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ABSTRACT
BACKGROUND: Studies of white matter microstructure in depression typically show alterations in individuals with
depression, but they are frequently limited by small sample sizes and the absence of longitudinal measures of
depressive symptoms. Depressive symptoms are dynamic, however, and understanding the neurobiology of different
trajectories could have important clinical implications.
METHODS: We examined associations between current and longitudinal measures of depressive symptoms and
white matter microstructure (fractional anisotropy and mean diffusivity [MD]) in the UK Biobank Imaging Study.
Depressive symptoms were assessed on two to four occasions over 5.9 to 10.7 years (n = 18,959 individuals on at
least two occasions, n = 4444 on four occasions), from which we derived four measures of depressive symptom-
atology: cross-sectional measure at the time of scan and three longitudinal measures, namely trajectory and mean
and intrasubject variance over time.
RESULTS: Decreased white matter microstructure in the anterior thalamic radiation demonstrated significant asso-
ciations across all four measures of depressive symptoms (MD: bs = .020–.029, pcorr , .030). The greatest effect sizes
were seen between white matter microstructure and longitudinal progression (MD: bs = .030–.040, pcorr , .049).
Cross-sectional symptom severity was particularly associated with decreased white matter integrity in association
fibers and thalamic radiations (MD: bs = .015–.039, pcorr , .041). Greater mean and within-subject variance
were mainly associated with decreased white matter microstructure within projection fibers (MD: bs = .019–.029,
pcorr , .044).
CONCLUSIONS: These findings indicate shared and differential neurobiological associations with severity, course,
and intrasubject variability of depressive symptoms. This enriches our understanding of the neurobiology underlying
dynamic features of the disorder.
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Major depressive disorder (MDD) is a disabling disorder with a
heritability of approximately 37% (1,2) and 16% lifetime risk (3).
It is a heterogeneous illness (4,5), often studied in modest
sample sizes (6). These limitations have led to inconsistent
findings (7) and to an uncertain relationship between quanti-
tative measures of depressive symptoms and associated
neurobiology.

A possible contributor to heterogeneous imaging findings in
MDD is the longitudinal variability of depressive symptoms (8).
This dynamic property is rarely captured by most imaging in-
vestigations, but it potentially has important implications in
terms of both understanding disease heterogeneity and having
clinical relevance (9–11). Comparing the neurobiological as-
sociations of current and longitudinal depressive symptoms is
important for identifying causal mechanisms underlying
depressive symptoms as well as identifying predictors of
SEE COMMENTARY

ª 2019 Society of Biological Psychiatry. Publi

N: 0006-3223 Biologic
symptom onset, variability, and progression over time. Brain
structural measures have previously been found to be asso-
ciated with stable depressive conditions over time such as
self-declared lifetime depression (12–14). Studies on symp-
tomatic changes, however, have also suggested that brain
structural measures, such as cortical thickness and volume,
can vary along with the fluctuations of current symptoms (15).

However, identifying the neural associations of dynamic
longitudinal features of depressive symptoms within a single
well-powered imaging study has to date been challenging
owing to a lack of suitable data. To identify imaging correlates
of depressive symptoms, a large imaging sample with
repeated and consistently assessed measures of depressive
symptoms is required. Such studies are resource intensive,
take many years to complete, and rarely provide the data
required in sufficient numbers of participants. The UK Biobank
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Imaging Study (https://imaging.ukbiobank.ac.uk/), however, is
a rare exception and is by far the largest neuroimaging cohort
with longitudinal depressive symptom data to date.

In the UK Biobank Imaging Study, depressive symptoms
were assessed on up to 4 separate occasions across a time
span of 5.89 to 10.69 years. One depressive symptom
assessment was conducted at the same occasion as the
magnetic resonance imaging evaluation. Based on all available
measurements, we generated 4 measures of depressive
symptoms under 2 categories. The first category contained a
cross-sectional assessment of depressive symptom severity at
the same time as the imaging assessment, representing the
current levels of symptoms of depression. The second cate-
gory contains 3 measures derived from multiple assessments.
These longitudinal measures are the longitudinal slope of
depressive symptoms within an individual over time up until
the imaging assessment (this was used as a proxy for
assessing the longitudinal course of depressive symptoms
over time), the mean level of depressive symptoms averaged
over all measures, and the standard deviation of depressive
symptoms as a measure of within-participant variability over
time.

In the current study, we first investigated the associations
between these measures of depressive symptoms and white
matter microstructure because of the growing evidence of an
association between mood disorders and reductions of white
matter microstructure in the limbic system, especially in the
thalamic radiations (16,17). These networks contain important
tracts involved in emotional processing (18) and regulation (19).
Lower microstructural integrity in these regions are typically
associated with the onset and severity of MDD (20). In the
current study, 19,345 people with diffusion tensor imaging
(DTI) data were included to test the association between white
matter microstructure and the cross-sectional and longitudinal
measures of depressive symptoms (21). Second, to explore
potential differential contributions, we used stepwise regres-
sion models to test which brain regions in particular were
associated with the cross-sectional measure of current
symptoms, over and above those associated with longitudinal
measures, and conversely which ones were particularly sen-
sitive to longitudinal measures, over and above those associ-
ated with current symptoms from the cross-sectional
measures. Finally, because these dynamic features may reflect
differential clinical and behavioral profiles, we also tested
correlations between the above cross-sectional and longitu-
dinal measures themselves and their associations with 12
potentially MDD-relevant behavioral, demographic, and
cognitive measures.

METHODS AND MATERIALS

Participants

UK Biobank initially recruited 500,000 people across the United
Kingdom (22) and has had an ongoing program of repeated
behavioral assessments that were first conducted at baseline. In
addition,UKBiobankhasbegunabrain imaging studyof 100,000
individuals (21). For the current analyses, themost recent release
of imaging data was used (October 2018). This sample included
data from 19,345 individuals after preprocessing and initial
qualitycontrol conductedby theUKBiobank team (23). Themean
760 Biological Psychiatry November 15, 2019; 86:759–768 www.sobp.
ageofparticipantswas63.06 years (SD=7.44), and47.14%were
men. We then conducted further data quality control of the
remaining participants by removing outliers (16,17). Finally, the
imaging data were merged with other relevant behavioral vari-
ables (Supplemental Figure S1).

UK Biobank data acquisition was approved by the research
ethics committee (reference 11/NW/0382). The analysis and
data acquisition for the current study were conducted under
application 4844. Written consent was obtained for all
participants.

Depressive Symptoms

Depressive symptoms were measured by a 4-item Patient
Health Questionnaire-4 (PHQ-4) (24). The PHQ-4 has an area
under the curve of 0.79 for its correlation with depression
diagnosis (25). In other work, this measure was significantly
associated with measures of disability (26) as well as risk
factors for depression (24,27) (see http://biobank.ctsu.ox.ac.
uk/crystal/label.cgi?id=100060 and Supplemental Methods).

The PHQ-4 was assessed repeatedly up to 4 times. Time
points included 1) the first assessment visit (2006–2010, n =
19,231), 2) a repeat visit on a subsample (2012–2013, n =
4535), 3) the imaging visit (2014–2017, n = 19,113), and finally
4) the online follow-up (2015–2018, n = 14,155) (http://biobank.
ctsu.ox.ac.uk/crystal/label.cgi?id=100060).

Based on the repeated PHQ-4 measures, we generated 4
measures of depressive symptoms (Figure 1, Supplemental
Figure S1, and Supplemental Table S1), with n included in
the analyses reported in parentheses (for fractional anisotropy
[FA] and mean diffusivity [MD]). One measure was a single
PHQ-4 score measure acquired at the time of imaging
assessment, representing the current depressive symptoms
(nFA = 18,941, nMD = 18,897). Three other measures were
generated based on multiple assessments, including 1) the
estimated longitudinal slope of depressive symptoms from the
initial recruitment up until the imaging assessment, using a
linear growth curve model, with positive values indicating a
relative increased (i.e., worsening) progression over time and
negative values indicating a relative decrease of depressive
symptoms (i.e., improvement) over time (nFA = 4444, nMD =
4436); 2) the mean (nFA = 18,951, nMD = 18,906); and 3) vari-
ability of depressive symptoms across all available assess-
ments (nFA = 14,739, nMD = 14,708), where mean depression
level was the PHQ-4 average over 2 or more time points and
variability of depressive symptoms was the standard deviation
of PHQ-4 scores over a minimum of 3 time points. Details of
the growth curve model estimation are provided in the
Supplemental Methods and Figure 2.

Imaging Data

We used the quality-controlled imaging-derived phenotypes
from the DTI assessments released by the UK Biobank Imag-
ing Study. Details of the dataset can be found in the protocol
documentation (https://biobank.ctsu.ox.ac.uk/crystal/docs/
brain_mri.pdf) and in 2 published protocol articles (21,23).
Major processing steps are described here in brief.

Two DTI microstructure measures were estimated after pre-
processing (28,29). FA and MD were generated using DTIFIT (30).
A probabilistic tractography-based method using the AutoPtx
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Figure 1. The measures for depressive symptoms
generated for this study. The x-axis represents each
instance (0 = baseline, 1 = first repeated assessment,
2 = imaging assessment, and 3 = online follow-up,
consistent with the coding for instances in UK Bio-
bank [http://biobank.ctsu.ox.ac.uk/showcase/
instance.cgi?id=2]). There were 4 measures gener-
ated: 1) cross-sectional measurement for depressive
symptoms acquired with imaging assessment, 2)
linear growth curve denoting longitudinal trajectory
of depressive symptoms derived from 3 time points
up until the imaging assessment, 3) mean of
depressive symptoms generated based on at least 2
multiple assessments, and 4) variability of depressive
symptoms, which was the SD of at least 3 time
points. FA, fractional anisotropy; MD, mean diffu-
sivity; PHQ4, Patient Health Questionnaire-4.

White Matter Microstructure and Depressive Symptoms

Biological
Psychiatry:
Celebrating
50 Years
package from FSL was used to map 27 major tracts over the
whole brain (21). The processed tracts included 12 bilateral and 3
unilateral tracts (Supplemental Figure S2 and Supplemental
Methods). Masks of tracts derived from FA data were used to
Figure 2. Distributions of Patient Health Questionnaire-4 (PHQ) and derived m
assessment for PHQ. Instance = 2 was for imaging assessment, and the depressiv
for depressive symptoms. The mean depressive level over a minimum of 2 time p
plot for instability of depressive symptoms (Depre.variability). (C) Density plot for t
4 instances (Depre.longitudinal). The density plots were made using the geom_d
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locate the tracts on MD. Weighted means of DTI measures for
each tract were generated.

Three newly developed neurite orientation dispersion and
density imaging measures were also generated using the
easures for depressive symptoms. (A) Density plot for all 4 time points of
e level acquired from this instance was used as a baseline one-time measure
oints of assessment (Depre.mean) is also presented in this panel. (B) Density
he distribution of slope for the longitudinal trajectory of depressive level over
ensity function in ggplot2 with a smoothness adjustment of 2.
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AMICO tool as supplementary measures to the classic DTI
measures (31). These measures depict additional sources of
variation such as neurite density, extracellular water pro-
portion, and morphology of tract organization. For
brevity these findings are not presented in the current
article, but for completeness they are detailed in
Supplemental Figure S3.

MDD-Related Behavioral Data

We also examined the association of each depressive symp-
tom measure with an additional 12 potentially relevant
behavioral, demographic, and cognitive measures that have
been found to be associated with MDD or depressive symp-
toms in previous studies (32–34).

The 12 measures included neuroticism, self-declared age of
onset for depression, sociodemographic variables (household
income, educational attainment, and Townsend index), lifestyle
measures (insomnia and smoking status), and physical mea-
sures (body mass index and hand grip strength). Finally, we
also examined the association of each symptomatic variable
with measures of recent pain and general cognitive functions (a
general g factor generated by the first unrotated principal
component of several cognitive tasks). More details are pro-
vided in Supplemental Methods.

Statistical Methods

Associations Between Measures of Depressive
Symptoms and White Matter Microstructure. Before
analysis was performed, outliers were removed (16). This was
achieved by performing a separate principal component
analysis for each DTI measure on the overall sample of 19,345;
those whose scores for the first principal component were
outside of63 SDs from mean were removed (16). This resulted
in a maximum of 19,262 participants remaining (see
Supplemental Figure S1) for further analysis.

We tested associations between each measure of depres-
sive symptoms and the white matter microstructure measures
with increasing level of regional detail: first using whole brain
metrics, then using 3 tract subsets (using the categories as-
sociation/commissural fibers, thalamic radiations, and projec-
tion fibers) (see Supplemental Figure S1) (16), and finally
examining individual tracts separately. Indices for the whole
brain and tract subsets were derived as before from the score of
the first unrotated principal component for each microstructural
metric (16). These are denoted as general variance over all
tracts (gTotal), general variance for tract subset of association/
commissural fibers (gAF), general variance for thalamic radia-
tion (gTR), and general variance for projection fibers (gPF)
(Supplemental Figure S4 and Supplemental Table S2).

The glm function in R was used to test for associations
between each symptomatic measure and each unilateral
tract. We used the R package lme for the analysis of bilateral
tracts [where hemisphere was controlled and each tract was
modeled as a repeated measure (35)]. Age, age squared,
sex, head position in the scanner (on x-, y-, and z-axes), and
magnetic resonance imaging site were set as covariates.
Other covariates included smoking status and alcohol con-
sumption before the time of imaging assessment to control
for depression-related behavioral patterns that may
762 Biological Psychiatry November 15, 2019; 86:759–768 www.sobp.
influence brain structure. We also adjusted for recent
stressful life events within 2 years before the imaging
assessment in order to have more accurate estimations of
the associations related to inherent mood variability. Each of
the covariates is described in the Supplement. For
completeness, we also report results that did not control for
smoking status, alcohol consumption, or stressful life events
in Supplemental Figure S5.

Identifying the Separate White Matter Associations
of Trait and State Measures of Depressive Symp-
toms. Cross-sectional measures of symptom severity, as an
index of current state, and the longitudinal mean and vari-
ability, as indices of the trait, may be expected to be correlated
but also potentially distinctive. Therefore, we investigated
which regions were more specifically associated with current
state by evaluating white matter associations with depressive
symptom severity measured at the time of the imaging
assessment while adjusting for the longitudinal mean and
variability symptom estimates. We also explored the reverse,
testing which regions were associated with longitudinal trait
features (mean and variability) over and above the single cross-
sectional measure of current symptoms obtained at the time of
the imaging assessment.

We utilized a stepwise regression method, using the anal-
ysis of variance function in R. This tested whether the added
independent variables significantly contributed to a reduction
in the residual term of the model. First, we undertook a com-
parison of models to determine the unique contribution of
cross-sectional symptom severity associations with imaging
measures. Here we define the null hypothesis (H0) and alter-
native hypotheses (H1) models:

H0 model: imaging variables

w covariates 1mean 1 variability
H1 model: imaging variables

w covariates 1mean 1 variability 1 cross-sectional

By comparing the H0 and H1 models, a significant reduction of
residual in the H1 model compared with the H0 model would
indicate an identifiable contribution of the cross-sectional
symptoms measure to the model and, therefore, a state-
specific association between depressive symptoms and
white matter microstructure.

Similarly, to test which imaging variables the longitudinal
measures contribute significantly over and above the cross-
sectional measures, the H0 and H1 models were defined as
follows:

H0 model: imaging variables

w covariates 1 cross-sectional
H1 model: imaging variables

w covariates 1 cross-sectional 1 mean 1 variability

Associations Between Measures of Depressive
Symptoms and Behavioral Variables. We first analyzed
the correlations within the 4 measures of depressive
org/journal
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symptoms themselves, and then conducted analysis on the
associations between these measures and other behavioral
variables. For the associations between measures of depres-
sive symptoms and behavioral variables, they were tested
while controlling for age, age squared, sex, and magnetic
resonance imaging site using the glm function in R (version
3.2.3). The p values were false discovery rate corrected using
the p.adjust function (q value , .05) applied for 4 (symptom
measures) 3 12 (behavioral variables) = 48 tests. All effect
sizes throughout are standardized. For the logistic regressions,
the effect sizes are reported as log-transformed odds ratios.

RESULTS

Associations Between Measures of Depressive
Symptoms and White Matter Microstructure

The anterior thalamic radiation was the only structure that was
significantly associated with all 4 measures of depressive
symptoms (bs = .028–.030, pcorr , .049) (see Figure 3 and
Supplemental Table S3). The largest effect sizes for the white
matter associations, however, were shown with measures
Figure 3. Associations between cross-sectional depressive symptoms and d
regions (brain map). For the heatmap, color depth represents the standard effect s
with mean diffusivity (MD) here in this figure, the effect sizes for FA are reversed (3
the results for g measures, and the lower sections show the results for individua
shown, checks are divided into 3 categories by dashed lines because the trac
projection fibers (see Methods and Materials). Significant associations after false
brain map, significant tracts are shown in red for the ones associated with cross-s
if associated with the mean, and light green if associated with variability. gTota
association/commissural fibers; gTR, general variance for thalamic radiation; gP
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longitudinal trajectory (bs = .030–.040 for significant associa-
tions, pcorr , .049). Cross-sectional, mean, and variability of
depressive symptoms generally had lower effect sizes than the
longitudinal slope associations (bs = .015–.029 for significant
associations, pcorr , .044). The main results for each of the 4
measures of depressive symptoms are described in detail
below. Results without controlling for smoking status, alcohol
consumption, and stressful life events demonstrated similar
patterns of results to the main findings controlling for these
factors (see Supplement).

Cross-sectional Measure of Depressive Symptoms

Higher general MD in all tract categories, including gTotal,
gAF, gTR, and gPF, were positively associated with cross-
sectional depressive symptoms (bs = .019–.024, pscorr =
.009–.002).

MD in a total of 10 individual tracts was found to be
associated with cross-sectional measures of depressive
symptoms. Higher cross-sectional symptom severity was
positively associated with higher MD in the acoustic radiation,
anterior thalamic radiation, inferior longitudinal fasciculus,
iffusion magnetic resonance imaging (heatmap) and the map for significant
ize of a measure. Because fractional anisotropy (FA) has a negative direction
21). The results are separated into two sections. The upper sections show

l tracts. To aid comprehension, in the lower part where results of tracts are
ts are in different subsets (i.e., association fibers, thalamic radiations, and
discovery rate correction (pcorr , .05) are marked with an asterisk. For the

ectional measure, yellow for the ones associated with longitudinal slope, blue
l, general variance over all tracts; gAF, general variance for tract subset of
F, general variance for projection fibers.
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inferior fronto-occipital fasciculus, uncinate fasciculus, su-
perior thalamic radiation, corticospinal tract, superior
longitudinal fasciculus, cingulate gyrus part of cingulum,
and middle cerebellar peduncle (bs = .015–.028, pscorr =
.041–1.47 3 1024).

For FA, no significant associations were found for the global
measures (whole brain and tract categories) to be associated
with the cross-sectional symptom severity (pcorr . .051). For
the individual tracts, only FA in posterior thalamic radiation was
associated with higher cross-sectional measure (b = 2.024,
pcorr = .011).

Longitudinal Measures of Depressive Symptoms:
Longitudinal Slope, Mean, and Variability

Greater longitudinal worsening of symptoms was positively
associated with gTotal, gAF, and gTR for MD (bs = .031–.040,
pscorr = .025–.009).

Both higher mean and greater variability of depressive
symptoms were found to be positively associated with higher
MD in gPF (mean: b = .020, pcorr = .009; variability: b = .029,
pcorr = .002). Additional associations with the mean level of
depressive symptoms were seen in global MD (b = .018, pcorr =
.013) and MD in the subset of gTR (b = .018, pcorr = .009).

Tract-specific analysis showed that greater longitudinal in-
crease of depressive symptoms was positively associated with
higher MD in the anterior thalamic radiation, corticospinal tract,
inferior fronto-occipital fasciculus, inferior longitudinal fascic-
ulus, superior thalamic radiation, uncinate fasciculus, and for-
ceps minor (bs = .030–.038, pscorr = .049–.030).

For mean and variability measures, MD in individual tracts
that was positively associated with both higher mean and
variability of depressive symptoms was seen in the anterior
thalamic radiation (mean: b = .029, pcorr = 1.47 3 1024; vari-
ability: b = .020, pcorr = .030) and middle cerebellar peduncle
(mean: b = .019, pcorr = .038; variability: b = .029, pcorr = .008).
Additional associations that were found for the mean of
depressive symptoms were shown for higher MD in superior
longitudinal fasciculus, uncinate fasciculus, and superior
thalamic radiation (bs = .015–.017, pscorr = .044–.038).

FA in gTR was negatively associated with mean level and
within-participant variability of depressive symptoms over time
(bs = 2.021 and 2.022, pscorr = .045 and .045, respectively).
For individual tracts, the only association was found between
FA in posterior thalamic radiation and mean depressive
symptoms (b = 2.029, pcorr = 7.85 3 1024). No significant
association between tract-specific FA variation and longitudi-
nal slope or variability of depressive symptoms was found
(pcorr . .055).

Assessing the Associations of Current Symptoms
After Adjustment for Longitudinal Measures and
Vice Versa

As shown in Figure 4 (also in Supplemental Tables S4 and S5),
a significant additional contribution of the cross-sectional
symptom measure, over and above the longitudinal mea-
sures, was found for MD in gTotal, gAF, and gTR (Fs1,14686 for
H0–H1 model comparison = 5.75–8.66, ps = .017–.003).
Additional contribution by the cross-sectional symptom mea-
sure was also shown for individual tracts including the superior
764 Biological Psychiatry November 15, 2019; 86:759–768 www.sobp.
longitudinal fasciculus, superior thalamic radiation, inferior
longitudinal fasciculus, corticospinal tract, acoustic radiation,
and cingulate gyrus part of cingulum (c2

1 values = 5.73–9.12,
ps = .017–.003).

Conversely, MD in gPF showed a significant additional
contribution from the mean and variability measures over the
cross-sectional measure (F2,14686 = 5.43, p = .004). For indi-
vidual tracts, significant additional variance contributed by the
mean and variability of depressive symptoms was found in the
middle cerebellar peduncle (F2,14686 = 4.63, p = .010).

Associations Between Measures of Depressive
Symptoms and Behavioral Traits

The cross-sectional measure of depressive symptoms was
positively and significantly correlated with all 3 longitudinal
measures of depressive symptoms with rs = .457, .840, and
.478 (all ps, 10216) for the correlations with longitudinal slope,
mean, and variability of depressive symptoms, respectively. A
correlation matrix between the measures can be found in
Supplemental Table S1.

For the depression-related behavioral variables, contrary to
the imaging results, the longitudinal trajectory of symptoms
over time had the lowest measures of associations (absolute
bs = .026–.081, pcorr , .043 for significant associations)
compared with the other 3 measures of depressive symptoms.
The largest effects were for overall mean symptom severity
(absolute bs = .048–.216, pcorr , 3.81 3 1026). There was no
clear pattern of difference between associations with current
symptoms and the longitudinal mean and variability for these
behavioral variables. There were, however, indications of a
similar pattern of the strongest associations for all 3 measures
of depression severity with neuroticism, insomnia, and pain
(cross-sectional: absolute bs = .195–.524, pcorr , 1 3 10230;
mean: absolute bs = .216–.567, pcorr , 1 3 10230; variability:
absolute bs = .145–.399, pcorr , 1 3 10230). Other significant
associations are detailed in Table 1.

DISCUSSION

In the current investigation, we report novel patterns of asso-
ciation between 4 measures of cross-sectional and longitudi-
nal depressive symptom severity with decreased white matter
microstructural integrity. Decreased white matter microstruc-
ture in the anterior thalamic radiation demonstrated significant
associations across all 4 measures of depressive symptoms
(for MD: bs = .028–.030). The strongest white matter associ-
ations were found for variables relating to increasing longitu-
dinal symptom severity. Measures of current symptom severity
(cross-sectional measures) were particularly associated with
decreased white matter integrity in association fibers and
thalamic radiations (for MD: bs = .015–.039). Associations with
higher mean and variability of depressive symptoms over time,
however, showed associations primarily in projection fibers (for
MD: bs = .019–.029). Contrary to the imaging findings, the
nonimaging variables, in particular neuroticism, insomnia, and
pain, were associated with mean and variability of symptoms
over time, as well as with current symptoms rather than with
longitudinal change in symptoms.

Stable and transient conditions, referred to as trait and state
in other research contexts, are two related yet distinctive
org/journal
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Figure 4. Contributions by the cross-sectional
measure and by the mean and variability of
depressive symptoms on mean diffusivity. The y-
axis represents the variables that were found asso-
ciated with cross-sectional depressive symptoms.
The x-axis represents the 2log10(p) for whether
adding a relevant measure(s) of depressive symp-
toms adds significantly more variance explained. For
the left panel, a null hypotheses model with inde-
pendent variables that include the mean, variability,
and cross-sectional measure was compared with an
alternative hypothesis model with only the mean and
variability as the dependent variables. Bars to the left
of the red dashed line (the p = .05 line) indicate a
significant contribution of the cross-sectional mea-
sure. The opposite is true for the right panel, in which
bars to the right of the red dashed line indicate a
significant contribution of the mean and variability
for mean diffusivity in these neuroimaging variables.
The following measures of white matter micro-
structure are used: g.AF, general variance for tract

subset of association/commissural fibers; g.PF, general variance for projection fibers; g.Total, global variance of mean diffusivity; g.TR, general variance for
thalamic radiations.
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features contributing to individual differences in mood condi-
tions. Recent population-based genetic and predictive
modeling studies have revealed that stable manifestations of
emotional problems typically have a higher heritability than
more transient features (36). In addition, longitudinal measures,
including variability, had a higher predictive power relating to
severe forms of behavior such as suicide attempts (37). Hence,
understanding the biological basis of these potentially
distinctive features would have important implications (38,39).

Lower microstructural integrity in anterior thalamic radia-
tion in particular showed associations with all 4 measures of
depressive symptoms. The thalamic radiation tract subset
was also consistently associated with all measures of
depressive symptoms (nominally significant for the variability
Table 1. Associations Between Measures of Depressive Sympto

Category Dependent Variable

Cross-sectional Lo

Beta/
Log(OR) pcorr

Be
Log

Mental Health Neuroticism .524a ,1 3 10230a .08

Age of onset for
depression

2.056a 2.39 3 1028a 2.0

Sociodemographics Household income 2.11a ,1 3 10230a .0

Education .057 .095 2.0

Townsend index
tertile

2.058a 7.04 3 10211a 28.48

Lifestyle Measures Insomnia .207a ,1 3 10230a .0

Smoking status .056a 4.34 3 10214a 5.50 3

Physical Measures Body mass index .097a ,1 3 10230a 2.0

Ever pain last month .195a ,1 3 10230a .0

Hand grip strength 2.039a 5.68 3 10216a .02

Cognition g.Cognition (total) 2.043a .001a .0

g.Cognition
(processing speed)

2.058a 9.78 3 1028a .0

g.Cognition, general variance of cognitive tests; OR, odds ratio.
aItems that showed significant associations with any of the measures fo
bThe greatest effect sizes across all 4 measures for each line.

Biological Psych
measure and significant for all other measures). This shared
mechanism between measures indicates the importance of
the thalamic system, particularly frontothalamic connectivity,
in depressive symptomatology. Our results could therefore
explain why thalamic radiations are one of the most
replicated findings in either lifetime or cross-sectional case-
control studies of MDD (16,40,41). First, lower microstruc-
tural integrity of the thalamic radiation may be particularly
susceptible to the influence by early life factors (42,43) and,
second, they may relate to genetic predisposition to
depression (17). Although the observational data in the cur-
rent study did not allow for causal inferences, in future
studies thalamic radiations may be a strong candidate as a
causal biomarker for illness.
ms and Behavioral Variables

Factor

ngitudinal Slope Mean Variability

ta/
(OR) pcorr

Beta/
Log(OR) pcorr

Beta/
Log(OR) pcorr

1a 3.17 3 1027a .567a,b ,1 3 10230a .399a ,1 3 10230a

48 .052 2.065a,b 2.05 3 10210a 2.061a 2.10 3 1029a

35 .056 2.142a,b ,1 3 10230a 2.125a ,1 3 10230a

54 .604 .054 .118 .002 .953

3 1024 .970 2.079a,b 2.17 3 10219a 2.049a 1.20 3 1028a

17 .424 .222a,b ,1 3 10230a .154a ,1 3 10230a

1024 .970 .075a,b 1.03 3 10223a .05a 1.35 3 1029a

14 .520 .129a,b ,1 3 10230a .096a ,1 3 10230a

1 .604 .216a,b ,1 3 10230a .145a ,1 3 10230a

6a .043a 2.048a,b 3.20 3 10223a 2.034a 1.32 3 10210a

45 .305 2.063a 3.81 3 1026a 2.081a,b 1.28 3 1027a

36 .305 2.077a 3.54 3 10212a 2.084a,b 7.44 3 10212a

r depressive symptoms.

iatry November 15, 2019; 86:759–768 www.sobp.org/journal 765

http://www.sobp.org/journal


White Matter Microstructure and Depressive Symptoms

Biological
Psychiatry:
Celebrating
50 Years
Associations between cross-sectional measures with fibers
in the subset of association fibers were particularly significant
after correcting for longitudinal measures, indicating that these
regions are particularly sensitive to temporary variations.
Lower microstructural integrity in association fibers was also
associated with worsening depressive symptoms over time.
Association fibers and connections to the prefrontal cortex
have been repeatedly found to be associated with executive
cognition (44–46) and closely related to psychological resil-
ience (47). Abnormalities in these tracts could therefore
contribute to both temporary depressive status and longitu-
dinal decline in mental well-being (48).

Projection fibers were particularly associated with mean and
variability of depressive symptoms. Microstructure in this white
matter subset is well known for being related to motor
response and processing speed. Therefore, the results sug-
gest that higher mean and variability of depressive symptoms
may be related to cognitive decline and decline of psycho-
motor abilities (49,50).

We note importantly that most of the current results were
found for MD rather than FA. Despite the differences in level of
significance, MD and FA presented similar directions of effects,
and the scales of effect were similar for the most robust find-
ings, especially in thalamic radiations (Supplemental Table S3).
The discordance between MD and FA may be rooted in the
differential sensitivity of MD and FA to a variety of complex
degenerative processes. Changes in FA, which could result, for
example, from increased transverse diffusion that is due to
myelin and axonal disruption (51), may be masked by co-
occurring processes such as fiber reorganization and glial
reactivity. In such instances, where all 3 eigenvectors of the
diffusion tensor experience proportional change, it is plausible
that MD would offer greater sensitivity (52). Notably, MD also
reportedly exhibits greater sensitivity than FA to other traits
such as aging (44).

In the current study, we used a very large imaging sample.
Although the sample size of longitudinal trajectory was much
lower, it was still much larger than that in most neuroimaging
studies, especially considering that the data are longitudinal
and cover up to 10 years. All this provides high statistical
power to reliably detect modest associations (53). However, a
limitation of the current study is that the time lag between
adjacent assessments may vary per participant from 3 to 6
years. For this reason, we also adjusted for this difference by
controlling for the age of each time point. Another limitation is
that there is a known healthy volunteer bias within the UK
Biobank sample (54) as a result of the large-scale, popula-
tion-based recruitment strategy. Variation of effect sizes
may be expected in other samples of in-hospital patients.
Finally, we note that it is possible that some of the behavioral
patterns associated with longitudinal variation of depressive
symptoms may be able to partially explain the neurobiolog-
ical associations. Future work is needed to identify interme-
diate variables that mediate the association between
brain structural measures and longitudinal progression of
depressive symptoms.

Our results provide evidence based on a large-scale
imaging dataset that white matter microstructure is related to
slope of longitudinal trajectory of depressive symptoms, cur-
rent symptom severity, and mean and variability of depressive
766 Biological Psychiatry November 15, 2019; 86:759–768 www.sobp.
symptoms, with overlapping regional associations in MD in
thalamic radiations as well as distinctive regional patterns
between longitudinal mean and variability measures and cur-
rent symptoms. Further mechanistic insights underlying the
relationship between changes in neurobiology and changing
symptoms will be dependent on availability of future large-
scale longitudinal neuroimaging datasets along with availabil-
ity of methods and tools able to test for causal inferences.
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