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Microbial pathogens are responsible for more than 400 mil-
lion years of life lost annually across the globe, a higher 
burden than either cancer or cardiovascular disease1. 

Diseases that have long plagued humanity, such as malaria and 
tuberculosis, continue to impose a staggering toll. Recent decades 
have also witnessed the emergence of new virulent pathogens, 
including human immunodeficiency virus (HIV), Ebola virus, 
severe acute respiratory syndrome (SARS) coronavirus, West Nile 
virus and Zika virus.

The persistent global threat posed by microbial pathogens arises 
from the nonlinear mechanisms of disease transmission. That is, as 
the prevalence of a disease is reduced, the density of immune indi-
viduals drops, the density of susceptible individuals rises and dis-
ease is more likely to rebound. The resultant temporal trajectories 
are difficult to predict without considering this nonlinear interplay. 
For instance, many microbial diseases exhibit periodic spikes in the 
number of cases that are unexplainable by pathogen natural history 
or environmental phenomena. By explicitly defining the nonlinear 
processes underlying infectious disease spread, transmission mod-
els illuminate these otherwise opaque systems.

Forty years ago, Nature published a series of papers that launched 
the modern era of infectious disease modelling2,3. Since that time, 
these methodologies have multiplied4. Transmission models now 
employ a variety of approaches, ranging from agent-based simula-
tions that represent each individual5 to compartmental frameworks 
that group individuals by epidemiological status, such as infectious-
ness and immunity2,3. Accompanying the methodological innova-
tions, however, are challenges regarding selection of appropriate 
model structures from among the wealth of possibilities6.

At this anniversary of the publication of these landmark papers2,3, 
we reflect on contributions that transmission modelling has made 
to infectious disease science and control. Through a series of case 
studies, we illustrate the overarching principles and challenges 
related to model design. With expanding computational capacity 
and new types of data, myriad opportunities have opened for trans-
mission modelling to bolster evidence-based policy (Box 1)7,8. In all 

pursuits, modelling is most informative when conducted collabora-
tively with microbiologists, immunologists and epidemiologists. We 
offer this Perspective as an entry point for non-modelling scientists 
to understand the power and flexibility of modelling, and as a foun-
dation for the transdisciplinary conversations that bolster the field.

Modelling across scales
Even within the same disease system, the ideal model design 
depends on the specifics of the questions asked. Here, we highlight a 
series of models focused on one of the defining infectious agents of 
our era: HIV. The virus has challenged science, medicine and public 
health at every scale, from its deft immune evasion to its death toll 
of more than 35 million over the last four decades9. We describe how 
clinical needs, research questions and data availability have shaped 
the design of HIV models across these scales. Unless otherwise indi-
cated, the term ‘HIV’ is inclusive of both HIV-1 and HIV-2.

Within-host models. At a within-host scale (Table 1), models can be 
used to simulate cellular interactions, immunological responses and 
treatment pharmacokinetics10. In such simulations, viral dynam-
ics are often modelled using a compartmental structure, with the 
growth of one population, such as circulating virions, dependent on 
the size of another population, such as infected cells. For example, a 
seminal within-host model fit to viral load data by Perelson et al.11 
revealed high turnover rates of HIV-1, counter to what was then 
the prevailing assumption that HIV-1 remained dormant during 
the asymptomatic ‘latency’ phase. The corollary to these high rates 
of viral turnover was that drug resistance would likely evolve rap-
idly under monotherapy. Further analyses of this model indicated 
that a combination of at least three drugs was necessary to main-
tain drug sensitivity12. Once combination therapy did become avail-
able, extension of the Perelson et al. model demonstrated that the 
two-phase decline in viral load observed following treatment ini-
tiation was attributable to a reservoir of long-lived infected cells13. 
With this insight also came the realization that prolonged treatment 
would be necessary to suppress viral load. The incorporation of  
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stochasticity into this within-host framework allowed model fitting 
to ‘viral blips’—transient peaks in viral load, even under antiretrovi-
ral treatment14. Analysis of this data-driven stochastic model dem-
onstrated that homeostatic proliferation maintained the infected 
cell reservoir and produced these viral blips, a finding that was later 
confirmed experimentally15,16. The implication for clinical care was 
that intensified antiretroviral treatment would be unable to elimi-
nate the latent reservoir of infected cells as had been hypothesized, 
sparing patients from potentially fruitless trials with such regimens.

Individual-based models. Whereas the unit of interest for within-
host modelling is an infected cell, the analogous unit for individual-
based models is an infected person (Table 1)5,17,18. Individual-based 
models are often used to explore the interplay between disease 
transmission and individual-level risk factors, such as comorbidi-
ties, sexual behaviours and age. Such models are capable of incor-
porating data with individual-level granularity, including those 
regarding contact patterns, patient treatment cascades and clini-
cal outcomes. Individual-based models are uniquely suited for  

representing overlap in individual-level risk factors and translating 
the implications of this overlap for public health policy. For example, 
an individual-based model was recently used to demonstrate that 
the majority of HIV transmission among people who inject drugs 
in New York City is attributable to undiagnosed infections18. These 
modelling results underscore the urgency for the city to invest in 
more comprehensive screening and improved diagnostic practices.

Population models. Most commonly, models are created at the 
population scale, capturing the spread of a pathogen through a large 
group (Table 1). At this scale, compartmental models shift in focus 
from the pathogen to the host. Unlike individual-based models, 
compartmental models will aggregate individuals with a similar 
epidemiological status. For instance, the archetypical ‘S–I–R’ model 
separates the entire population of interest into one of three cate-
gories: S, susceptible to infection; I, infected and infectious; or R, 
recovered and protected19. In practice, most models will have addi-
tional compartments or stratification beyond this simple structure. 
Age stratification is essential when either the disease risk or the 
intervention is age-specific. As an example, an age-stratified multi-
pathogen model demonstrated that schistosomiasis prevention tar-
geted to Zimbabwean schoolchildren could cost-effectively reduce 
HIV acquisition later in life20. This framework was extended to 
additional countries with a range of age-specific disease prevalence 
and co-infection rates to assess the potential value of treating schis-
tosomiasis in adults. Although adult treatment is not usually con-
sidered efficient, the model showed that it could be cost-effective 
in settings with high HIV prevalence21. These models strengthened 
the investment case for treatment of schistosomiasis, an otherwise 
neglected tropical disease.

Network models are also deployed to represent dynamics on 
the population scale (Table 1). These models impose a structure 
on contacts between hosts, unlike compartmental models which 
assume that contacts are random among hosts within a compart-
ment. In a network model, nodes represent individuals and the 
connections between nodes represent contacts through which 
infection may spread22. Sources for network parameterization may 
include surveys, partner notification services or phylogenetic trac-
ing23,24. As with individual-based models, network models tend to 
require significant amounts of data to fully parameterize, but vari-
ous computational and statistical methods have been developed to 
analyse the impact of uncertain parameter values on model pre-
dictions25. Network models are applied to discern the influence of 
contact structure on disease transmission and on the effectiveness 
of targeted intervention strategies. For instance, network models 
predicted that HIV would spread more quickly through sexual part-
nerships that are concurrent versus serially monogamous, even if 
the total numbers of sexual acts and partners remain constant26. The 
study prompted a more rigorous engagement of epidemiologists 
with sociological data to tailor interventions for specific settings27. 
Other network models have focused on the more rapid transmission 
within clusters of high-risk individuals and slower transmission to 
lower-risk clusters, a dynamic which explains discrepancies between 
observed incidence patterns and the expected pattern based on an 
assumption of homogeneous risks28. These studies both illustrate the 
importance of accounting for network-driven dynamics when indi-
viduals are highly aggregated with regards to their risk factors, and 
when appropriate data for parameterization are available.

Metapopulation models. Metapopulation models represent dis-
ease transmission at dual scales, considering not just the interac-
tions of individuals, but also the relationships between groups of 
individuals, which are typically defined geographically (Table 1). 
Transmission intensity is often higher within groups than across 
groups, especially when the groups are spatially segregated29. One 
metapopulation model of HIV in mainland China considered 

Box 1 | Modelling infectious disease transmission for evidence-
based policy

There are the three principal objectives of modelling, all of which 
can inform public health policy.

Predicting disease spread. Models can be used to estimate 
the infectiousness of a pathogen within a given population. A 
fundamental concept is that of R0, the basic reproduction number, 
which quantifies the number of infections that would result from 
a single index case in a susceptible population. R0 governs the 
temporal trajectory of an outbreak and the scale of interventions 
required for its containment. Models may be used to infer R0 
as well as forecast changes in R0 that could drive transitions in 
epidemic dynamics, such as the shift from sporadic outbreaks to 
sustained chains of transmission. Example: assessing real-time 
Zika risk in Texas90.

Selecting among alternative control strategies. Simultaneous 
field trials of multiple infectious disease control options are 
often infeasible. Models can simulate a wide range of control 
strategies and thus optimize public health policies according to 
translational objectives and real-world constraints. Modelling 
can also extrapolate from the individual clinical outcomes of 
interventions or novel therapeutics to the population-level 
impacts. Extrapolating to the population level is essential to 
evaluate the indirect benefits of interventions, including a 
reduction in transmission, or unanticipated repercussions, such 
as evolution of resistance. Example: comparing antibiotic ‘cycling’ 
versus ‘mixing’ to minimize the evolution of antimicrobial 
resistance107.

Hypothesis testing. It is often logistically or ethically 
infeasible to empirically test scientific hypotheses in the field 
or experimentally. Modelling can identify parsimonious 
explanations of observed phenomena, including complex 
outcomes that can arise from the nonlinear processes 
common in microbiological systems. Even simple models can 
be useful to help us understand dynamics that are common 
to many microbiological systems through identification of 
basic mechanisms that apply across a range of infections. By 
examining a new infectious agent through the lens of previously 
characterized systems, models provide insight into the ways 
that a particular microbial infection might follow or break from 
typical patterns. Example: investigating whether individual 
heterogeneity within social networks significantly impacts 
disease spread22.
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transmission within and between provinces, driven by the mobil-
ity of migrant labourers30. The study suggested that HIV prevention 
resources could be most effectively targeted to provinces with the 
greatest initial incidence, as rising incidence in other provinces is 
driven more by migration from the high-burden provinces than by 
local transmission. Given that the Chinese provinces with employ-
ment opportunities for migrants are also those with the heaviest  
burden of HIV, migrant workers who acquire HIV often do so 
in the province where they work. However, government policy 
requires migrants to return to their home province for treatment. 
The movement of these workers perpetuates the disease cycle, as 
new migrants move to fill the vacated jobs and themselves become 
exposed to elevated HIV risk. These results therefore call for recon-
sideration of provincial treatment restrictions.

Multinational models. Global policies, such as the treatment 
goals set by the Joint United Nations Programme on HIV/AIDS 
(UNAIDS), have been modelled on a global scale (Table 1) by 
considering the effectiveness of the policies for each nation. For 
example, a compartmental model was used to evaluate the potential 
impact of a partially efficacious HIV vaccine on the epidemiological 
trajectories in 127 countries that together constitute over 99% of the 
global burden31. The model was tailored to each country by fitting 
to country-specific incidence trends as well as diagnosis, treatment 
and viral suppression data. This model revealed that, even with 
efficacy as low as 50%, a HIV vaccine would avert millions of new 
infections worldwide, irrespective of whether ambitious treatment 
goals are met. These results identify the synergies between vaccina-
tion and treatment-as-prevention, and provide evidence to support 
continued investment in vaccine development9,32.

From the cellular level to the population level, HIV modelling has 
led to improvements in drug formulations, clinical care and resource 
allocation. As scientific advances continue to bring pharmaceutical 
innovations, modelling will remain a useful tool for illuminating 
transmission dynamics and optimizing public health policy.

Modelling emerging and re-emerging pathogens
HIV was not controlled before it became a pandemic, but our 
response to future outbreaks has the potential to be more timely33. 
When diseases emerge in new settings, such as Ebola in West Africa 
and SARS in China, modelling can be rapidly deployed to inform 

and support response efforts (Fig. 1). Unfortunately, the urgency of 
public health decisions during such outbreaks tends to be accom-
panied by a sparsity of data with which to parameterize, calibrate 
and validate models. As detailed below, uncertainty analysis—a 
method of analysing how uncertainty in input parameters trans-
lates to uncertainty in model outcome variables—becomes all the 
more vital in these situations. Media attention regarding model pre-
dictions is often heightened during outbreaks, ironically at a time 
when modelling results are apt to be less robust than for well-char-
acterized endemic diseases. We discuss the importance of careful 
communication regarding model recommendations and associated 
uncertainty to inform the public without fuelling excessive alarm. 
Despite these challenges, and especially if these challenges can be 
navigated, the timely assessment of a wide range of intervention sce-
narios made possible by modelling would be particularly valuable 
during infectious disease emergencies.

Ebola virus outbreaks. The 2014 Ebola virus outbreak struck a 
populous region near the border of Guinea and Sierra Leone, spark-
ing a crisis in a resource-constrained area that had no prior expe-
rience with the virus. As the caseload mounted and disseminated 
geographically, it became apparent that the West African outbreak 
would be unprecedented in its devastation. Models were developed 
to estimate the potential size of the epidemic in the absence of inter-
vention, demonstrating the urgent need for expanded action by 
the international community34–36, and to calculate the scale of the 
required investment37. Initial control efforts included a militarily 
enforced quarantine of a Liberian neighbourhood in which Ebola 
was spreading. Modelling analysis in collaboration with the Liberian 
Ministry of Health demonstrated that the quarantine was ineffective 
and possibly even counterproductive38. Connecting the microbio-
logical and population scales, another modelling study integrated 
within-host viral load data over the course of Ebola infection and 
between-host transmission parameterized by contact-tracing data. 
The resulting dynamics highlighted the imperative to hospitalize 
most cases in isolation facilities within four days of symptom onset39. 
These modelling predictions were borne out of empirical observa-
tions. Early in the outbreak, when the incidence was precipitously 
growing, the average time to hospitalization in Liberia was above six 
days40. As contact tracing improved, the concomitant acceleration 
in hospitalization was found to be instrumental in turning the tide 

Table 1 | Scales of modelling for the HIV epidemic

Scale Potential data inputs Model types HIV examples

Within-host Viral dynamics; treatment dosage C, IB Refs. 11–14

Individual Access to care and treatment; co-morbidities; needle-sharing 
behaviour

IB Refs. 17,18

Population Contact matrices; sexual partnership surveys; co-infection rates C, N Refs. 20,21,26–28

Meta-population Migration patterns M Ref. 30

Global Country-specific demographics, prevalence and drivers C Ref. 31

The research question and available data inputs drive the choice of model scale and type. At each scale, one or more model types may be appropriate, including compartmental (C), individual-based (IB), 
network (N) and metapopulation (M).
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on the outbreak40. In another approach, phylogenetic analysis and 
transmission modelling were combined to estimate underreporting 
rates and social clustering of transmission41. This study informed 
public health authorities regarding the optimal scope and targeting 
of their efforts, which were central to stemming the epidemic.

Although data can be scarce for emerging pathogens, modellers 
can exploit similarities with better-characterized disease systems to 
investigate the potential efficiency of different interventions (Box 1). 
As vaccine candidates became available against Ebola, ring vaccina-
tion was proposed based on the success of the strategy in eliminat-
ing smallpox42, another microorganism whose transmission required 
close contact between individuals and for which peak infectiousness 
occurs after the appearance of symptoms. Compartmental models had 
suggested parameter combinations for which ring vaccination would 
be superior to mass vaccination43, and methodological advances sub-
sequently allowed for explicit incorporation of contact network data44. 
Modelling based on social and healthcare contact networks specific to 
West Africa supported implementation of ring vaccination45, and the 
approach was adopted for the clinical trial of the vaccine46.

In 2018, two independent outbreaks of Ebola erupted in the 
Democratic Republic of the Congo. During the initial outbreak 
in Équateur province, modellers combined case reports with time 
series from previous outbreaks to generate projections of final epi-
demic size that could inform preparedness planning and allocation 
of resources47. Ring vaccination was again deployed, this time within 
two weeks of detecting the outbreak. A spatial model quantified 
the impact of vaccine on both the ultimate burden and geographic 
spread of Ebola, highlighting how even one week of additional delay 
would have substantially reduced the ability of vaccination to con-
tain this outbreak48. The second outbreak was reported in August in 
the North Kivu province. Armed conflict in this region has inter-
fered with the ability of healthcare workers to conduct the neces-
sary contact tracing, vaccination and treatment. As conditions make 
routine data collection difficult and even dangerous, modelling has 
the potential to provide crucial insights into the otherwise unob-
servable characteristics of this outbreak.

Pandemic influenza. In contrast to the unexpected emergence of 
Ebola in a new setting, the influenza virus has repeatedly demon-
strated its ability to cause pandemics. A pandemic is an event in 
which a pathogen creates epidemics across the entire globe. The 
1918 pandemic killed an estimated 50 million people worldwide49, 
exceeding the combined military and civilian casualties of World 

War 1. While the 2% case-fatality rate of the 1918 strain was approx-
imately 40 times higher than is typical for influenza50, pathogenic 
strains with case-fatality rates exceeding 50% periodically emerge51. 
Modelling has illustrated how repeated zoonotic introductions 
impose selection for elevated human-to-human transmissibility, 
which thereby exacerbates the threat of a devastating influenza 
pandemic52. Such threats underscore the importance of surveillance 
systems and preparedness plans, which can be informed by model-
ling (Box 1). Transmission models are able to optimize surveillance 
systems, accelerate outbreak detection and improve forecasting53–56. 
For example, a spatial model integrating a variety of surveillance 
data streams and embedded in a user-friendly platform is currently 
implemented by the Texas Department of State Health Services to 
generate real-time influenza forecasts (http://flu.tacc.utexas.edu/). 
Modelling has also motivated the development of dynamic pre-
paredness plans, which adapt in response to the unfolding events 
of a pandemic, as models identified that adaptive efforts would be 
more likely to contain an influenza pandemic than static policies 
chosen a  priori57. Other pandemic influenza analyses used age-
structured compartmental models to study the trade-off between 
targeting influenza vaccination to groups that transmit many infec-
tions but experience relatively low health burdens (for example, 
schoolchildren) versus groups that transmit fewer infections but 
experience greater health burdens (for example, the elderly)58. Such 
examples illustrate the insights that modelling has provided to the 
decision makers charged with maintaining readiness against simul-
taneously rare but catastrophic situations.

Vaccine hesitancy. Modelling has also examined the impact of 
human behaviour, including vaccination decisions and social inter-
actions, on the course of an epidemic. Public health interventions are 
not always sufficient to ensure disease control, as behavioural fac-
tors can thwart progress59–62. For example, reports in 1974 of poten-
tial neurological side effects from the whole-cell pertussis vaccine 
led to a steep decline in vaccine uptake throughout the UK, followed 
by a slow recovery (Fig. 2a)63. Vaccine uptake ebbed and flowed over 
the next two decades, with higher rates of vaccination in the wake 
of large pertussis outbreaks (Fig. 2b)61,63. Compartmental models 
analysing the interplay between vaccine uptake and disease dynam-
ics confirmed the hypothesis that increases in vaccination were a 
response to the pertussis infection risk61, and showed that incorpo-
rating this interplay can improve epidemiological forecasts. Network 
models extending these coupled disease–behaviour analyses  
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Fig. 1 | Data-driven model prediction to evaluate the impact of manipulatable policy variables. a, Data from a variety of sources, including surveillance 
reports, experiments and epidemiological studies, can inform model parameters. b, Rather than extracting single point estimates, modellers can use data 
more powerfully by constructing data-driven distributions for parameters from which values are sampled for each simulation. c, Every simulation yields a 
projection, such that multiple runs based on drawing probabilistically from empirical distributions generate a probabilistic distribution of projections. Types 
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only model projections of policy outcomes, but also quantification of confidence in the projections. e, As policies are adopted and the microbiological 
system is influenced accordingly, the model can be iteratively updated to reflect the shifting status quo, thereby progressively optimizing policies within an 
evolving system.
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have illustrated how the perceived risk of vaccination can have 
greater influence on vaccine uptake than disease incidence64.

More recently, vaccine refusal has led to the resurgence of mea-
sles in the USA62,65. Researchers are turning to social media to gather 
information about attitudes toward vaccines and infectious diseases, 
and to glean clues about vaccinating behaviour55,66,67. For instance, 
signals that vaccine refusal is compromising elimination can be 
detected months or years in advance of disease resurgence by apply-
ing mathematical analysis of tipping points to social media data that 
have been classified on the basis of sentiment using machine learn-
ing algorithms66. These and other data science techniques might 
help public health authorities identify the specific communities that 
are at increased risk of future outbreaks. On shorter timescales, the 
near-instantaneous availability of social media data facilitates its 
integration into models developed for outbreak response55,66. Other 
behavioural factors that have been incorporated into transmission 
models include attendance at social gatherings, sexual behaviour 
and commuting patterns—elements which are also often affected 
by perceived infection risk59,68,69.

Antimicrobial resistance. A substantial portion of the increase in 
human lifespan over the last century is attributable to antibiotics70, 
but the emergence of pathogen strains that are resistant to anti-
microbials threatens to reverse these gains. The extensive use and 
misuse of antibiotics has led to the evolution of multidrug-resistant, 
extensively drug-resistant and even pan-drug-resistant pathogens 
across the globe. Precariously, this evolution outpaces the develop-
ment of new antibiotics.

Mathematical modelling is being used to identify strategies to 
forestall the emergence and re-emergence of antimicrobial resis-
tance71,72. Models are particularly valuable for comparing alternative 
strategies, such as administration of different antibiotics within the 
same hospital ward, temporal cycling of antibiotics and combina-
tion therapy73–76. High-performance computing now permits the 
rapid exploration of multidimensional parameter space. Models can 
thereby narrow an array of possible interventions down to a subset 
likely to have the highest impact or optimize between trade-offs, 
such as effectiveness and cost (Box 1). By contrast, expense, feasi-
bility and ethical considerations may impose more limitations on 
in  vivo investigations (Box 1). Not only can models identify the 
optimal strategy for a given parameter set, but they can generate the 
probability that this intervention remains optimal across variation 
in the parameters. For example, an optimization routine combined 
with simulation of hospital-based interventions identified combi-
nation therapy as most likely to reduce antibiotic resistance75. As 
a complementary approach, modelling can incorporate economic 
considerations into these evaluations. A stochastic compartmental 
model showed that infection control specialists dedicated to pro-
moting hand hygiene in hospitals are cost-effective for limiting the 
spread of antibiotic resistance74.

Although most models of antibiotic resistance have focused on 
transmission in healthcare settings, the importance of antibiotic resis-
tance in natural, agricultural and urban settings has been increasingly 
recognized77–83. For example, a metapopulation model of antimicro-
bial-resistant Clostridium difficile simulated its transmission within 
and between hospitals, long-term care facilities and the community. 
This model demonstrated that mitigating risk in the community has 
the potential to substantially avert hospital-onset cases by decreasing 
the number of patients with colonization at admission and thereby 
the transmission within hospitals84. This study illustrates how models 
can consider the entire ecosystem of infection to elucidate dynamics 
that might not be captured through focus on a single setting.

Sensitivity and uncertainty analysis
During the initial phase of an outbreak, the predictive power of 
models is often constrained by data scarcity. This challenge is  

exacerbated for outbreaks of novel emerging diseases given that our 
understanding of the disease will rely on the unfolding epidemic 
(Fig. 1). Not only can the absence of data constrain model design, 
but sparse data requires extensive sensitivity analyses to evaluate the 
robustness of conclusions. Univariate sensitivity analyses, in which 
individual parameters are varied incrementally above and below 
a point estimate, can identify which parameters most influence 
model output (Box 1). Such comparisons reveal both salient gaps in 
knowledge and targets for preventing and mitigating the outbreak  
(Box 1)85. As an outbreak progresses, each day has the potential to 
provide more information about the new disease, including its dura-
tion of latency, the symptomatic period, infectiousness, transmis-
sion modalities, underreporting and the case-fatality rate. However, 
collecting detailed data to inform each of these parameters can 
strain resources when they are thinly spread during an emergency 
response. Sensitivity analysis can support clinicians and epidemi-
ologists in prioritizing data collection efforts86.

Parameterization challenges are compounded for complicated 
disease systems, such as vector-borne diseases. For example, models 
of Zika virus infection span both species and scales, as the disease 
trajectory is influenced by factors ranging from mosquito seasonality 
and mosquito abundance down to viral and immunological dynam-
ics within human and mosquito hosts87,88. Adding to this complexity, 
the ecological parameters vary seasonally and geographically—het-
erogeneities that may be amplified by socioeconomic factors modu-
lating human exposure to infected mosquitoes89. In the absence of 
the high-resolution data that would be ideal to tailor a mosquito-
driven disease system to a given setting, uncertainty analysis can 
unify parameterization from disparate data sources. In contrast 
to univariate sensitivity analyses, uncertainty analysis simultane-
ously samples from empirical- or expert-informed distributions 
for many or all input parameters. Collaboration between modellers 
and disease experts is thus instrumental to ensuring the biological 
plausibility of these parameter distributions90,91. The uncertainty 
analysis produces both a central point estimate and a range for each 
outcome, a combination which can inform stakeholders about the 
best-case and worst-case scenarios as well as the likelihood that an 
intervention will be successful92–94.

Pitfalls and how to avoid them
In constructing models and communicating results, there are  
common pitfalls which can compromise the rigor and impact of  
the research.

A pervasive pitfall is the incorporation of excessive model com-
plexity, particularly through inclusion of more parameters than 
can be reliably parameterized from data. Intuition might suggest  
that a complex representation of a microbiological system would 
more closely represent reality. However, the predictive power of 
a model can be degraded if incorporating additional parameters  
only marginally improves the fit to data. This tendency results in 
complicated transmission models that overfit data in much the 
same way that complicated statistical regressions can overfit data, 
replicating not only the relevant trends but also the noise in a par-
ticular data set. These overfit models thus become less useful for 
prediction and generalization6,95.

To guide appropriate model complexity and parameteriza-
tion, modellers have used the mathematical theory of information 
to develop criteria which quantify the balance between realism  
and simplicity. Such criteria penalize additional parameters but 
reward substantial improvements in fit, thereby identifying the 
simplest model that can adequately fit the data61,96,97. These meth-
ods can be applied to select among models or alternatively to calcu-
late weighted average predictions across models. In a similar vein,  
modelling consortiums serve to address uncertainty surround-
ing model design98–100. In a consortium, several modelling groups 
develop their models independently, each applying their particular 
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expertise and perspective. For example, consortia of malaria mod-
ellers were convened to predict the effectiveness of interventions, 
including a vaccine candidate101 and mass drug administration102. 
Congruence of output among models engenders confidence that 
model results are robust.

Another pitfall concerns the quality of data used to inform the 
model. Incompleteness of data has been an issue since 1766, when 
Daniel Bernoulli published a compartmental model of smallpox 
and acknowledged that more extended analyses would have been 
possible if the data had been age-stratified103. Even today, using data 
to develop models without knowledge of how the data were col-
lected or the limitations of the data can be risky. Data collected for 
an alternative purpose can contain gaps or biases that are acceptable 
for the original research question, yet lead to incorrect conclusions 
when incorporated for another purpose in a specific model. In ideal 
circumstances, modellers would be involved in the design of the 
original study, ensuring both seamless integration of the results into 
the model and awareness on the part of the modeller with regard to 

data limitations. Failing that, it is very helpful for modellers to col-
laborate with scientists familiar with the details of empirical studies 
on which their results might depend.

This lack of familiarity with the biases or incompleteness of data 
sources may be particularly dangerous in the era of digital data. ‘Big 
data hubris’ can blind researchers to the limitations of the dataset, 
such as being a large but unrepresentative sample of the general 
population, or the alteration of search engine algorithms partway 
through the data collection process6. Some of these limitations can 
be addressed by using digital data as a complement to traditional 
data sources. In this way, the weakness of one data source (for exam-
ple, low sample size of traditional surveys or bias in large digital 
data) can be compensated by the strengths of another data source 
(for example, balanced representation in small survey versus large 
scale of digital data).

A final pitfall that often arises in the midst of an ongoing out-
break concerns the interpretation of epidemic projections. Initial 
models may assume an absence of intervention as a way to assess the 
potential consequences of inaction. Such projections may contrib-
ute to the mobilization of government resources towards control, as 
was the case during the West African Ebola outbreak35,37,38. In this 
respect, the projections are intended to make themselves obsolete104. 
In retrospect and without knowledge of the initial purpose of the 
model, it may appear that the initial predictions were excessively 
pessimistic105. Additionally, people living in outbreak zones often 
change their behaviour to reduce infection risks, thereby mitigating 
disease spread through, for example, reducing social interactions 
or increasing vaccine uptake (Fig. 2)59,61,66. Thus, risk assessment 
constitutes a ‘moving target’105. For example, input parameters 
estimated from contact tracing early in an outbreak could require 
adjustments to reflect these behaviour changes and accurately pre-
dict subsequent dynamics106.

The need for proficient communication skills is heightened dur-
ing an outbreak. This concern is particularly relevant when pre-
senting sensitivity and uncertainty analyses. Although predictions 
at the extreme of sensitivity analyses also tend to be less probable 
than mid-range projections, there can be a temptation to focus on 
the most sensational model scenarios. Ensuing public pressure on 
the basis of misunderstood findings can cause unwarranted alarm 
and trigger counterproductive political decisions. In both publica-
tions and media interactions, underscoring the improbability of 
extreme scenarios explored during sensitivity analysis, as well as 
how improved interventions turn a predictive model into a counter-
factual one, may pre-empt this pitfall33.

Conclusion
The role for modelling in supporting epidemiologists, public health 
officials and microbiologists has progressively expanded since the 
foundational publications forty years ago, in concert with the grow-
ing abundance and granularity of data as well as the refinement 
of quantitative approaches. Models have now been developed for 
virtually every human infectious disease, as well as in many that 
affect animals and plants, and have been applied across the globe. 
Interdisciplinary collaboration among empiricists, policymakers 
and modellers facilitates the development of scientifically grounded 
models for specific settings and generates results that will be action-
able in the real world. Reciprocally, modelling results may guide the 
design of experiments and field studies by revealing key gaps in our 
understanding of microbiological systems. Furthermore, modelling 
is a feasible and cost-effective approach for identifying impactful 
policies prior to implementation decisions. Through all these ave-
nues, epidemiological modelling galvanizes evidence-based action 
to alleviate disease burden and improve global health.
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Fig. 2 | Behavioural changes drive outbreak patterns and also respond to 
them. a, Pertussis case notifications, pertussis deaths and the percentage 
of children completing the full course of vaccines by their second birthday 
in England and Wales, 1968–2000. A case series describing children with 
suspected neurological damage from the whole-cell pertussis vaccine was 
published in 1974 and received widespread media attention. Subsequently, 
the National Childhood Encephalopathy Study published in 1981 clarified 
the risks, which motivated public health efforts to boost vaccine uptake. 
The whole-cell pertussis vaccine was replaced with an acellular formulation 
in 1996. b, Pertussis case notifications and percentage change in  
vaccine uptake in successive years during the recovery phase, 1977–1994. 
Vaccine uptake appears to be entrained by surges in infection incidence. 
Mathematical models can capture the interplay between natural and 
human dynamics exemplified in this dataset and a wide variety of  
other study systems.
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