
The sudden appearance of overt human Zika virus infec-
tions that cross the placenta to damage fetal tissues, tar-
get sexual organs, and are followed in some instances by 
Guillain-Barré syndrome raises questions regarding wheth-
er these outcomes are caused by genetic mutations or if 
prior infection by other flaviviruses affects disease outcome. 
Because dengue and Zika viruses co-circulate in the urban 
Aedes aegypti mosquito–human cycle, a logical question, 
as suggested by in vitro data, is whether dengue virus in-
fections result in antibody-dependent enhancement of Zika 
virus infections. This review emphasizes the critical role for 
epidemiologic studies (retrospective and prospective) in 
combination with the studies to identify specific sites of Zika 
virus infection in humans that are needed to establish anti-
body-dependent enhancement as a possibility or a reality. 

Recently, polyclonal and monoclonal dengue virus 
(DENV)–elicited antibodies have been shown to neu-

tralize or enhance Zika virus infection in vitro (1,2). Three 
studies have shown that monoclonal antibodies to the 
DENV fusion loop epitope reliably enhanced Zika virus 
infection (i.e., antibody-dependent enhancement [ADE]) in 
Fc receptor–bearing K-562 human myelogenous leukemia 
cells or the U-937 human monocytic cell line (1–3). By 
contrast, broadly neutralizing DENV monoclonal antibod-
ies directed at a conformational quaternary epitope on the 
virion formed at the interface of 2 envelope dimer epitopes 
(EDE1 and EDE2) potently neutralized Zika virus in a pi-
comolar range similar to the neutralization of DENV (2). 
X-ray crystallographic structures of antigen binding frag-
ments of EDE1 and EDE2 in complex with the Zika virus 
envelope protein have been obtained (4). These observa-
tions raise important questions about the past and future of 
human infections with Zika virus.

Outside Africa, Zika virus occupies the same epi-
demiologic niche as do the DENVs. During the ongoing 
pandemic in the Western Hemisphere, infections in the 
sequence of DENV followed by Zika virus must have oc-
curred often and will continue to occur. Might placental 

transfer of Zika virus or Guillain-Barré syndrome (GBS), 
fueled by the ADE phenomenon, occur specifically in 
DENV-immune persons? If Zika virus infections are en-
hanced by DENV antibodies, might ADE also occur after 
administering a dengue vaccine? Indeed, if Zika virus in-
fections can be enhanced by DENV antibodies, might that 
also be an outcome following administration of a poorly 
protective Zika virus vaccine? Correspondingly, might 
Zika virus antibodies enhance DENV infections? These 
crucial questions require biologically valid answers. What 
information do we need to answer them, and where shall 
we start looking?

Zika virus, a member of the Flavivirus genus, is main-
tained in complex African zoonotic cycles, spilling from time 
to time into the Aedes aegypti mosquito urban transmission 
cycle (5). This spillover might be a very old phenomenon. 
Because many flaviviruses infect humans in Africa, it was 
logical to ask if antibodies to these viruses enhanced Zika 
virus infections. The answer obtained in vitro was affirma-
tive (6). After having been first isolated in Africa in 1947, 
human Zika virus disease remained sparse and mild, with 
no reports of diverse clinical syndromes associated with 
infection (7). Nor was Zika disease reported from India or 
Southeast Asia, where Zika virus and DENV co-circulated,  
evidenced by detection of neutralizing antibodies in hu-
mans as early as 1954 (8–10). Zika virus was isolated from 
Ae. aegypti mosquitoes collected in rural Malaysia in 1966 
(11). No alarms were raised in Asia until 2007, on the Yap 
Islands in the Western Pacific, when it was estimated that 
≈900 cases of a mild febrile exanthema caused by Zika virus 
infections had occurred among a total population of ≈7,000 
(12). Then, during 2013–2014, on Tahiti, a Zika virus epi-
demic was followed in 4 weeks by an outbreak of GBS (13). 
Of the 42 case-patients with Zika virus infection and sub-
sequent GBS, 95% had evidence of prior DENV infection, 
although this percentage did not differ from that of controls 
(13). This illness phenomenon spread to South America, 
where remarkably, GBS often followed acute Zika virus in-
fections by only a few days (14–17). Then, abruptly, in Bra-
zil, Zika virus was found to destroy fetal tissues (18). Next, 
it was learned that Zika virus infected the male reproductive 
tract and could be sexually transmitted (19).
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Is the expanded pathogenicity of Zika virus the result 
of viral mutations, or might DENV ADE play a role, or are 
both true? An opinion has emerged that Zika virus genomes 
in Asia have acquired 1 or more mutations, contributing to 
its newly emerged pathogenicity (5,20). A recent analysis 
of full-length RNA sequences of 84 Zika virus genomes in 
Africa, Asia, the Pacific region, and the Americas has noted 
a stable amino acid change in the matrix protein of Asian 
viruses that accompanied placental invasiveness and GBS in 
Tahiti and the Americas (21). It is not clear what specific 
biologic properties might have been acquired by Zika virus 
that contributed to the observed new behaviors. The original 
strain of Zika virus recovered in Uganda in 1947 was neu-
rotropic for 6-week-old mice (22). A strain genetically simi-
lar to the prototype in Africa productively infected human 
neural progenitor cells in vitro, dysregulating cell growth 
(23). In type 1 interferon receptor knockout mice or mice 
inoculated with type 1 interferon receptor–blocking antibod-
ies, subcutaneous inoculation of a strain of Zika virus from 
French Polynesia infected maternal trophoblasts and resulted 
in apoptosis. In infected pregnant female mice, Zika virus 
crossed into the fetal circulation, where it infected endothe-
lial cells, resulting in apoptosis and greatly impaired fetal 
circulation leading to ischemia and fetal loss (24).

Knowledge that a microbial disease is worsened by 
ADE derives from 2 evidentiary pillars: 1) epidemiologic 
evidence demonstrating that a unique syndrome or severe 
disease is significantly associated with persons who circu-
late antibodies (presumably “enhancing”) before infection, 
and 2) evidence of in situ replication by the causative or-
ganism in myeloid cells that serve as major targets of cellu-
lar infection. DENV disease enhancement was established 
by recording a strong association between severe disease 
in humans and a secondary-type DENV antibody response, 
by direct association of severe cases with sequential DENV 
infections in prospective cohort studies, and by the occur-
rence of severe disease during first DENV infections in in-
fants born to dengue-immune mothers (25–30). This latter 
observation provides population-level evidence that DENV 
antibodies are the critical risk factor for the occurrence of 
severe DENV disease. However, severe disease in infants 
occurs only when infants acquire antibodies acquired by 2 
or more lifetime DENV infections in the mother (25,30). 
Importantly, the same IgG antibodies that enhance DENV 
infections in infants are protective for the first several 
months after birth (29). Evidence that myeloid cells support 
intracellular DENV infection in vivo in humans derives 
from studies on tissues from virologically documented pa-
tients obtained during surgery, at autopsy, or by venesec-
tion (31–34). These studies, although few, are buttressed by 
the demonstration that DENV immune complex infection 
of Fc receptor–bearing cells leads directly to vascular per-
meability in mouse models (32,35–40).

To establish whether ADE caused by DENV antibod-
ies modifies the course of Zika virus infections, evidence 
will be required from the same 2 pillars. The outcomes of 
DENV–Zika virus sequential infections might be diverse 
and complicated. First, antibodies derived from monotyp-
ic infections with each of the 4 DENV serotypes, if they 
enhance at all, might affect Zika virus infections differ-
ently. As an example, infections in the sequence DENV-1 
followed by DENV-2 or DENV-3 then DENV-2 result in 
more severe clinical outcome than infections in any of the 
other 10 secondary infection sequences (41). Second, the 
interval between DENV followed by Zika virus infection 
might regulate disease severity. In dengue, the interval 
between initial and a heterotypic DENV infection exerts 
a remarkable bidirectional effect. Sequential DENV in-
fections at a short interval (<2 years) blunt the clinical 
severity of responses to a second infection, whereas as 
the interval widens (2–20 years), the outcome becomes 
increasingly severe (42–44). Third, Zika virus infec-
tion enhancement could be critically dependent upon the  
parity of past DENV infections of the host. For example, 
as is true for dengue, a single prior DENV experience 
might enhance infection, whereas antibodies deriving 
from >2 past DENV infections might protect against fur-
ther infection (45).

By using a simple protocol (Table), it should be pos-
sible to gather evidence using a case-control format com-
paring the frequency of a secondary flavivirus antibody 
response in convalescent-phase serum samples of persons 
experiencing any defined acute Zika virus disease syn-
dromes, such as exanthematous fever, congenital Zika 
syndrome, or GBS (i.e., case-patients) with the prevalence 
of past DENV infection in Zika virus–infected age-, sex-, 
residence-, and ethnicity-matched persons from the same 
exposure group (i.e., controls). Such a comparison should 
be undertaken promptly in several different Zika virus–en-
demic locales. If these studies fail to provide evidence that 
prior flavivirus infection is a risk factor for any of the de-
fined clinical outcomes of Zika virus infections, the search 
for Zika virus ADE can halt. However, if evidence compat-
ible with ADE is obtained, it will be important to investi-
gate the possibly complicated interactions between DENV 
and Zika virus infections alluded to here.

In the case of DENV, the ADE phenomenon requires 
infection of myeloid cells by infectious immune com-
plexes; therefore, it will important to determine if myeloid 
cells are major targets of Zika virus syndromes in humans. 
DENV and Zika virus infections are each expressed clini-
cally as febrile exanthema. In monkey and human DENV 
infections, infected peripheral blood leukocytes circulate 
transiently just before the appearance of virus in the skin 
(monkeys) or the appearance of a generalized body rash 
(humans) (33,46). In children in Nicaragua, DENV-infected 
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peripheral blood leukocytes circulating late in the viremic 
period were definitively identified as monocytes (33). This 
finding might be a general phenomenon in viral exanthmata 
given that infected monocytes also circulate in blood dur-
ing the rash stage in children with measles (47,48). A plau-
sible hypothesis is that maculopapular rashes derive from 
DENV-infected monocytes originating in the bone marrow 
that are targeted to skin. By analogy, human Zika virus 
pathogenesis might involve myeloid cells and blood mono-
cytes as infection targets. A search to prove or disprove this 
hypothesis should be undertaken promptly.

Should Zika virus infect circulating monocytes, this 
still leaves unanswered the question whether tissue macro-
phages are an important component of so-called “normal” 
Zika virus human infections. In A129 mice lacking type 
1 interferon receptors, peripheral inoculation of Zika vi-
rus produced observable illness and high titers of virus in 
spleen, liver, and brain, but no attempt was made to identi-
fy target cells (49). As suggested by excretion of Zika virus 
in seminal fluid, urine, saliva, and tears, Zika virus might 
predominantly infect nonmyeloid tissues. As reviewed 
briefly here, there is ample evidence from studies on hu-
man uterine contents, plus validation in mouse models, that 
Zika virus infects neuronal tissues, a wide range of fetal 
organs, placental cells, endothelial cells, and reproductive 
organs. Clearly, we have much to learn about the patho-
genesis and pathology of human Zika virus infections. The 
issue of ADE poses a unique challenge to researchers, the 
resolution of which rests in the first instance on epidemio-
logic evidence.
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Table. Case–control epidemiologic research protocol for assessing DENV antibody enhancement of Zika virus syndromes* 
Category Description 
Case-patients Zika virus PCR positive or serologically positive symptomatic persons (i.e., with febrile illness, Guillain-Barré 

syndrome or congenital Zika syndrome) of any age who have convalescent-phase serum samples available to 
test for DENV IgG by ELISA. 

Controls Serum samples from age-, sex-, residence-, and ethnicity-matched controls with blood drawn at about the same 
time as each index case-patient. Ratio: 4 controls to 1 index case-patient. 

Laboratory studies  1. Convalescent-phase serum samples from case-patients are tested by indirect pan-DENV IgG ELISA. (A 
positive result indicates that the Zika virus infection occurred in a DENV-immune person.) 
2. Control serum samples are tested for Zika virus neutralizing antibodies. 
3. Control serum samples are tested for past DENV infections by using indirect pan-DENV IgG ELISA. 
4. DENV IgG ELISA–positive serum samples from case-patients and controls are tested for DENV serotypes 1–
4 neutralizing antibodies. 
5. Frequency of prior DENV infections in symptomatic Zika virus case-patients is compared with frequency of 
DENV antibodies in Zika virus–immune controls. A statistically significant increase in past DENV infection 
indicates enhancement; a statistically significant reduction indicates protection. 
6. All comparisons should be made separately and combined for persons of white and black† race. 

*DENV, dengue virus. 
†The powerful DENV disease resistance gene(s) in black sub-Saharan Africans might also protect against Zika virus diseases.  
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