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Abstract

The identification of potential super-spreader nodes within a network is a critical part of the

study and analysis of real-world networks. Motivated by a new interpretation of the “shortest

path” between two nodes, this paper explores the properties of the heatmap centrality by

comparing the farness of a node with the average sum of farness of its adjacent nodes in

order to identify influential nodes within the network. As many real-world networks are often

claimed to be scale-free, numerical experiments based upon both simulated and real-world

undirected and unweighted scale-free networks are used to illustrate the effectiveness of

the proposed “shortest path” based measure with regards to its CPU run time and ranking of

influential nodes.

1 Introduction

Networks provide a framework to model complex systems, utilizing nodes and edges to depict

the interactions between system components. While various tools have been developed to ana-

lyze real-world systems, nodal centrality measures are one of the more prominently used net-

work analysis techniques to quantify the influence of a node with respect to other nodes within

the network [1]. Some of the more well-known centrality measures include the degree central-

ity (CD) [2], eigenvector centrality (CE) [3], closeness centrality (CC) [4], and betweenness cen-

trality (CB) [5]. The utilization of centrality measures on networks to identify influential nodes

can lead to a more comprehensive understanding of the dynamics and behavior of real-world

systems, such as the identification of the most influential individuals in a social network, the

key airports in a transportation network, or the super-spreaders in a disease [6]. Past applica-

tions of the four well-known centralities, along with various generalizations of the measures,

on real-world networks include the Internet [7,8], transportation systems [9,10], biological sys-

tems [11–13], and social systems [14,15].

However, the identification of influential nodes through centrality measures depends upon

the network structure. Generally, a node with a higher centrality value is considered more

influential than the other nodes, where the value numerically quantifies the level of influence a

node has with respect to the network’s topology. For instance, the degree centrality of a node is

an indication of the number of neighbors connected to it. An extension of degree centrality,
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the eigenvector centrality of a node is a measure of the degree of both the node and its neigh-

bors. The closeness centrality of a node quantifies the shortest path distances to every other

node in the network, while the betweenness centrality of a node represents the fraction of

shortest paths that go through the node among all shortest paths between every node pair in

the network.

Yet, each centrality measure comes with its own limitation. For example, the degree central-

ity considers only local information about nodes, assigning a greater influence to nodes that

are connected to a greater number of adjacent nodes [2]. The eigenvector centrality measures

the influence of a node based upon the influence of its neighbors, and as a result, often identi-

fies a set of influential nodes that all are located within the same region of the network [16].

The closeness centrality quantifies a node’s influence based upon its shortest path distances to

the other nodes in a network, which, consequently, is why its numerical range is often small

[17]. Finally, because the betweenness centrality utilizes the global information of the network

by ranking nodes higher if they lie on many shortest paths within a network, as the size of the

network grows, the computational complexity of the betweenness centrality increases [18].

In fact, with respect to the time complexity of the algorithms to compute the centrality mea-

sure for an individual node in the network, the betweenness centrality is the slowest among

the four well-known measures. Consider an arbitrary, unweighted, and undirected network

with |V| = N nodes and |E| = M edges. For the shortest path based measures, the calculation of

the closeness and betweenness value of an individual node in the network requires an imple-

mentation of the breadth-first search (BFS) algorithm to determine the shortest path from one

node to all other nodes, such that the closeness and betweenness centralities run in O(N+M)

and O(N2+NM) time, respectively [6]. Since the betweenness value for an individual node

requires the calculation of the fraction of shortest paths that go through the node among all

shortest paths between every node pair in the network, the BFS algorithm must be executed on

every node in the network which causes the betweenness measure to amass a larger computa-

tional overhead.

While a node with a very large degree is called a “hub” node [19–22], a node with immense

infectivity in a real-world network is considered a “super-spreader” (i.e., a node that maxi-

mizes its impact on other nodes, such as in the case of facilitating the spread of information or

the propagation of a disease) [22–24]. Previous studies have assumed that a hub node is equiv-

alent to a super-spreader [22], and while it is true in some cases, there are many real-spreading

processes that cannot be completely described by this process (e.g. a hub node may not contact

all of its neighbors within one-time step in an epidemic contact network; additional scenarios

are detailed elsewhere [22]). Therefore, although high degree nodes, high betweenness nodes,

and high closeness nodes have been identified as good initial spreaders [22], the contribution

of this paper is the proposal of the heatmap centrality, a measure which utilizes features from

all three measures to strike a balance between accuracy and algorithmic simplicity in the iden-

tification of influential nodes. Motivated by a different interpretation of the “shortest path”

between two nodes, this paper, in particular, aims to explore the properties of the proposed

centrality as a potentially viable measure in the identification of super-spreaders (i.e., nodes

that are influential in the flow of information) within real-world networks.

Define the farness of a node as the sum of the length of shortest paths from the node to all

other nodes in the network. Then the heatmap centrality of a node is defined, simply, as the

difference in the node’s farness and the average farness of its neighbors. The theoretical intui-

tion behind the proposed measure is that a node is likely to lie on the shortest paths for several

pairs of nodes within the network if the node’s farness is smaller than the average of its neigh-

bors, resulting in a negative heatmap value. If a node and all of its neighbors have a similar far-

ness, then information can flow through any of those nodes and neither of the nodes may be
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more influential than the others. For example, if an individual and each of its immediate

neighbors are infected, then neither of them necessarily possess more infectivity nor influence

than the other. Yet, if an individual is the only one infected among its immediate neighbors,

then the individual possesses more infectivity and influence than the others. Using the above

arguments, a node with a large negative heatmap centrality is more likely to control the diffu-

sion of information among other nodes and possess a greater amount of infectivity.

As many real-world networks are often claimed to be scale-free [25] (e.g., social networks

[26], the Internet [27], protein-protein interaction networks [28,29], and airline networks

[30,31]), the properties of the heatmap centrality measures are explored in this paper through

experimental studies involving both simulated and real-world scale-free networks. Generally, a

network is considered “scale-free” if the fraction of nodes with degree k follows a power-law

distribution k−γ, where γ>1 [25]. Yet, alternative versions of the “scale-free hypothesis” have

included weaker requirements, such that the power law only needs to hold in the upper tail of

the degree distribution [32], or stronger requirements, such as requiring 2<γ<3 [33,34]. As a

consequence of the various interpretations of the “scale-free”, different researchers can apply

the term to slightly different concepts, ultimately complicating efforts to evaluate the relation-

ship and properties between the centrality measures on scale-free networks [25]. To avoid any

confusion with the term “scale-free”, in this paper, a “scale-free” network is defined as a simple,

undirected network whose degree distribution follows a power-law distribution k−γ, where

γ>1. Additionally, any network that is either too dense or too sparse is not considered, as net-

works with such densities are not plausibly scale-free [25].

To evaluate the algorithmic performance and efficiency on simulated scale-free networks,

the CPU (central processing unit) times and the Spearman-rank and Kendall-rank correlation

coefficients of the proposed heatmap measure are calculated on networks of various size N and

density d. To evaluate the algorithmic efficiency on real-world scale-free networks, three

experiments are performed to compare the nodal ranking of the proposed measure with the

rankings with respect to the degree, eigenvector, closeness, and betweenness centralities: A

comparison of the top-10 ranked nodes, a comparison of both the Spearman-rank and Ken-

dall-rank correlation coefficients between each pair of measures, and a comparison of the

spreading capability of the top-10 nodes using a modification of the standard Susceptible-

Infected (SI) model [35–38]. Based upon the results of the experiments performed on both the

simulated and real-world scale-free networks, the heatmap centrality may be considered as a

potentially viable measure in the identification of super-spreader nodes in scale-free networks.

The rest of the paper is organized as follows. Section 2 provides preliminary material, such as

definitions and notations that will be referred to throughout the paper, and an overview of the four

well-known centrality measures is provided. Section 3 introduces the proposed heatmap centrality

measure, discusses its time complexity, and provides a toy example to highlight the properties of

each centrality measure, as well as the advantages of the proposed measure. Section 4 details the

two rank correlation coefficients, Spearman and Kendall, that are used to compare the rankings

with respect to two centrality measures. An example calculation of each correlation with respect to

the betweenness and heatmap centralities is also included in this section. In Section 5, an overview

of the SI model is provided, while Section 6 describes the datasets and introduces the evaluation

methodologies used to study the accuracy of each measure. The analysis of the experimental results

is also included in the section. Section 7 concludes the paper and details future work.

2 Preliminary concepts of a graph

Formally, an undirected and unweighted network is defined as an abstract graph G = (V,E)

where V is the finite, nonempty set of nodes, and E is the set of edges. Denote the set of edges E
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= {ej,k|vj,vk2V} by the set of connections between nodes vj and vk. Because G is undirected, if ej,
k2E, then ek,j2E.

If ej,k2E, then nodes vj and vk are considered adjacent, where node vj is known as a neighbor

of node vk, and node vk is a neighbor of node vj. The neighborhood of node vj2V is the set of

the neighbors of vj2V.

A path P(vj, vk) between nodes vj and vk is defined as a sequence of edges that connect adja-

cent nodes, and the length of a path P(vj, vk) is defined as the sum of the edges in P(vj, vk). Let

Pðvj; vkÞ be the set of all paths between nodes vj and vk. Then Psðvj; vkÞ 2 Pðvj; vkÞ is defined as

a shortest path (i.e., a path of minimum length) between nodes vj and vk with length s(vj, vk).
Finally, define a graph as connected if there exists a path between every pair of its nodes. In

this paper, only simple, undirected, unweighted, and connected networks are considered,

where a simple graph, by definition, does not contain duplicate edges or loops (i.e., an edge

that connects a node to itself).

2.1 Centrality measures

A centrality measure is a function C : V ! R that assigns a value to each node within the net-

work. This value numerically quantifies the influence of a node with respect to the network

structure, where a node with a higher centrality value is usually considered more influential

than the other nodes. Centrality measures do not consider node-level covariate information

(i.e., node characteristics that “co-vary” with the network). Although many centrality measures

have been proposed to rank nodes within a network according to their level of influence, the

well-known measures for characterizing the centrality of a node within a network include the

degree, eigenvector, closeness, and betweenness centralities.

Consider a simple, undirected, unweighted, and connected network G = (V,E) with N = |V|

nodes and M = |E| edges. Then the network G can be described by an adjacency matrix A = {ai,
j} of size N×N, where ai,j = 1 if nodes vi and vj are connected by edge ei,j, and ai,j = 0 if

otherwise.

2.2 Degree centrality

The degree centrality for node vi, denoted as CD(vi), is defined [2] as

CDðviÞ ¼
XN

j¼1

ai;j

The degree centrality measures the influence of a node by the number of edges connected

to it, where a node with a high degree value is a highly connected node within the network and

thus, involved in a large number of interactions. The degree centrality is considered a local net-

work measure as it does not take the structure of the rest of the network into account. The

time complexity to compute the degree centrality of one node, CD(vi), is O(N) since there are

N entries in the row corresponding to each node in the adjacency matrix A [6]. Consequently,

the calculation of the degree centrality of all N nodes in the network requires O(N2) time in a

dense network (i.e., M = N2), and O(M) time in a sparse network (i.e., M<N(N−1)/2).

2.3 Eigenvector centrality

Let λ1,λ2,. . .,λN denote the eigenvalues of the adjacency matrix A = {ai,j} of network G. Then

the largest eigenvalue of matrix A is λmax with corresponding eigenvector e = [e1,e2,. . .,eN]T

such that lmaxei ¼
PN

j¼1
ai;jej. Then, the eigenvector centrality for node vi, denoted as CE(vi), is
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defined [3] as

CEðviÞ ¼ l
� 1

max

XN

j¼1

ai;jej

Intuitively, the eigenvector centrality quantifies node vi as influential if it is connected to

other influential nodes within a network [17], thus calculating both the direct and indirect

influence of the node. As a result, the eigenvector centrality is considered a measure of the

global network connectivity. Since the power method is used in the calculation of the eigenvec-

tor centrality, there is no “proven” time complexity as the exact time complexity depends upon

a number of factors, such as the speed of the convergence of the normalized eigenvector to

λmax.

2.4 Closeness centrality

The closeness centrality for node vi, denoted as CC(vi), is defined [4] as

CCðviÞ ¼
1

PN
j¼1

sðvi; vjÞ

or, more simply, as the reciprocal of farness, where farness is defined as the sum of the length

of the shortest paths between node vi and all other nodes in the network. Intuitively, the close-

ness centrality measures how quickly information can spread from node vi, utilizing the idea

that a node is close to all nodes within the network and not just close to its neighbor. As a

result, the closeness centrality is considered a measure of the global network connectivity. Fur-

thermore, the time complexity needed to calculate the closeness centrality of one node, CC(vi),
is O(N+M) since the centrality utilizes breadth-first search (BFS), an algorithm that runs in O
(N+M) time, to determine the shortest path from one node to all other nodes [6]. Therefore, in

order to compute the closeness centrality of all N nodes in the network, the BFS algorithm is

implemented on each of the N nodes such that the time complexity for the closeness centrality

is O(N(N+M)) = O(N2+NM). For all purposes, this is O(NM).

2.5 Betweenness centrality

The betweenness centrality for node vi, denoted as CB(vi), is defined [5] as

CBðviÞ ¼
XN

i6¼j6¼k

svj ;vk
ðviÞ

svj;vk

where svj;vk
is the number of shortest paths between nodes vj and vk, and svj;vk

ðviÞ is the number

of shortest paths between nodes vj and vk that pass through node vi. The interactions of two

nonadjacent nodes depend upon other nodes, which generally lie on the shortest paths

between the two nodes [39]. Thus, the betweenness centrality considers a node influential if it

lies on a large fraction of shortest paths between a pair of nodes within the network. Intuitively,

the betweenness centrality measures how much information is likely to flow through node vi.
Since the betweenness centrality takes the structure of the entire network into account, it is

considered a global network measure.

To calculate the betweenness centrality of a node within the network, the fastest known

algorithm is Brandes [40] which performs two basic steps. First, an augmented BFS starts from

node vj and computes svj;vk
for every node vk. Secondly, during the accumulation phrase, the

BFS constructed in the previous step is utilized to calculate the value of CB(vi) for every node
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vi. The time complexity of a BFS in the first step is O(N+M), while the time complexity in the

accumulation phase is also O(N+M) as the maximal number of steps is bounded by both the

number of parents, O(M), and the nodes accessed, O(N) [41]. Since this computation is per-

formed for each node, then the calculation of the betweenness centrality on all N nodes using

the Brandes algorithm requires a time complexity of O(N(N+M)) = O(N2+NM), which for all

purposes, simplifies to O(NM).

Although the closeness and betweenness centralities each require O(NM) time to calculate

the shortest paths for all N nodes in the network, the closeness centrality is a relatively less time-

consuming measure in comparison, as it does not require much of the post-processing work

(i.e., calculating the number of shortest paths that pass through the node) that is required for

the betweenness centrality. In particular, for each node vi, the N shortest paths trees from the

BFS algorithm must be traced through in order to determine the number of shortest paths that

pass through vi [6]. Therefore, calculating the betweenness centrality for one node, CB(vi), could

take an additional O(NM) time such that the overall time complexity to compute the between-

ness centrality for all the nodes in the network would be O(N2+2NM), or simply O(NM) [6].

3 Heatmap centrality

A new centrality measure, termed the heatmap centrality, utilizes both local and global net-

work information by comparing the farness of each node (i.e., the global network information)

with the average sum of the farness of its neighbor nodes (i.e., the local network information).

In particular, the heatmap centrality for node vi, denoted as CHM(vi), is defined formally as

CHMðviÞ ¼
XN

j¼1

sðvi; vjÞ �
PN

j¼1
ai;j �

PN
k¼1

sðvj; vkÞ
PN

j¼1
ai;j

The heatmap measure identifies the “hot spot” node within its neighborhood, as it consid-

ers a node with a smaller farness than that of the average of its neighbors to be an influential

node within the network. Intuitively, a node with the smaller farness among that of its neigh-

bors is more likely to have information pass specifically through it, rather than through any of

the adjacent nodes. When the sign of CHM(vi) transitions from negative to positive, then the

average sum of the farness of the neighbors of vi becomes smaller than that of node vi, decreas-

ing the likelihood of information passing specifically through node vi. Therefore, using this

intuition, the heatmap centrality can be considered a “shortest path” based measure and uti-

lized in the identification of super-spreader nodes that control the flow of information within

a scale-free network.

Consider the pseudocode for the heatmap centrality algorithm in Fig 1 and node vi with,

say, k neighbors. In Step 1, the calculation of the farness of node vi and its k neighbors requires

O((k+1)(N+M)) time as BFS needs to be executed (k+1)-times. In Step 2, the sum of the farness

of the k neighbors requires O(k) time, while Step 3 requires O(k+1) time to calculate both the

degree of node vi and the average sum of the farness of its neighbors. Finally, the subtraction

in Step 4 requires O(1) time. Therefore, the calculation of the heatmap centrality for an indi-

vidual node, CHM(vi), with k neighbors requires O((k+1)(N+M)+2k+2) time, which for all pur-

poses, simplifies to O(N+M).

Therefore, calculating the heatmap centrality for all N nodes within a sparse network

requires a time complexity of O(N(N+M)+3M+2N) = O(N2+NM+3M+2N), which for all pur-

poses, simplifies to O(NM). Note that Step 1 requires O(N(N+M)) time to run BFS for each

node, Step 2 requires O(2M) time to sum the farness of the neighbors for each node, Step 3

requires O(M+N) time to compute both the degree of each node and the average sum of the far-

ness of the neighbors for each node, and Step 4 requires O(N) time to perform the subtraction
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for each node. Consequently, for a dense network, the calculation of the heatmap centrality for

all N nodes requires a time complexity of O(N(N+M)+2N2+2N) = O(3N2+NM+2N).

3.1 Toy example

Fig 2 displays a simple, undirected, unweighted, and connected network G with 15 nodes and

19 edges. The advantages of the proposed measure are detailed by comparing the rankings of

the nodes in the network with respect to the degree centrality (CD), eigenvector centrality (CE),

closeness centrality (CC), betweenness centrality (CB), and heatmap centrality (CHM). The cen-

trality value of each node and its ranking with respect to the five measures are provided in

Table 1. Unsurprisingly, node 3 is top-ranked by both the degree and eigenvector centralities,

as it is the most connected node within the network. In addition, node 6 is top-ranked by the

closeness, betweenness, and heatmap measures, since its close proximity to all the nodes within

the network allows it to control the diffusion of information. Yet, although node 6 is second-

ranked by both the degree and eigenvector measures, and node 8 by the closeness and

betweenness measures, the heatmap centrality ranks node 10 second. Nodes 6 and 8 both lie

on the path that bridge the two components of network G, such that information passing

through node 6 must pass through node 8 in order to reach the nodes on the right side of the

network. As a result of its positioning on the bridge path, node 8 is given large closeness and

betweenness values strictly due to its adjacency to node 6. But the heatmap centrality does not

assign a node a high rank necessarily due to a topological advantage. Instead, the proposed

measure leverages the farness of a node’s neighbors to provide a ranking that is more reflective

of how information flows throughout the network.

4 The rank correlation coefficients

The ranking of a node with respect to a centrality measure quantifies the node’s influential

seating if the nodes in the network are ordered in the decreasing order of the centrality values.

Fig 1. Pseudocode. The heatmap centrality algorithm pseudocode.

https://doi.org/10.1371/journal.pone.0235690.g001
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Fig 2. The rankings of nodes in the example network. The top two-ranked nodes in the example network G with 15 nodes and 19 edges with respect to the (A) degree,

(B) eigenvector, (C) closeness, (D) betweenness, and (E) heatmap centrality measures are colored orange, while the remaining 13 nodes are colored grey.

https://doi.org/10.1371/journal.pone.0235690.g002
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As there are many different centrality measures used to rank the nodes of a network by their

level of influence, rank correlation coefficients may be utilized to determine the similarity of

two centrality rankings. Intuitively, the correlation coefficient between two variables will be

high when two variables have a similar rank, and low when two variables have a dissimilar

rank [42]. Additionally, correlation coefficient values closer to 1 indicate a stronger similarity

between the two rankings. The Spearman-rank and Kendall-rank are both correlation coeffi-

cients that depend only on the ranks of the variables (e.g., the nodes), and not on the observed

values (e.g., the centrality values). Spearman’s correlation coefficient (ρ) is equivalent to the

traditional linear correlation coefficient calculated on the rankings of variables, while Kendall’s

correlation coefficient (τ) is proportional to the number of pairwise adjacent inversions that

are required to convert one ranking into the other [43]. Although Kendall’s τ differs in magni-

tude and is usually smaller when compared to Spearman’s ρ, it has become a standard statistic

to compare the correlation between two rankings for a number of reasons, such as its fast-

computational time [44]. In this paper, both rank correlation coefficients are used to evaluate

the correctness of the rankings to better assess the effectives of the centrality measures.

4.1 Spearman-rank correlation coefficient

The Spearman-rank correlation coefficient ρ [45] of the rankings with respect to any two cen-

trality measures, say CX and CY, is calculated as follows. First, the ranking of nodes in decreas-

ing order of the centrality values is obtained. The index at which a node appears in the list is

initially considered the tentative ranking of the node. If two or more nodes have the same cen-

trality value, the tie between the nodes is broken in favor of the node with the smaller numeri-

cal node identification label. For example, if nodes 4 and 6 both had the same centrality value,

then node 4 is ranked ahead of node 6 due to its identification label of 4 being less than 6. The

final ranking for a node with respect to a centrality measure is the same as the tentative ranking

for the node only if it does not have a tie with any other node for the centrality measure. If two

or more nodes have a tie with respect to a centrality measure, their final ranking is the average

of the tentative rankings for the nodes with respect to the measure [46]. Define di as the differ-

ence in the final ranking for node vi with respect to the two centrality measures CX and CY,

Table 1. The ranking of all 15 nodes in the example network G with respect to the degree (CD), eigenvector (CE), closeness (CC), betweenness (CB), and heatmap

(CHM) centrality measures.

Node vi CD(vi) Rank CE(vi) Rank CC(vi) Rank CB(vi) Rank CHM(vi) Rank

1 1 10 0.2993 9 0.022 11 0 8 13 10

2 1 11 0.2993 10 0.022 12 0 9 13 11

3 6 1 1 1 0.030 3 31 4 -6.667 3

4 2 8 0.518 5 0.022 10 0 10 10.5 9

5 3 4 0.730 3 0.028 6 4.5 7 0.667 6

6 5 2 0.919 2 0.036 1 55.5 1 -7.2 1

7 2 9 0.575 4 0.027 7 0 11 6.5 8

8 3 5 0.491 6 0.034 2 48 2 -3 4

9 3 6 0.3343 8 0.029 5 9 6 0 5

10 5 3 0.388 7 0.030 4 34 3 -6.8 2

11 1 12 0.116 13 0.022 13 0 12 13 12

12 3 7 0.238 12 0.023 9 13 5 1.667 7

13 1 13 0.116 14 0.022 14 0 13 13 13

14 1 14 0.275 11 0.024 8 0 14 13 14

15 1 15 0.071 15 0.018 15 0 15 13 15

https://doi.org/10.1371/journal.pone.0235690.t001
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where 1�i�N and N is the number of nodes in the network. Then the Spearman-rank correla-

tion coefficient of the rankings with respect to two centrality measures, CX and CY, is calcu-

lated as r CX;CYð Þ ¼ 1 �
6
PN

i¼1
di2

NðN2 � 1Þ
.

4.2 Kendall-rank correlation coefficient

For any two centrality measures, CX and CY, define a pair of nodes vi and vj as concordant with

respect to CX and CY if the nodes are arranged in the same order by the measures, and discor-

dant with respect to CX and CY if the nodes are arranged in opposite order [46]. For example,

if node 4 is ranked above node 6 by both measures CX and CY, then the node pair is concor-

dant. Yet, if node 4 is ranked above node 6 by measure CX, but ranked below node 6 by mea-

sure CY, then the node pair is discordant. If a pair of nodes are assigned the same ranking with

respect to CX and CY, then the node pair is considered neither concordant nor discordant.

Then the Kendall-rank correlation coefficient τ [47] of the rankings with respect to two cen-

trality measures, CX and CY, is calculated as, t CX;CYð Þ ¼
NC � ND
NCþND

, where NC is the total number

of concordant pairs and ND is the total number of discordant pairs.

4.3 Example calculation

To quantify the extent of the similarity in the ranking of the nodes with respect to the between-

ness and heatmap centrality measures on the example network G in Fig 2, the Spearman-rank

correlation is r CB;CHMð Þ ¼ 1 �
ð6Þð30Þ

15ð225� 1Þ
¼ 0:946 where N = 15 and

P15

i¼1
di

2
¼ 30, while the

Kendall-rank correlation is t CB;CHMð Þ ¼ 96� 9

96þ9
¼ 0:829 where NC = 96 and ND = 9. The details

of the calculation of the Spearman-rank correlation are provided in Table 2, while those for

the Kendall-rank correlation are provided in Table 3.

Table 2. The Spearman-rank correlation for the betweenness (CB) and heatmap (CHM) centrality measures is cal-

culated based upon the difference (di) in the final ranking with respect to the rankings of CB and CHM for each

node (vi) in network G.

Node vi CB Rank CHM Rank di di2

1 8 10 2 4

2 9 11 2 4

3 4 3 1 1

4 10 9 1 1

5 7 6 1 1

6 1 1 0 0

7 11 8 3 9

8 2 4 2 4

9 6 5 1 1

10 3 2 1 1

11 12 12 0 0

12 5 7 2 4

13 13 13 0 0

14 14 14 0 0

15 15 15 0 0

X15

i¼1

di
2
¼ 30

https://doi.org/10.1371/journal.pone.0235690.t002
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To assist in the calculation of the concordant and discordant pairs required for the Kendall-

rank correlation used in the example, the nodes vi in the first column of Table 3 are sorted

according to their CB ranking in the second column. The corresponding CHM ranking of each

node is listed in the third column. For example, node 8 is ranked second with respect to CB,

but ranked fourth with respect to CHM. Since the nodes are already sorted with respect to their

CB ranking, then the number of concordant pairs NC for node vi equals the total number of

larger ranks that exist below its CHM ranking. Similarly, the number of discordant pairs ND for

node vi equals the total number of smaller ranks that exist below its CHM ranking. For example,

consider node 12 which has CB and CHM rankings of 5 and 7, respectively. There are 8 concor-

dant pairs because nodes 1, 2, 4, 7, 11, 13, 14, and 15 have both a CB ranking below 5 and a

CHM ranking below 7. In addition, there are 2 discordant pairs since only nodes 5 and 9 have

both a CB ranking below 5 and a CHM ranking above 7. Similar calculations are performed to

determine the number of concordant and discordant pairs for the remaining nodes in the net-

work, with the results displayed in the fourth and fifth columns of Table 3.

5 The SI model

Since the diffusion of information can be likened to the propagation of a disease, an epidemic

model is proposed to track the information spreading process and identify potential super-

spreaders within the network. In particular, a susceptible-infected (SI) model is utilized to sim-

ulate the spreading process and examine the spreading capability (i.e., the spreading efficiency)

of the nodes within the network. In theory, the SI model identifies influential nodes based

upon the idea that an influential node is more likely to have a role in passing along a disease

(or analogously, information), and thus, have a stronger spreading capability [48]. The SI

model has been used as a baseline model to compare the rankings of centrality measures [35–

38], where the average infection efficiency of nodes is used as a measure to evaluate the effec-

tiveness of a centrality measure [49].

In the SI model, each node belongs to one of two possible states: susceptible or infected.

The susceptible state S(t) represents the number of nodes susceptible to, but not yet infected

Table 3. The Kendall-rank correlation for the betweenness (CB) and heatmap (CHM) centrality measures is calcu-

lated based upon both the total number of concordant (NC) and discordant (ND) pairs observed in network G.

Node vi CB Rank CHM Rank NC ND

6 1 1 14 0

8 2 4 11 2

10 3 2 12 0

3 4 3 11 0

12 5 7 8 2

9 6 5 9 0

5 7 6 8 0

1 8 10 5 2

2 9 11 4 2

4 10 9 4 1

7 11 8 4 0

11 12 12 3 0

13 13 13 2 0

14 14 14 1 0

15 15 15 0 0

Total 96 9

https://doi.org/10.1371/journal.pone.0235690.t003
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by, the disease at time step t. The infected state I(t) represents the number of nodes that have

been infected and are able to spread the disease to susceptible nodes at time step t. Infected

nodes can infect susceptible nodes with a fixed probability, and once a node becomes infected,

it remains infected. Initially, all nodes are in the susceptible state, with the exception of one

node in the infected state. At each time step t, for each infected node, one randomly selected

susceptible neighbor becomes infected with probability β. In this paper, the value of the infec-

tion probability is set to β = 1 for simplicity in the subsequent experiments. The cumulative

number of infected nodes at time step t, denoted by F(t), is used as a measure of the initially

infected node’s influence at time t. As the time step t increases, F(t) increases and eventually

stabilizes at time step tc, denoted by F(tc). Therefore, the spreading capability F(tc) is used to

illustrate the influence of a particular node, where a larger F(tc) indicates a stronger influence.

Although the top-10 nodes of a network may be equivalent among two measures, the order-

ing of the nodes may still differ. In order to demonstrate the effectiveness of the ranking with

respect to one centrality measure over that with respect to another centrality, the spreading

capability of the top-10 ranked nodes among each centrality measure is compared. Following a

similar direction taken by Qiao et al. [35], the top-10 nodes, collectively, serve as the source of

the infection. Although F(t) stabilizes at different values of tc for each real-world network, the

average infection capability of the top-10 nodes is calculated at each time step and used to

examine the infection ability of the top-10 nodes within each centrality ranking. Because only

one randomly selected susceptible neighbor becomes infected with probability β = 1 at each

time step, the spreading process is repeated 100 times independently to eliminate any environ-

mental randomness. It is noted that this SI model with β = 1 is a modified version of the stan-

dard SI model, in which all the susceptible neighbors of an infected node have a possibility to

become infected [7].

6 Simulation and analysis

The codes and the calculation of the heatmap and well-known centrality measures, along with

the spreading capability from the SI model, are generated and executed using version 1.2.4.2 of

the igraph package in R [50]. The datasets for the real-world scale-free networks are down-

loaded from version 0.1.3 of the networkdata package [51] and version 3.0.16 of the tnet pack-

age [52] in R. Finally, the experiments are run in parallel and performed on the RStudio

Virtual Machine provided by Pomona College. There are 2 CPUs (Intel Xeon Processor E5 v4

at 2.20 GHz) on the physical server that the RStudio Virtual Machine resides on, and each

CPU has 24 cores. With 2GB provisioned per core, the RStudio server has 96 GB of RAM.

6.1 Datasets

6.1.1 Simulated scale-free networks. To validate the computational efficiency of the pro-

posed centrality measure, the heatmap centrality is applied to simulated Barabási-Albert (BA)

scale-free networks of various size N and density d, where d is defined as the ratio of the num-

ber of edges present in the network to the number of possible edges in the network. The BA

model is an algorithm for generating scale-free networks through the preferential attachment

mechanism, in which the more connected a node is, the more likely it is to acquire new edges

[53]. In particular, the network begins with m0 (in this paper, m0 = 1) nodes. With a linear

preferential attachment, then at each time step, one new node is added to the network with

m�m0 edges that connect it to the existing nodes within the network. After t time steps, the

BA algorithm generates a network with |V| = N = t+m0 nodes and |E| = mt edges.

For an undirected network with |V| = N nodes and |E| = M edges, the density d is defined as

d ¼ 2M
NðN� 1Þ

. With m0 = 1, such that t = N−1 and M = m(N−1), it can be shown that the density
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in a BA scale-free network is d � 2m
N [54]. As the betweenness centrality is the slowest among

the four well-known measures (refer to Section 2 for the overview of its time complexity), the

betweenness measure is used to gauge whether the proposed measure can be computed in an

acceptable amount of time. In order to benchmark the runtimes of both the betweenness and

heatmap centralities as both the size N and density d of the network increase, BA scale-free

networks of size N and density d are constructed using the function sample_pa from the

igraph package by specifying both the size of the network N and the number of edges to add in

each time step, m, such that m � dN
2

. Table 4 contains the values of m used to simulate the

scale-free networks of various size and density in the experiments. For each specified size and

density, 100 scale-free networks are simulated. For each network in the set of 100 simulated

networks, the runtime to execute each centrality measure on the entire network is calculated.

For each set of 100 simulated networks, the mean and standard deviation of the runtimes are

calculated for each measure.

For each set of 100 simulated networks, the mean and standard deviation of the basic struc-

tural features of networks of size N and density d are calculated and are summarized in Tables

5–7, where <CD> denotes the average degree of a node, <cc> denotes the clustering coeffi-

cient (i.e., a measure of the degree to which nodes in a network tend to cluster together), and

diameter denotes the longest path of the shortest path between any two nodes.

6.2 Real-world scale-free networks

To validate its effectiveness in identifying influential nodes, the heatmap centrality is applied

to four real-world scale-free networks: (1) Email, the email communication network of a uni-

versity in Spain [55], (2) Polblogs, the hyperlink network about the political blogs in the United

States [56], (3) USFlights, the airline network consisting of the airports in the United States in

2010 [57], and (4) Facebook, the social network containing the online interactions between

students at University of California, Irvine [58].

Email is an undirected and unweighted network that depicts the email communication net-

work at the University of Rovira i Virgili in Tarragona in the south of Catalonia in Spain. In

Table 4. The value of m � dN
2 represents the number of edges added to each new node in each time step such that the network of size N is of the desired density d. In

the experiment, a total of 30 scale-free networks of various size and density are simulated.

m � dN
2 d = 0.002 d = 0.004 d = 0.006 d = 0.008 d = 0.01 d = 0.02

N = 1000 1 2 3 4 5 10

N = 2000 2 4 6 8 10 20

N = 3000 3 6 9 12 15 30

N = 4000 4 8 12 16 20 40

N = 5000 5 10 15 20 25 50

https://doi.org/10.1371/journal.pone.0235690.t004

Table 5. The mean and standard deviation of the average degree<CD> for each network size and density calculated from the 100 simulated networks.

<CD> d = 0.002 d = 0.004 d = 0.006 d = 0.008 d = 0.01 d = 0.02

N = 1000 1.998±0 3.994±0 5.988±0 7.98±0 9.97±0 19.89±0

N = 2000 3.997±0 7.99±0 11.979±0 15.964±0 19.945±0 39.79±0

N = 3000 5.996±0 11.986±0 17.97±0 23.948±0 29.92±0 59.69±0

N = 4000 7.995±0 15.982±0 23.961±0 31.932±0 39.895±0 79.59±0

N = 5000 9.994±0 19.978±0 29.952±0 39.916±0 49.87±0 99.49±0

https://doi.org/10.1371/journal.pone.0235690.t005
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the network, each node represents a user and each edge represents that at least one email was

sent between two connected users.

Polblogs is an undirected and unweighted network that depicts the United States political

blogosphere data compiled by Lady Adamic and Natalie Glance. In the network, each node

represents a blog and each edge represents a hyperlink between two blogs. To create the Pol-

blogs network, the largest connected component from the original network was selected,

which lowered the number of nodes by 268 from 1490 to 1222. All 268 nodes that were

removed were isolated in the original network. In addition, all edges, which were originally

directed, were made undirected. Finally, the network was made simple by removing all multi-

edges and loops, which lowered the number of edges by 3 from 16717 to 16714.

USFlights is an undirected and unweighted network of the United States’ airports in 2010,

where each node represents an airport and an edge is a direct route between two airports. To

create the USFlights network, the largest connected component from the original network was

selected, which lowered the number of nodes by 286 from 1858 to 1572. All 286 nodes that

were removed were isolated in the original network. In addition, all edges, which were origi-

nally directed, were made undirected. Finally, the network was made simple by removing all

multi-edges and loops, which lowered the number of edges by 11020 from 28234 to 17214.

Facebook is an undirected and unweighted network of the online social interactions that

originated from a virtual community among students at UC Irvine. Each node represents a

user and an edge represents that at least one message was sent between two users. To create

the Facebook network, the largest connected component from the original network was

selected, which lowered the number of nodes by 6 from 1899 to 1893. All 6 nodes that were

removed were isolated in the original network. In addition, all edges, which were originally

directed, were made undirected. Finally, the network was made simple by removing all multi-

edges and loops, which lowered the number of edges by 47899 from 61724 to 13835.

Fig 3 displays the degree distribution of each network, where each distribution exhibits a

power law with P(k)~k−γ, where γ>1, such that each network can be conjectured to be scale-

free. The basic structural features of the four real-world networks are summarized in Table 8,

where N and M denote the number of nodes and edges, respectively, in the network, d denotes

the density, <CD> denotes the average degree of a node,<cc> denotes the clustering coeffi-

cient, and diameter denotes the longest path of the shortest path between any two nodes.

Table 6. The mean and standard deviation of the clustering coefficient<cc> for each network size and density calculated from the 100 simulated networks.

<cc> d = 0.002 d = 0.004 d = 0.006 d = 0.008 d = 0.01 d = 0.02

N = 1000 0±0 0.010±0.001 0.018±0.001 0.025±0.001 0.032±0.001 0.059±0.001

N = 2000 0.006±0.001 0.014±0.001 0.022±0.001 0.029±0.001 0.035±0.001 0.062±0

N = 3000 0.007±0 0.016±0 0.023±0 0.030±0 0.036±0 0.063±0

N = 4000 0.008±0 0.017±0 0.024±0 0.031±0 0.037±0 0.064±0

N = 5000 0.009±0 0.017±0 0.025±0 0.031±0 0.037±0 0.064±0

https://doi.org/10.1371/journal.pone.0235690.t006

Table 7. The mean and standard deviation of the diameter for each network size and density calculated from the 100 simulated networks.

Diameter d = 0.002 d = 0.004 d = 0.006 d = 0.008 d = 0.01 d = 0.02

N = 1000 20.12±1.908 7.84±0.368 6±0 5.02±0.141 5±0 4±0

N = 2000 8.05±0.219 5.87±0.338 5±0 4.03±0.171 4±0 3±0

N = 3000 6.98±0.141 5±0 4.03±0.171 4±0 4±0 3±0

N = 4000 6±0 5±0 4±0 4±0 4±0 3±0

N = 5000 5.46±0.501 4.04±0.197 4±0 4±0 3.42±0.496 3±0

https://doi.org/10.1371/journal.pone.0235690.t007
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6.3 Efficiency analysis on simulated scale-free networks

The efficiency of the heatmap centrality is demonstrated by comparing its CPU (central pro-

cessing unit) time for the simulated scale-free networks described in Tables 4–7 against the

runtime of the betweenness centrality. In addition, the effectiveness of the heatmap centrality

is detailed by comparing both the Spearman-rank and Kendall-rank correlations of its ranking

with respect to the rankings of the degree, eigenvector, closeness, and betweenness centralities

on the same set of simulated scale-free networks.

6.4 Experiment 1: compare the CPU time

In this experiment, the function proc.time in version 3.6.0 of the base package in R [59] is used

to measure the CPU time (in seconds) required to execute the betweenness and heatmap cen-

trality measures on each simulated scale-free network of size N and density d. The CPU time is

defined as the sum of the “user time” and “system time” values, where “user time” is the CPU

time charged from the execution of user instructions of the calling process [59], and “system

time” is the CPU time charged for execution by the system on behalf of the calling process

[59]. The “user + system” value indicates how much CPU has been used to execute the algo-

rithm and calculate the centrality value of each of the N nodes in the simulated scale-free net-

work. The betweenness centrality is calculated using the function betweenness in the igraph

package [50]. The pseudocode for the heatmap centrality is provided in Fig 1. The functions

closeness and degree in the igraph package are used to calculate the closeness and degree cen-

trality, respectively, that are required in the calculation of the heatmap centrality.

Fig 4 displays the mean CPU time for each of the two centrality measures on the scale-free

networks of size N and density d, averaged from 100 iterations. The standard deviation of the

CPU time for each measure per network size and density from the 100 iterations is included in

Fig 4 as error bars to represent the variability. As both the size and density of the scale-free net-

work increases in Fig 4, the heatmap centrality requires nearly half the CPU time than the

betweenness centrality. Although the heatmap and betweenness centralities share the same

time complexity, it is noted that the magnitude of the observed differences in CPU times may

vary with different function implementations and versions of the packages in R.

6.5 Experiment 2: compare the correlation of the rankings

For each simulated scale-free network of size N and density d, the Spearman-rank and Ken-

dall-rank correlations of the heatmap centrality with respect to the degree, eigenvector, close-

ness, and betweenness measures are calculated. The results of the Spearman-rank correlation

are shown in Fig 5, while those of the Kendall-rank are shown in Fig 6. In this experiment,

Fig 3. The degree distribution of the four real-world networks. The degree distribution of each real-world network exhibits a power law distribution

P(k)~k−γ, where γ>1. The R2 calculated from the linear regression analysis on log(P(k))~ −γlog(k) is provided for each network as a measure of the

goodness of fit for the power law model on the degree distribution. The closer R2 is to 1, the higher the degree of fit to the power-law distribution.

https://doi.org/10.1371/journal.pone.0235690.g003

Table 8. The basic structural features of the four real-world scale-free networks.

Dataset Network Type N M d <CD> <cc> Diameter

Email Communication 1133 5451 0.0085 9.622 0.166 8

Polblogs Hyperlink 1222 16714 0.0224 27.355 0.226 8

USFlights Airline 1572 17214 0.0139 21.901 0.384 8

Facebook Social 1893 13835 0.0077 14.617 0.057 8

https://doi.org/10.1371/journal.pone.0235690.t008
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both rank correlation coefficients highlight similar relationships between each pair of central-

ity measures, although the values of Kendall’s τ tend to be smaller than that of Spearman’s ρ.

In particular, the Spearman-rank correlation between the rankings of the heatmap and degree

centralities in Fig 5 is strong. With the exception of a few network sizes and densities, as both

the size and density increase, the value of ρ for both the heatmap and closeness centralities,

and the heatmap and eigenvector centralities increases. Finally, the correlation of the rankings

with respect to the betweenness and heatmap centralities is the strongest amongst all other cor-

relations, with the value of ρ suggesting a very strong association between the rankings of the

Fig 4. The CPU time for the centrality measures. The CPU time (in seconds) of the both the (A) betweenness and (B) heatmap centrality measures

required to calculate the value of each node in the scale-free networks of size N and density d averaged over 100 iterations. The standard deviation of

the CPU times at each point is included.

https://doi.org/10.1371/journal.pone.0235690.g004

Fig 5. The Spearman-rank correlation coefficient ρ. The value of ρ for the rankings with respect to the (A) heatmap and degree, (B) heatmap and eigenvector, (C)

heatmap and closeness, and (D) heatmap and betweenness centrality measures applied to each simulated scale-free network of size N and density d. The standard

deviation of ρ at each point is included.

https://doi.org/10.1371/journal.pone.0235690.g005

PLOS ONE Heatmap centrality: A new measure for scale-free network analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0235690 July 7, 2020 18 / 31

https://doi.org/10.1371/journal.pone.0235690.g004
https://doi.org/10.1371/journal.pone.0235690.g005
https://doi.org/10.1371/journal.pone.0235690


two measures regardless of the value of N or d. Similar conclusions can be drawn from the

Kendall-rank correlation between the rankings of the centrality measures depicted in Fig 6.

6.6 Experimental analysis on real-world scale-free networks

To verify the efficiency of the heatmap centrality on real-world scale-free networks, several

experiments are conducted to examine the relative advantages and disadvantages. In order to

evaluate the efficiency of the proposed measure, four centrality measures which comprise of

degree, eigenvector, closeness, and betweenness are also applied to the same set of real-world

networks for comparison. The experiments include (1) identifying the ten most influential

nodes within each network, (2) measuring the effectiveness of the top-10 nodes with respect to

each centrality ranking using a modified susceptible-infected (SI) model, and (3) calculating

the correlation of the rankings with respect to each pair of centrality measures. The real-world

Fig 6. The Kendall-rank correlation coefficient τ. The value of τ for the rankings with respect to the (A) heatmap and degree, (B) heatmap and eigenvector, (C)

heatmap and closeness, and (D) heatmap and betweenness centrality measures applied to each simulated scale-free network of size N and density d. The standard

deviation of τ at each point is included.

https://doi.org/10.1371/journal.pone.0235690.g006
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networks of varying sizes and densities include (1) Email, (2) Polblogs, (3) USFlights, and (4)

Facebook, where the basic structural features of the four real-world networks are provided in

Table 8.

6.7 Experiment 1: compare the top-10 ranked nodes

In this experiment, the proposed heatmap centrality measure (CHM), degree centrality (CD),

eigenvector centrality (CE), closeness centrality (CC), and betweenness centrality (CB) are

employed to identify the top-10 nodes of the four real-world networks: Email, Polblogs,

USFlights, and Facebook. The results are shown in Tables 9–12. With respect to the centrality

measures CD, CE, CC, and CB, the top-ranked node has the most positive value, while the top-

ranked node according to the heatmap centrality CHM has the most negative value. In each

table, the nodes that have been identified by all five measures are bolded.

According to the results shown in Table 9, in the Email network, the proposed measure

CHM shares the same seven, three, eight, and nine nodes between CD, CE, CC, and CB respec-

tively. Based upon the results shown in Table 10, in the Polblogs network, the number of the

same nodes in the top-10 ranking between the heatmap centrality and CD, CE, CC, and CB is

Table 9. The top-10 ranked nodes of the Email network with respect to the degree (CD), eigenvector (CE), close-

ness (CC), betweenness (CB), and heatmap (CHM) centrality measures. The nodes in bold are identified by all five

measures.

Email

Rank CD CE CC CB CHM

1 100 100 310 310 512

2 310 16 23 100 23

3 16 183 100 23 100

4 23 191 38 512 219

5 38 38 37 72 72

6 37 45 72 219 310

7 183 52 219 127 127

8 219 109 48 37 37

9 21 310 127 332 38

10 72 3 353 38 504

https://doi.org/10.1371/journal.pone.0235690.t009

Table 10. The top-10 ranked nodes of the Polblogs network with respect to the degree (CD), eigenvector (CE),

closeness (CC), betweenness (CB), and heatmap (CHM) centrality measures. The nodes in bold are identified by all

five measures.

Polblogs

Rank CD CE CC CB CHM

1 127 127 838 672 127

2 838 48 127 127 672

3 672 497 497 768 497

4 48 566 48 838 838

5 497 283 890 497 768

6 768 147 566 1178 48

7 1006 838 768 48 890

8 566 84 922 782 566

9 922 384 1178 922 922

10 1178 498 672 566 1178

https://doi.org/10.1371/journal.pone.0235690.t010

PLOS ONE Heatmap centrality: A new measure for scale-free network analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0235690 July 7, 2020 20 / 31

https://doi.org/10.1371/journal.pone.0235690.t009
https://doi.org/10.1371/journal.pone.0235690.t010
https://doi.org/10.1371/journal.pone.0235690


nine, five, ten, and nine, respectively. From the results in Table 11, in the USFlights network,

the proposed measure CHM shares the same four, two, four, and five nodes between CD, CE,

CC, and CB respectively. Finally, based upon the results shown in Table 12, in the Facebook

network, the number of the same nodes in the top-10 ranking between the heatmap centrality

and CD, CE, CC, and CB is eight, seven, eight, and eight, respectively.

With the exception the results taken from the USFlights network, the heatmap centrality

shares a minimum of seven of the top-10 ranked nodes with the degree, closeness, and

betweenness centralities, respectively. Finally, with respect to the eigenvector centrality, the

heatmap centrality shares only three to seven of the top-10 ranked nodes.

6.8 Experiment 2: compare the average spreading capability of the top-10

ranked nodes

In this experiment, a modification of the susceptible-infected (SI) model is used to estimate

the spreading capability (i.e., spreading influence) of the top-10 nodes ranked by the degree,

eigenvector, closeness, betweenness, and heatmap centrality measures. Inspired by the direc-

tion of Qiao et al. [35], the top-10 nodes ranked by each centrality measure collectively serve as

Table 11. The top-10 ranked nodes of the USFlights network with respect to the degree (CD), eigenvector (CE),

closeness (CC), betweenness (CB), and heatmap (CHM) centrality measures. The nodes in bold are identified by all

five measures.

USFlights

Rank CD CE CC CB CHM

1 97 1016 97 76 427

2 604 97 754 427 76

3 1016 368 907 754 39

4 754 604 333 654 60

5 654 907 604 866 97

6 333 335 654 1219 682

7 422 1062 841 584 754

8 907 606 1016 333 654

9 606 422 422 97 1074

10 866 176 606 907 604

https://doi.org/10.1371/journal.pone.0235690.t011

Table 12. The top-10 ranked nodes of the Facebook network with respect to the degree (CD), eigenvector (CE),

closeness (CC), betweenness (CB), and heatmap (CHM) centrality measures. The nodes in bold are identified by all

five measures.

Facebook

Rank CD CE CC CB CHM

1 103 103 32 9 105

2 9 105 105 398 32

3 105 32 9 105 9

4 398 9 3 32 3

5 32 247 636 103 398

6 41 636 103 42 521

7 3 398 42 3 42

8 42 3 247 41 636

9 247 370 596 521 711

10 636 194 398 247 103

https://doi.org/10.1371/journal.pone.0235690.t012

PLOS ONE Heatmap centrality: A new measure for scale-free network analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0235690 July 7, 2020 21 / 31

https://doi.org/10.1371/journal.pone.0235690.t011
https://doi.org/10.1371/journal.pone.0235690.t012
https://doi.org/10.1371/journal.pone.0235690


PLOS ONE Heatmap centrality: A new measure for scale-free network analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0235690 July 7, 2020 22 / 31

https://doi.org/10.1371/journal.pone.0235690


the set of initially infected nodes. As the time step t increases, the total number of infected

nodes F(t) increases and finally stabilizes at time step tc, at which time there are no susceptible

nodes within the network. Due to the size of each real-world network, the value of tc varies

such that F(t) eventually stabilizes around tc = 25, 25, 30, and 25 time steps for the Email, Pol-

blogs, USFlights, and Facebook networks, respectively. The mean and standard deviation of F
(t) for each centrality measure is calculated from the 100 iterations. Figs 7–10 depict the mean

spreading capability F(t) of the top-10 nodes with respect to each centrality measure for each

real-world network, where the standard deviation is included as error bars to represent the

variability.

From Fig 7, in the Email network, the proposed model shows similar spreading efficiency

with degree, closeness, and betweenness, while outperforming that of the eigenvector central-

ity. In the Polblogs network, the curve generated from the proposed measure in Fig 8 is nearly

identical to that from the degree, closeness, and betweenness centralities, while outperforming

that of eigenvector centrality. The result from Fig 8 is not surprising, as the same nine of the

top-10 nodes are identified by the degree, closeness, betweenness, and heatmap centralities.

From Fig 9, in the USFlights network, the curve produced by the heatmap centrality is steeper

in comparison with the curves of degree, eigenvector, and closeness, but is similar to the curve

produced by the betweenness centrality. Finally, from Fig 10, a similar spreading efficiency is

demonstrated among all five measures, with the curves almost all overlapping. In conclusion,

the heatmap centrality presents similar spreading efficiency performances, overall, when com-

pared with the other measures.

6.9 Experiment 3: compare the correlation of the rankings

To quantify the correctness of the rankings with respect to the centrality measures in real-

world scale-free networks, both the Spearman-rank and Kendall-rank correlation coefficients

are adopted, and the results are displayed in Tables 13 and 14, respectively. Among the correla-

tion of the rankings with respect to the centrality measures, the values of both ρ and τ are

strongest for the betweenness and heatmap centralities. In particular, the correlations among

the four real-world networks are 0.88<ρ(CHM, CB)<0.98 and 0.70<τ(CHM, CB)<0.88. In a

comparison with the remaining three measures, the ranking of the heatmap measure is more

highly correlated with that of degree while less correlated with that of the eigenvector central-

ity. In summary, while displaying a strong correlation with the degree centrality, the heatmap

centrality possesses the strongest correlation with the betweenness measure in each of the real-

world networks.

7 Discussion

Motivated by a different interpretation of the “shortest path” between two nodes, this paper

aims to explore the properties of a new centrality measure, the heatmap centrality, as a poten-

tially viable measure in the identification of super-spreader nodes in scale-free networks.

Although high degree nodes, high betweenness nodes, and high closeness nodes have been

identified as good initial spreaders, the heatmap centrality utilizes features from all three mea-

sures to strike a balance between accuracy and algorithmic simplicity in the identification of

the super-spreader nodes within real-world networks. By definition, the heatmap centrality

may be considered a “shortest path” based measure, in that it identifies an influential node as

Fig 7. The spreading capability F(t) in the Email network. A comparison of F(t) of the top-10 nodes in the Email network between the heatmap

centrality and the (A) degree, (B) eigenvector, (C) closeness, and (D) betweenness centrality measures. The standard deviation of F(t) at each point is

included.

https://doi.org/10.1371/journal.pone.0235690.g007
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Fig 8. The spreading capability F(t) in the Polblogs network. A comparison of F(t) of the top-10 nodes in the Polblogs network between the heatmap

centrality and the (A) degree, (B) eigenvector, (C) closeness, and (D) betweenness centrality measures. The standard deviation of F(t) at each point is

included.

https://doi.org/10.1371/journal.pone.0235690.g008
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one with a higher likelihood of having information pass through the particular node by consid-

ering the difference in the node’s farness and the average sum of the farness of its adjacent

neighbors. To verify the effectiveness of the heatmap centrality, two experiments based upon

simulated scale-free networks and three experiments based upon four real-world scale-free

networks are conducted.

The results of the experiments based upon the simulated scale-free networks are:

1. The proposed heatmap centrality on sparse networks can be computed in an acceptable

amount of time as both the size and density of the network increase.

2. With the exception of a few network sizes and densities, the heatmap measure exhibits an

increasing correlation with respect to the eigenvector and closeness centralities as both the

size and density of the network increase.

3. Regardless of the size or density of the network, the correlations among the heatmap with

respect to the degree and betweenness centralities are strong.

4. The correlation among the heatmap and betweenness centrality is the highest correlation

among any other pair of measures.

The results of the experiments based upon the real-world scale-free networks are:

1. The heatmap centrality shares, at minimum, seven of the top-10 ranked nodes identified by

the degree, closeness, and betweenness centralities, respectively.

2. Using a modification of the standard SI model, the heatmap centrality presents similar

spreading efficiency performances when compared with the spreading efficiency of the

other measures.

3. The degree and betweenness centrality measures each possess a strong correlation with the

heatmap centrality.

4. In comparison to the other measures, the heatmap centrality is most strongly correlated

with the betweenness centrality.

In summary, the properties of the heatmap centrality as a potential measure to identify

super-spreader nodes in scale-free networks are highlighted through the experimental results.

In particular, the proposed measure may be executed in acceptable amount of CPU time, can

successfully identify top-10 nodes, and possesses the strongest correlation with the between-

ness centrality measure.

In this paper, the proposed heatmap centrality measure is applied to undirected and

unweighted scale-free networks. Yet, a real-world scale-free network may be directed and/

or weighted. Therefore, future research includes an evaluation of the proposed measure on

direct and weighted scale-free networks, as well as on other network models, such as ran-

dom networks or small-world networks. In addition, future work includes exploring the

relationship of the heatmap centrality with other diffusion and flow-based centrality mea-

sures, such as random-walk betweenness, flow betweenness, random walk, entropy, and

information centrality.

Fig 9. The spreading capability F(t) in the USFlights network. A comparison of F(t) of the top-10 nodes in the USFlights network between the

heatmap centrality and the (A) degree, (B) eigenvector, (C) closeness, and (D) betweenness centrality measures. The standard deviation of F(t) at each

point is included.

https://doi.org/10.1371/journal.pone.0235690.g009
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