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Abstract: The present review deals with the stages of creation, methods of calculation, and the use of
a genetic risk score for coronary heart disease in various populations. The concept of risk factors
is generally recognized on the basis of the results of epidemiological studies in the 20th century;
according to this concept, the high prevalence of diseases of the circulatory system is due to lifestyle
characteristics and associated risk factors. An important and relevant task for the healthcare system
is to identify the population segments most susceptible to cardiovascular diseases (CVDs). The level
of individual risk of an unfavorable cardiovascular prognosis is determined by genetic factors in
addition to lifestyle factors.

Keywords: genetic risk score; risk factor; myocardial infarction; coronary heart disease;
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1. Introduction

Cardiovascular diseases (CVDs) play a leading role in terms of adverse effects on life expectancy
and mortality globally [1]. The concept of risk factors (RFs) is generally recognized on the basis of
epidemiological findings in the 20th century; according to this concept, the high prevalence of diseases
of the circulatory system is due to lifestyle characteristics and associated RFs. Among the RFs of
diseases of the circulatory system and myocardial infarction (MI), there are conventional (smoking,
arterial hypertension, dyslipidemia, diabetes mellitus, and abdominal obesity) and unconventional,
including psychosocial RFs (stress, anxiety and depression, an income level, marital status, and family
conflicts). According to the results of the international INTERHEART study (conducted in 52 countries),
much like hypertension and abdominal obesity, unconventional RFs are important indicators of MI
risk [2]. An important and relevant task for the healthcare system is to identify the population segments
most susceptible to CVDs. The level of individual risk of an unfavorable cardiovascular prognosis is
determined by genetic factors in addition to lifestyle factors. The relative risk of new coronary events
in patients with high genetic risk is 91% higher than that in people with low genetic risk (hazard ratio
(HR) = 1.91; 95% confidence interval (CI); 1.75–2.09) [3]. It has been shown that structural changes in
DNA independently affect overall mortality caused by cardiovascular events and MI [3–11]. The risk
of an adverse outcome depends on the presence of a particular allele or genotype.

Cardiovascular risk is the likelihood of one or another adverse cardiovascular event (including
death from CVD or complications) over a period of time. In clinical and research practice, several
instruments are used to assess the total risk of cardiovascular pathology (Framingham, Systematic
Coronary Risk Evaluation (SCORE), and Prospective Cardiovascular Munster Study (PROCAM)).

The Framingham Risk Scale was proposed according to the results of the longest prospective study
(Framingham Heart Study, 1949–1984) conducted in the United States, which included 5209 people.
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This tool allows to assess 10-year risk of fatal and nonfatal cardiovascular complications, and this
risk has 4 grades: low (risk of complications less than 10%), medium (risk greater than 10% and less
than 20%), high (>20%), and very high (>30%). To calculate the total score, 5 factors are taken into
account: unmodifiable (sex and age) and modifiable ones (smoking, total cholesterol, and systolic
blood pressure) [12]. This risk calculator has shown good prognostic power in some cohorts similar to
those in which it was designed [13], but it is known to overestimate the risk in other ethnic groups [14]
and in other populations of European ethnicity where there is a lower incidence of coronary heart
disease (CHD) [15,16].

The SCORE (Systematic Coronary Risk Evaluation) scale was created in Europe in 2003 on the
basis of 12 cohort studies and data on 205,178 patients [17]. It predicts the possibility of an adverse
outcome of CVDs by taking into account sex, age, systolic blood pressure, total cholesterol, and smoking
status. This instrument allows us to calculate the risk of death from all CVDs, takes into account the
multifactorial nature of the etiology of diseases, makes it possible for doctors from different countries
to determine the risk, and clearly demonstrates an increase in the risk with age [18]. It has some
limitations: this risk calculator is intended for people from 40 to 65 years old and does not take into
consideration the level of low-density lipoprotein cholesterol (LDL-C), blood glucose, overweight,
and abdominal obesity.

The PROCAM (Prospective Cardiovascular Munster Study) scale was developed from the results
of a prospective study, PROCAM (Munster, Germany), which began in 1979. The study involved
21,306 people (14,799 males aged 40 to 65 years and 6507 postmenopausal females) [19]. This model is
based on three unmodifiable RFs (age, a history of MI, and a hereditary history of relevant diseases)
and six modifiable ones (smoking status, systolic blood pressure, LDL-C, high-density lipoprotein
cholesterol, triglycerides, and the presence of diabetes mellitus). A risk less than 20% is considered
low, and greater than 20% is considered high.

A family history of relevant diseases is of no small importance for assessing cardiovascular
risk. Risk calculators addressing the contribution of genetic factors are under development [3–8].
The complexity of their creation is due to the population-specific prevalence of CVDs, characteristics of
climatic and social living conditions, and genetic factors.

The present review deals with the stages of creation, methods of calculation, and the use of a
genetic risk score (GRS) for coronary heart disease (CHD) in various populations.

2. History of Development of Genetic Risk Calculators

In 2005, Horne B.D. et al. described a method for calculating a GRS for predicting CHD, and this
tool was based on a combination of genotyping data on single-nucleotide polymorphisms (SNPs) [20].
Three SNPs of the cholesterol metabolic pathway were evaluated for 3172 patients after coronary
angiography. The GRS method revealed significant differences in the risk of CHD across GRS groups,
while these SNPs when considered either separately or simultaneously as independent variables did
not show a substantial influence on the risk. The potential usefulness of this method for assessing
the multigenic risk of CHD was demonstrated (Table S1) [20]. The utility of the proposed genetic
risk calculator was confirmed in 2007 by means of a prospective study on the risk of atherosclerosis
(Atherosclerosis Risk in Communities Study, ARIC) [21]. That study showed that a GRS can improve
a CHD-predictive ability as compared to a risk calculator consisting of only traditional risk factors
(TRFs; Table S1) [21].

In subsequent years (2008–2015), studies had been carried out with different variations of the GRS
and indicated correlations with CHD, MI, or other CVDs (Table S1) [4–7,22–40]. Nonetheless, several
studies have not detected such an association (Table S1) [41–43].

To obtain estimates of the risk of CVDs in individuals by means of the GRS, the Cox proportional
hazards model and logistic regression analysis have been used mainly [44–47].

Discrimination and reclassification have been the criteria for GRS quality in such studies (Table S1).
Discrimination measures the ability of a prognostic method to distinguish patients with CHD from
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patients without CHD. Reclassification means that individuals are reassigned from one risk category
to another. One of the common quantitative estimates of discrimination is the area under the
receiver-operating characteristic (ROC) curve (area under the ROC curve, AUC) or the C-statistic [48–50].
In 2007, Pencina J. M. et al. introduced new quantitative estimates of an increase in prognostic ability
toward a disease in a new method as compared to an old one with proven clinical usefulness: net
reclassification improvement (NRI) and integrated discrimination improvement [51].

3. Modern Models of Genetic Risk Calculators (2016–2020)

Antiochos P. et al. have evaluated prognostic power of a combination of a family history of
diseases and GRSs (38, 53, and 153 SNPs) for CHD cases among whites from a prospective study,
CoLaus. After adjustment for cardiovascular RFs, both the family history and weighted polygenic
GRSs were found to be associated with CHD, both jointly and separately, and provided additional
information for predicting coronary events [52].

Tada H. et al. have tested whether the prognostic ability of a GRS for CHD would improve with
an extension of GRS-27 published in 2015 by Mega J.L. et al. [7] up to a version composed of 50 SNPs
and also determined whether these GRSs are independent of a family history of CHD. Those authors
came to the following conclusions: (1) The addition of 23 SNPs to the previously published GRS-27
improves the assessment of CHD risk; (2) these GRSs are independent of the family history. CHD risk
assessment using a GRS can be especially useful for young people [8].

Vaara S. et al. have created 3 partially overlapping GRSs (47 SNPs significantly associated with
CHD in previous studies, 153 SNPs with significant or presumptive association with CHD, and 32 SNPs
from the first detected CHD-associated genomic loci) and tested their prognostic ability for a relapse
of acute coronary syndrome (ACS). For GRS-47, a significant association with ACS recurrence was
confirmed regardless of clinical factors (HR = 1.17, 95% CI: 1.01–1.36, p = 0.037). For GRS-153,
the association with relapses of ACS and/or mortality was not confirmed; however, an association of
GRS-32 with a three-vessel lesion was found, and, for GRS-47, an inverse correlation with smoking
and MI featuring ST elevation was revealed [53].

In a study by Hindieh W. et al., a family history after adjustment for sex, age, TRFs, and GRS was
associated with multi-vessel lesions in CHD, as was the GRS after adjustment for TRFs including the
family history. Thus, both the GRS and a family history provided important information related to the
severity of CHD at a young age (≤55 years) [54].

Despite the high prevalence of cardiovascular RFs, such as hypertension, diabetes mellitus, and
obesity, Afro-Caribbean mortality from CHD is lower than that of whites. Larifla L. et al. have
evaluated the association of two GRSs—consisting of overlapping sets of 19 and 14 SNPs previously
associated with CHD in whites—with CHD in Afro-Caribbean countries. This study indicated that the
tested multilocus GRSs are strong predictors of this disease in Afro-Caribbeans. Significant differences
in the allele distribution of 17 SNPs were noted between the two ethnic groups (Afro-Caribbeans and
whites) [55].

3.1. From Tens to Tens of Thousands of SNPs

Abraham G. et al. have created a GRS of 49,310 SNPs based on a meta-analysis by the
CARDIoGRAMplusC4D Consortium and tested it on five prospective population cohorts (three
FINRISK and two Framingham Heart Study cohorts). For the studied GRS, an association with CHD
was found in two cohorts (FINRISK: HR = 1.74, 95% CI: 1.61–1.86; Framingham: HR = 1.28, 95% CI:
1.18–1.38). Integration of the GRS with the Framingham Risk Score or ACC/AHA13 improved 10-year
risk prediction, especially for people over 60. The high genomic risk was partially offset by low systolic
blood pressure and cholesterol levels as well as by nonsmoking status. Those authors concluded that a
GRS based on a large number of SNPs improves the risk assessment of CHD [56].

Joseph P.G. et al. have investigated the contribution of a GRS—consisting of 25 SNPs associated
with CHD in Europeans and South Asians—to MI risk in various populations, with six ethnic groups
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as an example (Europeans, South Asians, Southeast Asians, Arabs, Hispanics, and Africans from
the INTERHEART cohort). The GRS was significantly associated with MI with minimal observed
heterogeneity in Europeans, South Asians, Southeast Asians, and Arabs but not in Hispanics and
Africans. In the general cohort, there were only minor changes in the prognostic ability as compared to
clinical factors alone [57].

Sotos-Prieto M. et al. have examined the interaction and presence or absence of synergy between
the Lifestyle Cardiovascular Risk Score (LCRS) and a GRS (14 SNPs associated with MI) in the adult
Hispanic/Latino population of Costa Rica. Odds ratios (ORs) for MI were 2.72 (95% CI: 2.33–3.17) per
LCRS unit and 1.13 (95% CI: 1.06–1.21) per GRS unit, and there was a significant joint association
for high tertiles of the GRS and LCRS as compared to low tertiles. According to those authors,
improvements in a lifestyle can help prevent MI regardless of genetic predisposition [58].

Amit V. Khera et al. have estimated the extent to which a healthy lifestyle can offset an increased
genetic risk of CHD. The relative risk of new coronary events in participants with high genetic risk
was 91% higher relative to those with low genetic risk. Regardless of the category of genetic risk,
with a healthy lifestyle (defined as the presence of at least three out of four healthy-lifestyle factors),
the risk of coronary events was significantly lower than that with an unhealthy lifestyle (complete
absence of healthy-lifestyle factors or the presence of only one of them). In all four samples with a total
of 55,685 participants drawn from prospective cohorts of ARIC, the Women’s Genome Health Study
(WGHS), the Malmö Diet and Cancer Study (MDCS), and the BioImage Study, genetic and lifestyle
factors independently influenced the susceptibility to CHD. In participants with a high genetic risk,
a healthy lifestyle decreased the relative risk of CHD by almost 50% as compared with an unhealthy
lifestyle [3].

Widespread genetic risk variants can contribute to the heritability of early CHD. Christiansen
M.K. et al. have assessed the association of a GRS (45 SNPs) with age at CHD onset and examined the
relation between the GRS, familial clustering, and severity of CHD at its early onset. A higher risk
shown by the GRS was registered in patients with early-onset CHD compared with late CHD and
controls, but the GRS did not correlate with the stratified log-rank family score, which was employed
to assess family clustering. Nevertheless, there was a significant association of the stratified log-rank
family score with CHD (OR = 2.0, 95% CI: 1.4–3.0), suggesting that the analysis of a family history and
TRFs are of greater clinical relevance than the GRS in question [59]. Additionally, this GRS (45 SNPs)
was tested in relation to the recurrence of cardiovascular events (MI, coronary revascularization,
and cardiovascular death) in patients with a confirmed diagnosis of CHD. The most pronounced effect
of this GRS (for a high risk score) was detected for coronary revascularization (adjusted HR = 2.10,
95% CI: 1.08–4.07). The risks of death from cardiovascular events and of death of all causes did not
change [60].

Shahid S.U. et al. have analyzed the genetic risk of CHD in individuals from Pakistan by means of
a GRS consisting of 21 variants in 18 genes and determined whether this GRS is associated with blood
lipid levels. The GRS was found to be associated with CHD, and the OR was statistically significantly
higher in the top quintile than in the bottom quintile (2.96, 95% CI: 1.71–5.13). A strong correlation of
atherogenic blood lipids with the GRS was noted too: an increase in atherogenic and a decrease in
atheroprotective lipids’ levels were shown to be associated with a higher GRS result [61].

Fritz J. et al. in their study showed an association of a family CHD history and of the GRS-50 used
by Tada et al. [8] with CHD (HR = 1.52, 95% CI: 1.39–1.65 and 1.53, 95% CI: 1.39–1.68, respectively).
They concluded that some of the risk of CHD associated with a family history or the GRS result is
mediated by elevated blood lipids (along the apoB pathway: −8.3% and 8.1%) and hypertension
(8.5% and 4.2%, respectively) but not diabetes mellitus (1.5% and −0.9%, respectively). Nonetheless,
most (≥80%) of the genetic effect is independent of metabolic RFs [62].

Psychological stress is an independent RF of CVDs, but the mechanism via which stress is linked
with CVDs is not well studied. The purpose of a study by Svensson T. et al. was elucidation of the
association between (i) a GRS (50 SNPs) (with previously proven association with CHD [8]), individual
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genetic variants (SNPs from the GRS that are associated with increased risk), and stress and (ii) CHD,
fatal MI, nonfatal MI, or cardiovascular death. No independent association of stress with any of the
endpoints and no interaction of stress with GRS were found. For the first time, it was revealed that the
GRS predicting CHD (upper quartile HR = 1.72, 95% CI: 1.51–1.96) also significantly predicts fatal
MI (upper-quartile HR = 1.62, 95% CI: 1.23–2.15), nonfatal MI (upper-quartile HR = 1.55; 95% CI:
1.31–1.84), and cardiovascular death (upper-quartile HR = 1.29, 95% CI: 1.08–1.53) [63].

On the basis of earlier research [7,64,65], Natarajan P. et al. have tested (in the third randomized
controlled trial of a primary prevention modality (WOSCOPS)) whether statin therapy reduces relative
risk of a first coronary event in individuals at high genetic risk by means of an extended GRS (57 SNPs).
They also determined whether there is an association between the GRS and coronary artery calcification
(CARDIA) and the severity of carotid plaques (BioImage). Among the WOSCOPS study participants
with a high genetic risk, statin therapy was associated with a relative risk reduction of 44% (95%
CI: 22–60; p < 0.001), while in all other patients, the relative risk reduction was 24% (95% CI: 8–37;
p = 0.004), despite a similar decrease in LDL-C levels. Additionally, each increase in GRS by 1 standard
deviation was associated with a 1.32-fold increase (95% CI: 1.04–1.68) in the likelihood of coronary
artery calcification and a 9.7% increase (95% CI: 2.2–17.8) in the severity of a carotid plaque [66].

Paquette M. et al. have shown that a GRS containing 192 SNPs predicts CVDs in general and CHD
in particular (OR = 1.82, 95% CI: 1.35–2.47 and OR = 1.76, 95% CI: 1.29–2.41, respectively, p < 0.001) in
patients with familial hypercholesterolemia (FH). These results indicate that even in a severe monogenic
disease such as FH, a GRS can improve the risk assessment of CVDs, thereby possibly facilitating a
more personalized approach to treatment [67].

Although most studies are focused on identifying genetic factors of CVDs, only a few deal with a
GRS to improve the prediction of recurrence in patients with established CVDs; the latter approach
may be of therapeutic value in the management of these patients [7,42,53]. Accordingly, the aim of the
study by Pereira A. et al. was the assessment of long-term cardiovascular mortality in individuals
with CHD from Southern Europe by means of a GRS (32 SNPs). At the end of the observation period
(25.8–88.1 months), the estimated survival probability was 70.8% for a high GRS value and 80.8% for a
low GRS value. This work also emphasizes the relevance of genetic profiling to survival after CHD [68].

Another study was conducted by Zhao C. et al. to investigate whether a GRS can assess the risk
of major adverse cardiovascular events (MACEs) in patients with established CHD. Study participants
with CHD receiving statin therapy and with hypertension manifested an association between weighted
GRS and MACEs. Such individuals with a medium or high risk according to the GRS also had a 2.138-
and 4.048-fold higher risk of a MACE, respectively [69].

Pereira A. et al. have evaluated the utility of adding a multilocus GRS to the Framingham Risk
Score during the risk assessment of CHD. Multivariate analysis showed that the GRS is an independent
predictor of CHD onset (OR = 1.87, p < 0.0001). The tested GRS added prognostic value to TRFs in all
risk subgroups [70].

One of severe subtypes of CHD is left main coronary artery disease (LMCAD), which is associated
with adverse clinical outcomes [71] and has a genetic contributing factor [72,73]. Xiu Z. et al. have
added three SNPs associated with an inflammatory response and initiation of CHD processes into
a GRS to predict LMCAD. After adjustment for sex, age, and clinical variables related to CHD (e.g.,
body–mass index, smoking status, hypertension, hyperlipidemia, and diabetes mellitus), a high-risk
group according to the GRS had an increased probability of LMCAD (OR = 2.78, 95% CI: 1.69–4.58,
p = 0.02) as compared to a low-risk group [74].

3.2. MetaGRS

For the primary prevention of CHD, Inoye M. et al. have constructed a GRS (metaGRS) based on
1.7 million SNPs identified by a meta-analysis and assessed its potential. All three GRSs tested—(1)
46,000 SNPs from Metabochip, (2) 202 SNPs significantly associated with CHD, (3) a whole-genome GRS
from the 1000 Genomes Project—turned out to be associated with CHD (HR = 1.71, 95% CI: 1.68–1.73).
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In an analysis of nearly 500,000 individuals from a prospective nationwide cohort study (UK Biobank),
those authors evaluated a combined genomic risk metric (metaGRS) based on the summary statistics of
the largest previous genome-wide studies on associations with CHD. They reported several discoveries
that significantly advance the concept of applying genomic information to help stratify people at risk
of CHD in general populations. MetaGRS yielded greater risk discrimination than did previously
published genomic risk calculators based on selected SNPs. For instance, those authors found that
metaGRS has a higher HR and positive predictive value at any given sensitivity as well as a 4-fold
HR for CHD when comparing people in the upper and lower quintiles of the risk score distribution.
Because these findings suggest that the higher genetic risk can at least in part be diminished by
lipid-lowering and/or hypotensive therapy, people at high genetic risk may get the greatest benefit
from starting these treatments early. On the other hand, the GRSs currently in use also predict the
risk of CHD in people already on statin therapy for CHD, thus highlighting the need to develop new
modalities to reduce the residual risk of the disease. At the same time, the genetically determined risk
of CHD is mostly independent from common RFs such as blood lipids, blood pressure, and smoking.
Therefore, the GRS developed in that study helps to significantly improve the stratification of people
by CHD risk in various populations and shows potential usefulness of genomic screening at an early
age in addition to traditional risk assessment techniques [75].

In another study, researchers analyzed four SNPs affecting coronary arteries and genotyped
them in a Pakistani ethnic group. For each individual SNP, no statistically significant associations
with CHD were found, in contrast to the GRS constructed from them (p = 1.4 × 10−4). Nevertheless,
those authors note that a panel of SNPs included in a GRS should be designed carefully, in particular,
the predisposition to the disease in different ethnic groups should be taken into consideration [76].

The vast majority of cardiovascular genomic studies have been conducted on populations of
European descent. Thus, study subjects of African, Latin American, or Asian ancestry remain
underrepresented in this research field. Iribarren C. et al. have investigated two GRSs (12 and 51 SNPs)
previously associated with CHD in Europeans among individuals of African American, Hispanic,
and East Asian descent. In a comparison of the third tertile with the first, GRS-12 showed an association
with an increased risk of CHD in African Americans and Hispanics but not East Asians (HR = 1.86, 95%
CI: 1.15–3.01, HR = 1.52, 95% CI: 1.02–2.25, and HR = 1.19, 95% CI: 0.77–1.83, respectively). For GRS-51,
an association was identified for Hispanics and East Asians but not for African Americans (HR = 1.40,
95% CI: 0.95–2.06, HR = 1.43, 95% CI: 0.93–2.22, and HR = 1.49, 95% CI: 0.93–2.39, respectively). In a
meta-analysis, both GRSs proved to be associated with the risk of CHD with a similar effect size [77].

In developing countries, the average age at the first signs of CHD (usually angina pectoris)
typically exceeds 60 years [78]. Nevertheless, there is evidence that lipid streaks, which are precursors
of atherosclerosis and therefore CHD, are formed in virtually all adolescents [79]. In a study by Battram
T. et al., genetic variants (146 SNPs) affecting the risk of CHD in adults were reported to be associated
with large changes in metabolite levels in individuals as young as 7 years of age. The identified variants
are mainly related to lipid loci, and the metabolites with which they are associated are mostly related
to lipoproteins. Along with further research, this knowledge may enable preventive measures such
as increased monitoring of individuals at risk and possibly treatment at an earlier age, several years
before the manifestation of any symptoms [80].

Liu R. et al. have devised a GRS called FDR-267 (named after the false discovery rate, FDR) from
markers that were significantly associated with CHD in a meta-analysis of the UK Biobank cohort
with an FDR < 5%. FDR-267 was tested on the ARIC cohort in European and African American
groups. GRS FDR-267 turned out to be associated with an increase in odds ratio (OR) and HR in the
European population: 1.45 (95% CI: 1.39–1.51) and 1.32 (95% CI: 1.26–1.38), respectively, which slightly
improved AUC after addition to the clinical model (∆AUC = 0.0112, p = 0.0002). Besides, in the
European group, FDR-267 predicted CHD (C-statistic = 0.60) but showed no improvement over clinical
RFs (∆AUC = 0.0159, p = 0.0965). The predictive power of FDR-267 for CHD was lower in African
Americans. Consequently, FDR-267 was significantly associated with CHD in the European sample,
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with an effect size comparable to that of the family history. FDR-267 discriminated individuals with
and without CHD but did not improve the risk assessment of CHD as compared to clinical variables
alone [81].

Ntalla I. et al. have tested the relation of a GRS (composed of 300 SNPs) with CHD, TRFs of CHD,
and nonvascular diseases (kidney disease, migraine, and rheumatoid arthritis) that have previously
proven a genetic contribution of magnitude similar to that of CHD. The GRS was found to be associated
with 22 traits, including RFs, diseases secondary to CHD, and comorbid and non-CVD conditions.
Sensitivity analyses were performed on individuals without CHD or with stable angina pectoris
to determine the relation of the CHD-associated GRS with genetic susceptibility to these 22 traits.
Hypercholesterolemia (OR = 1.27, 95% CI: 1.26–1.29) and hypertension (OR = 1.11, 95% CI: 1.10–1.12)
proved to be closely associated with the GRS, indicating that this rating scale contains genetic variants
predisposing to these conditions. Nevertheless, the GRS was also significantly associated with CHD
cases that lacked TRFs (OR = 1.37, 95% CI: 1.30–1.44). The study also uncovered significant associations
between this GRS and peripheral arterial disease (OR = 1.28, 95% CI: 1.23–1.32), abdominal aortic
aneurysm (OR = 1.28; 95% CI: 1.20–1.37), and stroke (OR = 1.08, 95% CI: 1.05–1.10); these associations
remained significant in a sensitivity analysis under the assumption of a general genetic predisposition.
GRS was also found to correlate with heart failure (OR = 1.25, 95% CI: 1.22–1.29), atrial fibrillation
(OR = 1.08, 95% CI: 1.05–1.10), and premature death (OR = 1.04, 95% CI: 1.02–1.06). These associations
did not survive a sensitivity analysis, which showed that they were secondary to CHD. There was an
inverse correlation between the GRS and migraine (OR = 0.94, 95% CI: 0.93–0.96). Therefore, a wide
range of CVDs, including premature death, can develop sequentially or in parallel with CHD against
the same genetic background [82].

Sjögren M. et al. have tested the predictive ability of the GRS (50 SNPs) developed by Tada [8] for
CHD in terms of hospitalization and mortality of individuals without CHD initially. Individuals in the
highest GRS quintile were found to be hospitalized 10% more often than people in the lowest quintile
(incidence rate ratio = 1.10, 95% CI: 1.04–1.16, p = 0.001), mainly for cardiovascular reasons (incidence
rate ratio = 1.31, 95% CI: 1.20–1.43, p = 5.17 × 10−10). These patients had a significantly increased risk
of death from CVDs (HR = 1.44, 95% CI: 1.25–1.66, p = 6.56 × 10−7) but not the risk of death of other
causes. These results indicate that a genetic predisposition to CHD allows one to predict the severity
of hospitalization and mortality, especially that of cardiovascular causes, regardless of TRFs [83].

The purpose of a study by Severance L.M. et al. was to determine the optimal age for screening
for coronary artery calcification by means of a GRS (associated with CHD risk in a meta-analysis [84])
in a multiethnic cohort. According to their results, this GRS is associated with a nonzero level of
coronary artery calcification in the multiethnic cohort and in each ethnic group separately and can
be utilized to calculate optimal age for the first test for coronary artery calcification. In addition,
those authors attempted to evaluate the usefulness of the commercial 23andMe v5 chip available to
ordinary consumers. Individuals from the European-American group in quintiles 3–5 of the GRS
consisting of 102 SNPs featured a statistically significantly increased risk of coronary artery calcification
relative to the first quintile [85].

Rincon L.M. et al. have investigated whether a GRS improves the prognosis of recurrent
cardiovascular events (death, relapse, and hospitalization) in patients <55 years of age with acute
MI without concomitant diabetes mellitus. These researchers also tested whether this GRS detects
a more aggressive type of atherosclerosis. Compared to the general population, study participants
manifested higher prevalence of risk alleles (9 of 11). A significant correlation of the GRS with
recurrence of cardiovascular events was found, especially in individuals with initially elevated LDL-C
levels. Compared to the low-risk GRS tertile, the multi-adjusted HRs for recurrence were 10.2 (95%
CI: 1.1–100.3. p = 0.04) for the moderate-risk group and 20.7 (95% CI: 2.4–181.0, p = 0.006) for
high-risk groups, where LDL-C concentration was ≥2.8 mmol/L (≥110 mg/dL). The inclusion of the
GRS also bettered the C-statistic (∆C-statistic = 0.086), NRI (30%), and integrated discrimination
improvement (0.05) [86].
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Earlier studies suggest that the severe monogenic disease FH is associated with an increased
risk of CHD [67], but risk assessment and risk stratification remain challenging. In a study by Ellis
K.L. et al., 811 patients were enrolled who visited the Lipid Disorders Clinic at Royal Perth Hospital.
Pathogenic mutations were identified in 251 patients, and 560 patients were free of the pathogenic
variants associated with FH. All the patients were genotyped via a GRS previously proven to be
associated with CHD [8]. The GRS turned out to be associated with an increased risk of CHD in patients
with identified mutations (OR = 3.3, 95% CI: 1.3–8.2, p = 0.009) and in patients without pathogenic
variants associated with FH (OR = 1.8, 95% CI: 1.0–3.3, p = 0.039) after adjustment for TRFs. The GRS
correlated with greater magnitude of subclinical atherosclerosis (p = 0.039). Patients with FH who
are at high GRS risk may benefit from a more active intervention, including lifestyle changes and
aggressive lipid-lowering therapy. Further evaluation of the usefulness of GRSs, including their role in
the management of patients with FH in the clinic, requires a study on prospective cohorts [87].

Ohlsson M.A. et al. have studied the predictive ability of a GRS—previously used in the work
of Tada H. et al. [8]—regarding possible cardiac arrest of cardiac etiology and ascertained whether it
is independent of the TRFs of CHD; they also examined a combined predictive ability of the tested
GRS and TRFs in terms of possible cardiac arrest. The study showed that the genetic risk of CHD in a
population where this disease (and heart failure and stroke) has not been previously diagnosed is an
independent RF of cardiac arrest. The statistical association was strong (HR = 1.33, 95% CI: 1.15–1.53,
p < 0.001: cardiac arrest of cardiac etiology), and the magnitude of the risk detected by the GRS was
comparable and in many cases even greater than that detected by TRFs. Given the high mortality rate of
the cardiac arrest of cardiac etiology, those authors suggest that clear stratification into high-, medium-,
and low-risk groups according to a GRS may help to decide on a treatment strategy, for example,
prescription of lifelong statin therapy. In addition, because cardiac arrest of cardiac etiology is primarily
caused by ventricular fibrillation or ventricular tachycardia, cardioverter-defibrillator implantation
may be indicated for high-risk individuals as a primary prevention measure [88].

The purpose of a study by Mosley J.D. et al. was to compare CHD-prognostic power of a GRS
with that of TRFs, and the genetic risk was calculated via a GRS including 6,630,149 SNPs. The GRS
under study was significantly associated with a 10-year incidence of CHD in cohorts ARIC (HR = 1.24,
95% CI: 1.15–1.34) and Multi-Ethnic Study of Atherosclerosis (MESA; HR = 1.38, 95% CI: 1.21–1.58).
The addition of the GRS to a risk calculator called “pooled cohort equations” did not significantly
increase AUC in either cohort (ARIC: −0.001, 95% CI: −0.009 to 0.006; MESA: 0.021, 95% CI: −0.0004
to 0.043). Furthermore, there was no significant improvement in reclassification in either the ARIC
sample (NRI = 0.018, 95% CI: −0.012 to 0.036) or the MESA sample (NRI = 0.001, 95% CI: −0.038 to
0.076). Those authors propose that the assessment of polygenic risk may become a motivating factor
for starting a healthy lifestyle; however, they believe that there are simpler ways to promote this
change [89].

Elliott J. et al. have investigated whether a GRS can improve the assessment of CHD risk as
compared to the pooled cohort equations tool, which is affected by sex, race, age, blood pressure,
total cholesterol, LDL-C, smoking status, and a history of diabetes mellitus. Their study involved
two samples: (1) a case-control sample to optimize the predictive efficiency of CHD polygenic risk
assessment on the basis of published genome-wide association studies (GWASs); (2) a prospective
cohort was used to determine the predictive accuracy of the polygenic risk assessment, of the pooled
cohort equations, and of a combination for incident CHD. In a cohort of 352,660 participants on whom
predictive accuracy of the tested models was assessed, 6272 incident cases of CHD were registered
during a median of 8 years of observation. CHD discrimination by the GRS, by the pooled cohort
equations, and by their combination resulted in a C-statistic of 0.61 (95% CI: 0.60–0.62), 0.76 (95% CI:
0.75–0.77), and 0.78 (95% CI: 0.77–0.79), respectively. The change in the C-statistic between the last
two models was 0.02 (95% CI: 0.01–0.03). Adding the GRS to the pooled cohort equations resulted in
a 4.0% improvement in the overall NRI (95% CI: 3.1–4.9%)). The addition of the GRS to the pooled
cohort equations tool resulted in a statistically significant but only modest improvement in prognostic
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accuracy for incident CHD and an improvement in risk stratification for only a small proportion of the
subjects. Thus, the addition of genetic information to the pooled cohort equations tool requires further
research before possible introduction into clinical practice [90].

Jiang J. et al. have determined whether a GRS consisting of 79 CHD-associated SNPs can predict
the risk of MACEs in an ACS cohort in a prospective study of a median duration of 2 years. In the
age- and sex-adjusted model, each increase in the GRS by a standard deviation was associated with
a 33% increase in the risk of CVDs (HR = 1.33, 95% CI: 1.10–1.61, p = 0.003), with this association
unabated after adjustment for TRFs. The addition of the GRS to prognostic models for seven clinical
RFs and EPICOR slightly improved risk stratification for MACEs (p = 0.006 and p = 0.024, respectively).
Decision curve analysis suggested that adding the GRS to the clinical factors increased CHD-predictive
power when compared to each tool alone. The GRS proved to be associated with MACEs after multiple
adjustment in a cohort including Chinese ACS patients [91].

3.3. The SNPs Most Commonly Associated with CVDs

Numerous studies carried out since the first mention of a GRS include a wide variety of SNPs
(Table S2). The number of SNPs in a GRS varies from 3 [20] to >6 million [88,89]. There is a trend
toward an increase in the number of SNPs included in a GRS over time. The 1378 SNPs that have been
included in GRSs in various studies are presented in Table S2. To design a unified GRS, we analyzed the
SNPs used in studies (from 2005 to 2020) that addressed the association of GRSs with CVDs, e.g., CHD,
MI, and/or ACS, and identified the SNPs most commonly associated with heart disease, in particular,
with CHD (Table 1). Additionally, Table 1 contains 25 SNPs that are most strongly associated with
CHD judging by GWASs and, according to Beaney K. et al., should be included in any GRS [92].

Table 1 contains 43 single-nucleotide variants. Among them, there are genes associated with
CVDs (CDKN2B-AS1), CHD and MI (PHACTR1) and genes associated with lipid metabolism (LPA, LPL,
and APOC1), myogenesis (VAMP5), an immune response (IL6R), and angiogenesis (VEGF receptor,
encoded by the FLT1 gene, is expressed on vascular endothelial cells). The table presents both
variants with low prevalence (minor allele frequency (MAF) = 0.02 (G) for rs10455872) and widespread
variants with MAF > 0.3, which make up 30% of the SNPs included in the table. The majority of the
single-nucleotide variants listed in the table are located in introns.
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Table 1. Single-nucleotide polymorphisms (SNPs) associated with cardiovascular diseases (CVDs) according to research data from 2005 to 2020.

SNV Chromosome
(GRCh38) Gene Position in the Gene Risk Allele * MAF References

rs646776 1:109275908 CELSR2 500 bp downstream of TSS T 0.24 (C) [4,5,7,8,26,27,30,31,33–35,39,42,43,54,57,58,61–63,83,88,91]
rs602633 a 1:109278889 - - G 0.35 (T) [33,37,40,52,53,66,77,80,92]
rs4845625 1:154449591 IL6R Intron T 0.44 (T) [3,8,33,37,38,40,52,53,59,60,63,66,77,80,83,87,88,91]

rs4846525 a 1:216547016 ESRRG Intron - 0.26 (T) [92]
rs17464857 a 1:222589367 TAF1A, TAF1A-AS1 TAF1A: intron, TAF1A-AS1: 2 kbp upstream C/T 0.08 (G) [38,66,77,82,92]
rs17465637 1:222650187 MIA3 Intron C 0.50 (A) [3–5,7,8,24,27,29,31,33–35,39,40,42,43,53–55,57,59–63,68,70,83,86–88,91]

rs11206510 a 1:55030366 - - A/C 0.10 (C) [3–5,7,8,27,28,30,31,33–35,37,38,40–43,52–54,57,59,60,62,63,66,67,75,77,87,88,91,92]
rs17114036 a 1:56497149 PLPP3 Intron A 0.09 (G) [3,5,7,8,33,34,37,38,40,42,43,52–54,57,62,63,66,77,83,87,88,91,92]

rs2252641 2:145043894 TEX41 Intron C 0.31 (T) [3,8,37,38,40,52,53,59,60,62,63,66,77,80,83,87,88,91]
rs6725887 2:202881162 WDR12 Intron C/T 0.05 (C) [3–8,24,27,29–31,33–35,38,41–43,54,57,59,60,62,63,66,83,86,88,91]
rs515135 2:21063185 - - C/T 0.25 (T) [3,5,8,33,37,38,40,43,52,53,59,60,62,63,66,77,80,83,87,88,91]

rs1561198 a 2:85582866 VAMP5 2 kbp upstream T 0.49 (T) [3,33,37,38,40,52,53,59,60,66,77,87,92]
rs9818870 3:138403280 MRAS 3′UTR T 0.09 (T) [3–8,24,29,31,33,38,39,41–43,54,55,58–63,66,77,82,83,86–88,91]

rs7692387 a 4:155714157 GUCY1A1 Intron G 0.16 (A) [3,8,33,37,38,40,52,53,59,60,62,63,66,77,80,83,87,88,91,92]

rs273909 5:132331660 SLC22A4,
MIR3936HG MIR3936HG: intron, SLC22A4: intron G 0.09 (G) [3,8,33,37,38,40,52,53,59,60,62,63,66,77,80,82,83,87,88,91]

rs9369640 a 6:12901209 PHACTR1 Intron A 0.36 (C) [33,66,92]
rs12526453 6:12927312 PHACTR1 Intron C/A 0.17 (G) [3,5,6,8,24,27,29–31,34,37,38,40–43,52–54,59,60,62,63,68,77,83,86–88]
rs12190287 6:133893387 TCF21 3′UTR C 0.34 (G) [3,5,7,8,33,37,38,40,42,52–54,59,60,62,63,66,68,70,77,83,87,88,91]
rs2048327 6:160442500 SLC22A3 Intron A/C 0.29 (C) [3,7,8,30,33,37,40,42,43,52,53,58,62,63,66,77,83,87,88,91]
rs3798220 6:160540105 LPA Missense mutation C 0.05 (C) [3–5,7,8,34,38,39,42,43,54,55,57,59–63,66,77,83,87,88]
rs10455872 6:160589086 LPA Intron G 0.02 (G) [3,7,8,29,39,55,61,62,77,81,83,85–88]
rs4252120 a 6:160722576 PLG Intron T 0.14 (C) [3,8,33,37,38,40,52,53,59,60,62,63,66,77,83,87,88,91,92]

rs12205331 a 6:34930678 ANKS1A Intron C 0.08 (T) [37,40,53,66,77,92]
rs10947789 6:39207146 KCNK5 Intron T 0.17 (C) [3,8,33,37,38,40,52,53,59,60,63,66,77,80,83,87,88,91]

rs11556924 a 7:130023656 ZC3HC1 Missense mutation C 0.16 (T) [3,5,7,8,33,34,37,38,40,42,43,52–54,57,59,60,62,63,66,68,70,75,80–83,85,87,88,91,92]
rs2954029 a 8:125478730 - - A 0.41 (T) [3,5,8,32,33,37,38,40,41,43,52,53,59,60,62,63,66,77,81–83,85,87,88,92]

rs264 a 8:19955669 LPL Intron G 0.16 (A) [33,37,38,40,52,53,59,60,66,77,91,92]

rs3217992 a 9:22003224 CDKN2B,
CDKN2B-AS1 CDKN2B-AS1: intron, CDKN2B: 3′UTR T 0.35 (T) [3,8,33,37,40,52,53,62,63,66,77,82,83,87,88,92]

rs1333049 a 9:22125504 CDKN2B-AS1 Intron C 0.42 (C) [23,24,27,29,30,33,35,37,38,40,41,43,52,53,58–60,66,68,70,77,86,92]
rs12413409 a 10:102959339 CNNM2 Intron G 0.16 (A) [3,5,7,8,33,34,36,38,42,43,54,57,59,60,62,63,66,77,83,87,88,91,92]

rs501120 a 10:44258419 - - T/C 0.33 (C) [3,6,23,26,28,30,33,37,38,40,52,53,58–60,66,77,86,87,91,92]
rs1746048 10:44280376 - - C 0.34 (T) [4–8,24,27,29,31,34,35,39,41–43,54,55,57,58,61–63,83,88]
rs964184 11:116778201 ZPR1 3′UTR G 0.22 (G) [3,5,7,8,32–34,41–43,52,54,57,59,60,62,63,68,70,81–83,85,87,88,91]

rs3184504 a 12:111446804 SH2B3 Missense mutation T/C 0.15 (T) [3–5,7,8,30,31,33,34,37,38,40,42,52–54,59,60,62,63,66,77,83,87,88,91,92]
rs4773144 a 13:110308365 COL4A1, COL4A2 COL4A2: intron, COL4A1: 2 kbp upstream G 0.40 (G) [3,7,8,33,34,37,38,40,42,43,52–54,57,59,60,62,63,66,83,87,88,91,92]
rs9515203 a 13:110397276 COL4A2 Intron T 0.22 (C) [3,8,33,37,40,52,53,62,63,66,67,75,77,80,82,83,87,88,92]
rs9319428 a 13:28399484 FLT1 Intron A 0.33 (A) [3,8,33,37,38,40,52,53,59,60,62,63,66,77,80,83,88,91,92]
rs2895811 14:99667605 HHIPL1 Intron C 0.32 (C) [3,5,7,8,33,34,37,38,40,42,43,52–54,57,59,60,62,63,66,83,88,91]

rs7173743 a 15:78849442 MORF4L1 Intron T 0.47 (C) [3,8,33,37,38,40,52,53,62,63,66,77,80,83,87,88,91,92]
rs12936587 a 17:17640408 - G 0.27 (A) [3,5,7,8,33,34,37,38,40,42,43,52–54,57,59,60,62,63,66,77,80,83,87,88,91,92]
rs1122608 a 19:11052925 SMARCA4 Intron G 0.14 (T) [3–5,7,8,27,30,31,33–35,37,38,40–43,52–54,57,59,60,62,63,66,77,83,87,88,91,92]
rs445925 a 19:44912383 APOC1 2 kbp upstream G 0.15 (A) [33,37,40,53,66,77,92]
rs9982601 21:34226827 - - T/C 0.11 (T) [3–8,27,29–31,33–35,37,38,40–42,52–54,57,59,60,62,63,66,77,83,86,88,91]

SNV: single-nucleotide variant. * These risk alleles can differ among (or be absent in) some studies. a These SNPs are in the top 25 CHD risk loci according to GWAS data [92].
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4. Conclusions

Thus, most authors have reported an improvement in prognostic power when a GRS is added to
existing CVD risk calculators; however, some authors have not confirmed (partially or completely) the
association between a GRS and CVDs [5,32,39,41,42,53,77]. This lack of associations can be explained by
the need for a more thorough functional analysis of the SNPs included in GRSs. A number of authors
have employed several GRSs in their work, where one GRS showed an association, and another one
did not [5,53]. When a GRS is created, it is important to take into account the ethnicity of the patients
included in the research [39,77]. According to many studies, the same GRS shows an association with
cardiovascular events in one population and does not in another [39,77]. The problem of lacking
confirmation by some authors may not necessary be solved by functional studies. A genetic association
can exist even though we do not understand the function. There are other issues too: sample size,
the number or type of SNPs included, statistics, ethnicity, and others. At present, there are not many
published studies on the development of ethnospecific GRSs; most of the studies are carried out on
white cohorts, and the results may not be applicable to other populations. Variants located in an intron
that have shown an association with MI risk require further study of their functional significance in the
development of CVD.

For 15 years (2005–2020) in the studies examining the association between a GRS and cardiovascular
events, the methods have not undergone significant changes. Cox’s proportional hazards model
and logistic regression analysis as of October 2020 remain among the most popular techniques for
finding a relation between a disease and genetic factors. To measure survival, both Cox’s proportional
hazards model and the Kaplan–Meier method have been used [93]. The association between a GRS
and anthropometric and biochemical parameters is assessed via linear regression. ROC, AUC or
the C-statistic, NRI, and integrated discrimination improvement are metrics of the quality of a GRS
versus TRFs.

The evolution and improvement of the predictive ability of GRSs with the increasing number of
SNPs in the model can be traced using the works of Abraham G. et al. [56] and Inoye M. et al. [75] as
a vivid example. A distinctive feature of the analysis by Abraham G. et al. (as compared to several
previous prospective studies examining the predictive utility of a GRS for CHD cases) is that the
best predictive model was obtained with SNPs that did not necessarily achieve genome-wide or
even statistical significance in previous GWASs. A GRS surpassed other models that were smaller
in terms of the number of included SNPs and showed greater promise for predicting CHD between
the upper and lower GRS quintiles than did the study by Tada H. et al., which tested a 50-SNP GRS
on Scandinavians [8] (GRS50 HR 1

4 1.92 versus GRS49K HR 1
4 4.51). According to Inoye M. et al. [75],

metaGRS achieved greater risk discrimination than previously published estimates of genomic risk:
those authors found that metaGRS had greater HR and positive predictive value at any given sensitivity
as well as 4-fold HRs for CHD when comparing people in the upper and lower quintiles of the
distribution of risk estimates. It was also demonstrated that the predictive power of metaGRS
was substantially independent from established CHD RFs, implying that the genetic information
complements (rather than replaces) common RFs. Finally, those authors found that metaGRS identifies
people at high risk of premature CHD and those who are unlikely to ever reach the lifetime risk levels
that necessitate an intervention.

Although applied medical research will be necessary to properly assess the clinical utility of GRSs
for CHD, areas of potential clinical application can already be foreseen. For instance, genotyping
across large parts of the genome requires a one-time cost of approximately USD 50 in 2018 prices [75]
and can be used to calculate updated estimates of the genomic risk of CHD as more convincing data
on this association become available. Indeed, genome-wide genotyping array data can be used to
calculate a GRS for a wide range of common diseases. To compute a genomic risk for individuals,
simple algorithms can employ information from such datasets and from large reference groups out of
similar populations such as the UK Biobank [75].
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Designing a GRS for the assessment of cardiovascular risk is an important task for modern
cardiology. Given that the risk of CVDs as assessed by GRSs is preventable or at least can be partially
reduced (for example, by treatment with lipid-lowering medication), early diagnosis may improve the
quality and duration of life of the patients and should reduce economic costs.
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Abbreviations

ACS acute coronary syndrome
ARIC Atherosclerosis Risk in Communities Study
AUC area under the ROC curve
CHD coronary heart disease
CI confidence interval
CVD cardiovascular disease
FDR false discovery rate
FH familial hypercholesterolemia
GRS Genetic Risk Score
GWAS genome-wide association study
HR hazard ratio
LDL-C low-density lipoprotein cholesterol
LCRS Lifestyle Cardiovascular Risk Score
LMCAD left main coronary artery disease
MACE major adverse cardiovascular event
MAF minor allele frequency
MESA Multi-Ethnic Study of Atherosclerosis
MI myocardial infarction
NRI net reclassification improvement
OR odds ratio
PROCAM Prospective Cardiovascular Munster Study
RF risk factor
ROC receiver-operating characteristic
SCORE Systematic Coronary Risk Evaluation
SNP single-nucleotide polymorphism
TRF traditional risk factor
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