 1, and they are connected in a bidirectional equal weight
mode; the weight is wi,j, and the neurons in the same layer
are independent of each other. ai and bj represent the
paranoid threshold of the visible layer and the hidden layer,
respectively.

3e probability distribution of the RBM can be realized
by the energy function, which is defined in the given state
(v, h) as

Eθ(v, h) � − 􏽘
n

i�1
aivi − 􏽘

m

j�1
bjhj − 􏽘

n

i�1
􏽘

m

j�1
viwijhj. (1)

After visualization and regularization of the above
equation, the joint probability distribution of the RBM can
be obtained as shown in the following equation:

P(v, h; θ) �
1

z(θ)
exp −Eθ(v, h)( 􏼁, (2)

where z(θ) is a normalized factor, expressed as

z(θ) � 􏽘
v,h

exp −Eθ(v, h)( 􏼁, (3)

where θ � wij, ai, bj􏽮 􏽯 is the network parameter. When the
visual layer vector v is given, the probability that the hidden
layer neuron j will be activated is

P hj � 1 | v􏼐 􏼑 � R 􏽘
n

i�1
wijvi + bj

⎛⎝ ⎞⎠. (4)

3e probability of visual layer vector neuron i being
activated is

P vi � 1 | h( 􏼁 � R 􏽘
m

j�1
wijhj + ai

⎛⎝ ⎞⎠, (5)

where R represents ReLU activation function, which is used
to activate neurons. It has a better feature learning ability
than Tanh activation function and sigmoid activation
function. 3e updating rules of parameters are shown in the
following equations:

w
t+1
ij � w

t
ij + ε 〈vihi〉data −〈vihi〉rec( 􏼁, (6)

a
t+1
i � a

t
i + ε 〈vi〉data −〈vi〉rec( 􏼁, (7)

b
t+1
j � b

t
j + ε 〈hj〉data −〈hj〉rec􏼐 􏼑, (8)

where ε is the learning rate; < >data represents input data; and
< >rec represents reconstructed data.

3e feature information extraction of the DBN depends
on the RBM. Inspired by the sparse representation of the
visual cortex, the sparse concept is introduced into the RBM
to facilitate the upper neurons to extract the most essential
features in the stimulation and learn more effective feature
information. Lorentz function sparse constraint has been
applied in many fields such as detection and image dis-
crimination, and relevant experiments show that this
method can effectively extract feature information and
suppress environmental noise [40].

We use ls to represent the Lorentz measure of sparsity
and S to represent the controlling factor of activation
probability sparsity. To obtain the sparse representation of
the model in the learning process, weight and threshold need
to be adjusted so that the RBM can maximize the likelihood
function and obtain the sparse distribution of the training
set. 3e objective function of the SRBM model is as follows:

ln lS � min wij, ai, bj􏽮 􏽯 − 􏽘
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log 􏽘
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p v
k
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i􏽨 􏽩􏼐 􏼑

2

S
2

⎛⎜⎝ ⎞⎟⎠.

(9)

In the above equation, the second term is the likelihood
term and the third term is the regularization term. lS rep-
resents the Lorentz metric of sparsity, S represents the
control factor of the sparsity of activation probability,
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k represents the k-th layer, k ∈K, and λ is the regularization
parameter. 3e SRBM training uses the contrast divergence
algorithm to obtain the approximate gradient of the like-
lihood term and solve the regular term. 3e gradient cal-
culation process of the regular term is shown in the following
equations:
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2.2. Data Sampling Based on Gibbs. Gibbs sampling is based
on the sampling method of Monte Carlo–Markov chain, and
its basic theory is similar to the Metropolis algorithm. As-
suming that the dimension of the existing sample is N, the
mathematical expression of the sample is given as
X � (x1, x2, . . . , xn), assuming that the overall distribution
of the sample P(x)) is unknown, but other variables other
than xi are known, the conditional distribution probability of
sample xi can be obtained, that is, P(xi/xi−) (xi− means that
the variable xi is removed from the sample as a whole). In
addition, for any state of x, it is set as [x

(0)
1 , x

(0)
2 , . . . , x(0)

n ],
and the remaining variables are sampled based on the
conditional probability distribution formula, and the
number of sampling increases with the number of iterations.

After t sampling, the distribution of the sample states
[x

(t)
1 , x

(t)
2 , . . . , x(t)

n ] will converge to the global distribution at
the geometric speed of t.

3e specific sampling process is as follows:

v1 ∼ P(v),

h1 ∼ P h | v1( 􏼁,

v2 ∼ P v | h1( 􏼁,

h2 ∼ P h | v2( 􏼁,

. . .

vt+1 ∼ P v | ht( 􏼁.

(12)

Given the state of visual layer neurons in the RBM, the
state of hidden layer neurons can be reconstructed:

h � sample h given vRBM( 􏼁. (13)

Given the state of hidden layer neurons in the RBM, the
state of visual layer neurons can be reconstructed:

v � sample v given hRBM( 􏼁. (14)

2.3. Model Pretraining. Unsupervised learning is used to
pretrain the DBN and provide a better parameter basis for
further parameter fine-tuning. In the process of mixed
pretraining, to ensure the integrity of the prediction model, a
temporary output layer should be stacked on the RBM to be
trained.

In unsupervised training, the model needs to seek
reconstructed data 􏽢m close to the original data m, namely,

‖ 􏽢m − m‖⟶ 0. (15)

We selected M training samples, defined fi as the pre-
dicted value and Fi as the true value, and calculated the
reconstruction error function C:

Visual layer v

h1 h2 hj hm

v1 v2 v3 vi vn

Output y

BP

RBM2

x1 x2 x3 xn
Input x

a1 a2 a3 ai an

b1 b2 bj bm Hidden layer h
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DBN structure

...
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... Hidden layer hk
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RBMK

Figure 1: RBN structure and DBN structure.
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C � MAE �
1
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M

i�1
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􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (16)

After layer by layer mixed pretraining, the BP algorithm is
used to fine-tune global parameters.3eBP neural network has
good information forward transmission and error back
propagation characteristics.3rough repeated cycles to achieve
the desired error, finally after training to get the desired model.

3e training steps of the RBM are given as follows:

2.4.AaptiveCuckooSearch. CS algorithm is a new intelligent
optimization algorithm proposed by Yang and Deb in 2009.
3e significant point of this algorithm is that it adopts Levy
flight mechanism to conduct search. Levy flight is a random
search method that combines short-frequency long-distance
flight and high-frequency short-distance flight to realize
random jump search in different areas, which effectively
balances the local search and global search capabilities of the
algorithm [41]. Levy’s flight path is shown in Figure 2.

Based on the general principle of cuckoo search, the
optimization ability of cuckoo depends on two aspects: (1)
the step size control factor α, whose value determines the
contraction range of Levy’s flight, and (2) discard probability
pa, the value of pa determines the number of new nests
retained, namely, the diversity of the population. In the
standard cuckoo search algorithm, α and pa are fixed values,
which cannot well adjust the step size generated by Levy’s
flight and ensure the diversity of the population. For this
reason, we adopt the decreasing cosine strategy [42] to
realize the dynamic and adaptive change of step size.

3e expression of adaptive discarding probability is as
follows:

pa � pa,max cos
π
2

·
t − 1

tmax − 1
􏼠 􏼡 + pa,min. (17)

3e expression of the adaptive step size control factor is
as follows:

αt
�

αmax cos
π
2

·
t − 1

tmax − 1
􏼠 􏼡, R≤ a,

αt−1 π
2

·
t − 1

tmax − 1
􏼠 􏼡, a<R≤ b,

αmin
π
2

·
t − 1

tmax − 1
􏼠 􏼡􏼠 􏼡, R> b,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where R is the iteration ratio, R� t/tmax; and a and b are
constants, a, b ∈ (0, 1).

3e bird’s nest position update method based on the
dynamic adjustment strategy is further defined as

x
t+1
i �

x
t
i + αt

· x
t
i − x

t
best􏼐 􏼑􏽨 􏽩⊕ Levy(β) if , P≥pa,

x
t
i , P<pa.

⎧⎨

⎩ (19)

3e optimization process of the ACS algorithm shown as
follows:

3. FDM Parts Prediction Method
Based on GS-ACS-DBN

3e main process of FDM parts quality prediction includes
key quality factor screening, GS-ACS-SDBN prediction
model construction, and FDM parts quality prediction. 3e
quality prediction process of FDM parts based on the GS-
ACS-SDBN model is shown in Figure 3.

3.1. Key Quality Factor Screening. FDM image files are
usually stored as STL files. 3e computer processes the
image files in layers and determines the path of material
deposition layer by layer. 3e wire feeder feeds the wire to
the nozzle, where the wire is heated and melted to a
molten state. 3e wire flows out of the nozzle and moves
along a predetermined print path to deposit the molten
material. 3e extruded material then cools and forms a
single layer. Once the first layer is finished, the support
platform lowers the predetermined distance to allow the
deposition of the higher layers, which continues until the
product is printed. 3e forming process of FDM parts is
shown in Figure 4.

In this article, I font with length, width, and height of
150mm, 30mm, and 5mm, respectively, is used as the
printing pattern, as shown in Figure 5. 3e experimental
equipment is Aurora Irva Z-603S, and the experimental
consumables are ABS materials and PLA materials. Pattern
printing takes the origin as the starting point for horizontal
printing, and the filling density is 100%. 3e process pa-
rameters include slice thickness, extrusion speed, nozzle
temperature, and molding room temperature. 3e param-
eter setting range is shown in Table 1; the performance
parameter information of ABS and PLSmaterials is shown in
Table 2. Based on the orthogonal printing method, 2500
valid samples were obtained, among which 80% samples
were taken as the training set and the remaining 20% as the
test set.

Data correlation testing helps to determine the main
factors affecting product quality and to improve the pre-
diction results. For this reason, the article uses the combi-
national correlation test method (RVmod), proposed by
Smilde et al. [43], to calculate the correlation degree between
each FDM process parameter and quality characteristics.
RVmod is the generalization of correlation analysis such as
multiple regression analysis, principal component analysis,
and canonical correlation analysis. 3e calculation formula
is as follows:

RVmod �
tr(AB)

�����������

tr(A)
2tr(B)

2
􏽱 ,

A � XX
T

− diag XX
T

􏼐 􏼑,

B � YY
T

− diag YY
T

􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where X represents the matrix of influencing factors, in-
cluding the process parameters in Tables 1 and 2; and Y is the
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product quality characteristics, including surface roughness,
warping degree, and tensile strength. According to equation
(20). We identified the model input variables. 3e results are
shown in Table 3.

3ere are differences in the numerical units and mag-
nitude of different variables. 3erefore, the following for-
mula is used to normalize the input variables and output
variables of the model to the interval [0, 1], so as to improve
the flexibility of data processing:

X �
x − xmin

xmax − xmin
, (21)

where x is the data that needs to be normalized, X is the
processed data, and xmin and xmax are the minimum and
maximum values in the dataset, respectively.

3.2. GS-ACS-SDBN Prediction Model Construction. Deep
neural network can achieve better extraction of feature

information, but its multihidden structure leads to its slow
learning speed. In this article, the ACS algorithm is used to
optimize network weights and deviations to improve the
convergence speed and prediction accuracy of SDBN.MAPE
is used as the fitness value, and the weight and bias when the
training error is the smallest are used as the final parameters
of the model.

Before SDBN model training, the model structure pa-
rameters need to be set, namely, the number of hidden
layers, the number of neurons, and the learning rate. 3e
selection of the above parameters determines the learning
ability of the network to the sample features and has an
important influence on the prediction accuracy of themodel.
3erefore, the grid search method is used in this article to
determine the optimal combination of the superparameters
of the SDBN model. In addition, to avoid the occurrence of
overfitting, the 10-fold cross-validation (CV) method was
used to suppress the overfitting behavior of the neural
network. In the 10-fold cross-validation, the training set was

Input: training samples v(1);
Output: network parameters W, a, b;

for all hidden units j do:
Compute P(h

(1)
j � 1 | v(1)) according to equation (4);

Sample h
(1)
j ∈ 0, 1{ } from P(h

(1)
j � 1 | v(1));

end for
for all visible units i do:

Compute P(v
(2)
i � 1 | h(1)) according to the equation (5);

Sample v
(2)
i ∈ 0, 1{ } from P(v

(2)
i � 1 | h(1));

end for
for all hidden units j do:

Compute P(h
(2)
j � 1 | v(2)) according to equation (4);

Sample h
(2)
j ∈ 0, 1{ } from P(h

(2)
j � 1 | v(2));

end for
Update the parameters according to equations (6)–(8).

ALGORITHM 1: RBM training.

250

200
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50

0

-50
-200 -150 -100 -50 0 50

Figure 2: Levy flight path.
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randomly divided into 10 parts, of which 9 parts were used as
training samples, and 1 part was used as verification sample.
3en, perform 10 times of training, andmeasure the training
error and verification error of the SDBN model with the
mean absolute percentage error (MAPE).

3e principle of 10-fold cross-validation is shown in
Figure 6.

In the process of grid search, different hidden layer
numbers and learning rates are combined, and then, 10-fold
cross-validation was carried out. Finally, the results of

Input: network parameters X� {W, a, b};
Output: Optimal network parameters X∗ � W∗, a∗, b∗{ };
While t< tmax do
Generate the initial population of n host nests Xi(i� 1, 2);
Calculate its fitness F(Xi);
Update the position of the bird’s nest according to formula (19)
Calculate the fitness F(Xj) of the new bird’s nest, and generate a random number P
Calculate the probability of discarding a new bird’s nest pa according to formula (17)
If P<pa then
Abandon the new bird’s nest Xj directly and keep the original bird’s nest Xi

else
Keep the new bird’s nest Xj, and compare the fitness value of the new bird’s nest Xj and the original bird’s nest xi
If F(Xj)< F(Xi) then
Keep Xj

else
Keep Xi

end if
end if
Update iteration counter t

end while
Output: Optimal network parameters X∗ � W∗, a∗, b∗{ };

ALGORITHM 2: ACS Algorithm.

Key impact
quality screening

Construction of prediction model of
GS-ACS-SDBN

FDM process
parameters

Correlation
analysis

Determine
model input

Data
normalization

The training
set

GS

ACS

The test set

hyperparameter
Number of hidden

layers k
Parameter selection

of SDBN model

learning parameters

The network weights w

The network bias a

The network bias b

Prediction results of surface
roughness, warping degree and
tensile strength of FDM parts

based on GS-ACS-SDBN model

Learning rate ε

Number of hidden
 layer neurons nk

Figure 3: 3e quality prediction process of FDM parts based on the GS-ACS-SDBN model.

Silk material

Temperature
control system

nozzle

Plane
support

Figure 4: FDM parts forming process.
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10-fold cross-validation under different combinations were
compared, and the superparameter value corresponding to
the minimum error was used as the final selection of the

model. 3e accuracy and the combination of parameters
finally selected of grid search for surface roughness, warpage,
and tensile strength of FDM parts are shown in Figure 7.

As can be seen from Figure 7, with the increase in the
number of hidden layers, the prediction accuracy of the
model first increases and then decreases. When the number
of hidden layers is less than 4, effective learning of feature
information cannot be realized, and the model is in an
under-fitting state; when the number of hidden layers is
greater than 4, the model has learned too much about data
features, and the model is in the fitting state; when the
number of hidden layers is set to 4, the prediction accuracy
of the model is the highest.

In Figure 7(a), for surface roughness, the optimal
combination of hyperparameters k� 4 and ε� 0.9 is deter-
mined, and the training error is 2.07% and the verification
error is 3.14%. In Figure 7(b), for the warping degree, the
parameter combination is determined as k� 4 and ε� 0.6
and the training error is 2.15% and the verification error is
3.97%. In Figure 7(c), for the tensile strength, the parameter
combination is determined as k� 4 and ε� 0.7, and the
training error is 1.85% and the verification error is 3.53%. At
this point, the number of neurons corresponding to each
hidden layer is given in Table 4.

Furthermore, we verify the rationality of the above
parameter settings based on reconstruction errors, and the
results are shown in Figure 8. 3e results show that the
errors of tensile strength, warpage, and roughness can all
achieve stability in 100 generations without obvious over-
fitting behavior.

After the hyperparameters of the SDBN model are de-
termined, we merge the training samples and validation
samples; 80% of the training set is reused as the training
samples of the SDBN model with the network structure
determined, and the ACS algorithm is used to optimize the
network learning parameters to obtain the best FDM quality
prediction model. 3e specific process of the SDBN quality
prediction model optimized based on ACS algorithm is
shown in Figure 9.

4. Results and Analysis

In order to test the performance of the model proposed in
this article, DBN, RBFNN, LSTM, ANN, and BPNN are used
to predict the quality of FDM parts on the same dataset.
10-fold cross-validation and GS are used to determine the
hyperparameters of the above models. We retained the

Table 2: Material performance parameters.

Materials ABS PLA
Melting temperature 220–250°C 190–220°C
Tensile strength >43MPa >60MPa
Bending modulus >60MPa >60MPa
Density 1.04 g/cm3 1.25 g/cm3

Water imbibition 10% 3%

Table 1: FDM process parameters.

Process parameters Numerical range
Slice thickness 0.05–0.2mm
Extrusion speed 10–50mm/s
Nozzle temperature 220–270°C
Molding room temperature 24.2–35.5°C

Layer
thickness

150 mm

5 mm
30 mm

Figure 5: FDM parts printing pattern.

Table 3: Correlation degree between key quality factors and each
quality characteristic.

Model input variables Quality index RVmod

Slice thickness, nozzle temperature,
extrusion speed, tensile strength,
material density

Surface
roughness 0.785

Slice thickness, nozzle temperature,
melting temperature, bending modulus

Warping
degree 0.722

Slice thickness, nozzle temperature,
extrusion speed, and molding room
temperature

Tensile
strength 0.7593

. . .

20%
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Figure 6: Schematic of 10-fold cross-validation.
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model corresponding to the hyperparameter with the
highest prediction accuracy and then imported the complete
training set to train the model, so as to determine the final
prediction model and realize the prediction of the three
quality characteristics of FDM parts. 3e training errors and
validation errors of the 10-fold cross-validation of different
models are shown in Figure 10. Table 5 shows the error
statistical results of all the prediction models.

Cross-validation can be used not only for parameter
adjustment, but also for model evaluation. In Figure 10, we

compared the training error and validation error of different
models for 10 times of 10-fold cross-validation. 3e results
in the figure show that the 10-fold cross-validation training
error results of the GS-ACS-SDBN, DBN, RBFNN, LSTM,
and BPNN models can maintain relatively stable results.
Among them, the GA-ACS-SDBN model 10-fold cross-
validation training results are optimal. On the validation set,
compared to the stable results of the GS-ACS-SDBN and
DBN models, the 10-fold cross-validation errors of the
RBFNN, LSTM, and BPNN models show significant
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Figure 7: Hyperparameter grid search results.

Table 4: 3e number of neurons contained in each hidden layer.

Quality characteristics
Number of neurons in each hidden layer nk

n1 n2 n3 n4
Surface roughness 8 15 7 4
Warping degree 8 17 11 7
Tensile strength 6 13 9 5
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102 103
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Figure 8: Relationship between the reconstruction errors of surface roughness, warpage, and tensile strength and the number of iterations.
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differences. Furthermore, according to the statistical results
of 10-fold cross-validation errors in Table 5, the average
values of the 10-fold cross-validation training errors of the
GS-ACS-SDBN model for the tensile strength, curvature,
and surface roughness of FDM parts are 2.02%, 2.10%, and
1.95% respectively. 3e mean values of 10-fold cross-vali-
dation errors were 3.43%, 4.08%, and 3.03%, respectively.

Compared with DBN, RBFNN, LSTM, and BPNN, the ac-
curacy of the proposed model is significantly improved, and
the stability of the model is strong.

We retained the network parameters with the least error
in the 10-fold cross-validation, then input the entire training
set into the debugged model for training, and evaluated the
model on the test set. Table 5 compares the training error

Cross validation set

Get the original nest locationXi = {wt, at, bt}

Update the position of the bird's nest Xj, calculate the
fitness of the new bird's nest, F (Xj) , and generate a

random number P

Update the probability of discarding pa

t>Tmax?

P<pa?

X = {wt, at, bt}

yesno

no
yes

keep the original bird's
nest Xi

Calculate the fitness value of the original nest, F (Xi)

Optimal
hyperparameter: k, ε, nk

GS

SDBN structure is
determined

The density of raw materials

Tensile strength of raw materials
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Nozzle temperature

Extrusion speed

bending modulus of raw materials

melting temperature

molding room temperature
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Figure 9: 3e specific process of the SDBN quality prediction model optimized based on the ACS algorithm.
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Table 5: Error results and running time statistics for different models.

Quality characteristics Prediction
model

CV training error
(%)

CV validation error
(%)

Training error
(%)

Test error
(%)

Training
time/s Test time/s

Tensile strength/MPa

GS-ACS-
SDBN 2.02 3.43 1.82 2.35 35.37 2.44

DBN 2.85 4.26 2.77 3.61 88.09 5.82
LSTM 2.80 4.94 2.82 4.54 42.66 4.13
RBFNN 4.05 6.28 3.68 6.05 48.31 4.85
BPNN 4.69 7.00 3.62 6.44 57.85 3.92

Warping degree/mm

GS-ACS-
SDBN 2.10 4.08 1.95 3.33 35.37 2.44

DBN 2.87 4.88 2.73 4.61 88.09 5.82
LSTM 3.13 6.51 3.31 6.04 42.66 4.13
RBFNN 4.10 7.36 3.96 7.18 48.31 4.85
BPNN 4.77 7.54 4.53 7.47 57.85 3.92

Surface roughness/um

GS-ACS-
SDBN 1.95 3.03 2.14 2.64 35.37 2.44

DBN 3.03 4.72 2.81 4.51 88.09 5.82
LSTM 3.65 6.71 3.66 5.67 42.66 4.13
RBFNN 4.31 7.74 4.52 6.22 48.31 4.85
BPNN 4.95 7.74 4.77 6.50 57.85 3.92
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Figure 11: Continued.
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and test error of tensile strength, warpage, and surface
roughness of FDM parts under different models. From the
experimental results, in terms of training errors, the training
errors of the GS-ACS-SDBN model for the three quality
characteristics are 1.82%, 1.95%, and 2.14, respectively.
Compared with the DBN model, the GS-ACS-SDBN im-
proved by 0.95%, 0.78%, and 0.67%. Compared with the
LSTM model, it increased by 1.00%, 1.36%, and 1.52%.
Compared with the RBFNN model, the results were im-
proved by 1.86%, 2.01%, and 2.38%. Compared with the
BPNN model, it improved by 1.80%, 2.58%, and 2.63%. 3e
above results show that the GS-ACS-SDBN model can learn
the sample features more fully and obtain better training
errors. In terms of test error, the GS-ACS-SDBN model still
maintains its superior predictive ability. 3e prediction
errors of tensile strength, warpage, and surface roughness of
FDM parts under this model are 2.35%, 3.33%, and 2.64%,
respectively. It is 1.27%, 1.28%, and 1.88% higher than the
DBNmodel; 2.19%, 2.70%, and 3.03% higher than the LSTM
model; 3.70%, 3.84%, and 3.58% higher than the RBFNN
model; and 4.09%, 4.14%, and 3.86% higher than the BPNN
model. 3e above results further indicate that the GS-ACS-
SDBN model designed in this article has stronger feature
learning ability and mapping ability and can achieve ac-
curate prediction between FDMprocess parameters and part
quality characteristics, showing better prediction
performance.

In addition, due to the introduction of the adaptive
cuckoo search algorithm, the GS-ACS-SDBN model can
optimize network parameters in a relatively short period of
time, complete model training in 35.37 s, and output pre-
diction results in 2.44 s. Comparison curves of actual and
predicted values of 500 groups of test samples under dif-
ferent models are shown in Figure 11. It can be seen from
Figure 11 that compared to DBN, LSTM, RBFNN and
BPNN, the change trend of the predicted value of the
GS-ACS-SDBN model is almost the same as the real value,

and the curve overlap is the highest.3e experimental results
fully demonstrate the effectiveness and superiority of the
ACS-SDBN model in predicting the tensile strength,
warping degree, and surface roughness of FDM parts.

5. Conclusion

3ere are complex nonlinear relations between the quality of
FDM parts and various process parameters, and it is difficult
to predict accurately by traditional methods. In order to
solve this problem, based on the DBN, this article establishes
a mixed quality prediction model (GS-ACS-SDBN) based on
deep learning. 3e digital prediction of tensile strength,
warpage, surface roughness, and other quality characteristics
of FDM parts under the influence of multiple process pa-
rameters is realized. 3e research conclusions are as follows:

(1) 3e correlation analysis method (RVmod) was used to
determine the key quality factors affecting surface
roughness, including slice thickness, nozzle tem-
perature, extrusion speed, tensile strength, and
material density. 3e section thickness, nozzle
temperature, melting temperature, and bending
modulus are the key factors affecting the warpage
degree; section thickness, nozzle temperature, ex-
trusion speed, and molding room temperature are
the key qualities affecting tensile strength.

(2) Based on the 10-fold cross-validation and GS
method, the optimal hidden layer of the network is
determined to be 4, and the optimal validation errors
of roughness, warpage, and tensile strength of FDM
parts are 3.14%, 3.97%, and 3.53%, respectively. 3e
reconstruction errors of training samples reach a
stable state within 100 iterations.

(3) 3e proposed model is applied to the quality pre-
diction of FDM parts. 3e experimental results show
that the prediction accuracy, stability, and
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Figure 11: Comparison of predicted and actual values of tensile strength, warpage, and surface roughness of FDM part.
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convergence speed of the GS-ACS-SDBN model for
tensile strength, warping degree, and surface
roughness of FDM parts are better than DBN, LTSM,
RBFNN, and BPmodels.3e CV verification error of
the model in this article is within 4.08%, and the
prediction error is within 3.33%.

3e research contents of this article can provide effective
research ideas for the application of the GS-ACS-SDBN
prediction model in other fields. For different application
fields, different sample data are used to train and construct
the SDBN model. GS and ACS algorithm are used to op-
timize network parameters and obtain the best prediction
model.
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