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Abstract

An intermediate spatiotemporal scale of food procurement by large herbivores is evident
within annual or seasonal home ranges. It takes the form of settlement periods spanning
several days or weeks during which foraging activity is confined to spatially discrete forag-
ing arenas, separated by roaming interludes. Extended by areas occupied for other activi-
ties, these foraging arenas contribute towards generating the home range structure. We
delineated and compared the foraging arenas exploited by two African large herbivores,
sable antelope (a ruminant) and plains zebra (a non-ruminant), using GPS-derived move-
ment data. We developed a novel approach to specifically delineate foraging arenas based
on local change points in distance relative to adjoining clusters of locations, and compared
its output with modifications of two published methods developed for home range estimation
and residence time estimation respectively. We compared how these herbivore species re-
sponded to seasonal variation in food resources and how they differed in their spatial pat-
terns of resource utilization. Sable antelope herds tended to concentrate their space use
locally, while zebra herds moved more opportunistically over a wider set of foraging arenas.
The amalgamated extent of the foraging arenas exploited by sable herds amounted to 12-
30 km?, compared with 22-100 km? for the zebra herds. Half-day displacement distances
differed between settlement periods and roaming interludes, and zebra herds generally
shifted further over 12h than sable herds. Foraging arenas of sable herds tended to be
smaller than those of zebra, and were occupied for period twice as long, and hence ex-
ploited more intensively in days spent per unit area than the foraging arenas of zebra. For
sable both the intensity of utilization of foraging arenas and proportion of days spent in for-
aging arenas relative to roaming interludes declined as food resources diminished season-
ally, while zebra showed no seasonal variation in these metrics. Identifying patterns of
space use at foraging arena scale helps reveal mechanisms generating the home range ex-
tent, and in turn the local population density. Thereby it helps forge links between beha-
vioural ecology, movement ecology and population ecology.
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Introduction

Spatiotemporal patterns of food procurement may be identified across a hierarchy of scales,
from food items consumed at feeding stations to annual or lifetime ranges [1-3]. Much atten-
tion has been focused on the delineation of home ranges, manifested over annual, seasonal or
briefer periods [4-7]. Classically, a home range is defined as the area normally traversed by an
animal during its routine activities [8], but what is “normal” or “routine” is left vague, as well
as the time frame over which the home range is defined [9]. Home ranges are commonly delin-
eated phenomenologically using kernel density isopleths without regard to the mechanisms
generating local concentrations of use [10]. Locations where animals remain immobile contrib-
ute disproportionately to the utilization distribution, while other sections of the area encom-
passed may be occupied merely in transit. Meeting certain needs may require temporary
excursions, e.g. to reach water for drinking [11]. In order to relate the extent of the area tra-
versed to the needs fulfilled, places occupied must be associated with the activities performed
and hence the benefits derived. Foraging commonly constitutes by far the greatest portion of
mobile activity, especially among large mammalian herbivores [12], and hence shapes the basic
features of space occupation. Progress has been made towards achieving a mechanistic under-
standing of the processes generating home ranges for mammalian carnivores foraging out-
wards from dens [13], but not yet for herbivores exploiting food resources that are localised in
space and seasonally variable in their nutritional value.

Fine-scale foraging behaviour has been analysed invoking principles of evolutionary adapta-
tion to explain the range of food types consumed, feeding durations within patches where food
is concentrated, and search paths between such patches [14-15]. Intermediate between the
feeding patch, exploited over durations of several minutes, and the home range, occupied for
seasonal or longer periods, is a spatiotemporal scale identified by Bailey et al. [2] as the area
covered during foraging spells enduring several hours. In the context of foraging theory these
areas, which we will label foraging arenas (FAs), represent the bounded context for comparing
locally diminishing rates of food gain with what might potentially be obtained elsewhere. Our
use of this label is distinct from that of Ahrens et al [16], who emphasised spatial contrasts in
security from predation in marine ecosystems. Over the course of a day, foraging activity alter-
nates with spells of resting as well as other maintenance activities [12]. Upon resuming forag-
ing, an animal may either remain longer in the FA where it had previously sought food, or
relocate seeking a new FA. In this way, settlement periods within FAs become extended over
several successive days, with allowance for interruptions by other activities [3,17]. The set of
FAs exploited in this way is dependent on the spatial distribution and seasonal production of
food resources and how their availability is affected by patterns of consumption. Concepts of
marginal value [18] can potentially be applied to durations of patch use and return intervals to
patches at FA scale if the times of entry and departure from such places can be defined objec-
tively. The overall extent of the home range utilized depends on the number and size of the dis-
tinct FAs exploited, the spatial dispersion of these FAs, and additional places occupied to fulfil
other needs.

Opportunities to analyse the movement patterns of animals in fine spatiotemporal detail
over periods spanning a year or longer have been opened by innovations in Global Positioning
System (GPS) telemetry [19]. The developing field of movement ecology is concerned with
where animals should stay and how long they should remain in these places before relocating
elsewhere [20]. Motivational states underlying movement patterns may be identified from dis-
placement distances and turning angles between sequential locations [21-23]. Movements are
expected to become slower and trajectories more tortuous in places providing abundant food,
and faster and more directed during travel between these localities. This approach becomes less

PLOS ONE | DOI:10.1371/journal.pone.0128821 June 11,2015 2/21



@’PLOS ‘ ONE

Identifying Space Use at Foraging Arena Scale

valid for multi-day periods during which animals have engaged in distinct activities during the
course of a day, potentially conducted in different places at different times. Nevertheless, ani-
mals remain stationary at some spatiotemporal scale while they continue exploiting particular
FAs.

Scaling issues in the identification of stationary activity were addressed in some detail by
Benhamou [24]. Concepts of first-passage time, defined as the time required for an animal to
cross a circle with a given radius from some initial point, have been used to identify spatial co-
hesion among sequences of locations [25]. This residence time approach was extended by Bar-
raquand and Benhamou [26] and coupled with a statistical procedure developed by Lavielle
[27] to identify breakpoints indicating when stationary periods started and ended. In a further
development, Benhamou and Riotte-Lambert [28] adapted kernel density estimators of utiliza-
tion distributions to distinguish places used intensely because of prolonged residence times
from those re-visited frequently. Applications of these methods thus far have been to fine-scale
movements revealed by GPS data recorded at hourly or sub-hourly intervals [29].

A drawback in applying the concept of first passage time is the need to specify the radius of
the circle used a priori. FAs can potentially vary quite widely in their extent, dependent on ani-
mal species, habitat type and season. Settlement periods within FAs are visually evident in time
traces of sequential locations from blocks showing no spatial drift with time, i.e., d(x,y)/dt ~ 0,
where x and y define location in longitude and latitude, and time ¢ encompasses some multi-
day period. In order to delineate these stationary periods, their start and end points need to be
identified bearing in mind the core question in movement ecology—did the animal stay where
it had been, or move on and away?

In this paper, we consider the space use patterns at FA scale of two large grazers showing
distinct movement tendencies: sable antelope (Hippotragus niger), which are rather sedentary
ruminants, and plains zebra (Equus quagga), which are much more mobile non-ruminants.
We compare the delineation of FAs obtained using a novel approach based on local change
points in time in the spatial proximity of successive locations with that provided by two pub-
lished methods using either residence times based on first passage [26] or local kernel density
estimates [28]. Having thereby obtained durations of settlement and extents of the patches ex-
ploited at FA scale, we illustrate how informative measures of foraging performance can be de-
rived, including (a) local intensities of exploitation in foraging time spent per unit area, and (b)
proportion of time spent settled within FAs versus roaming. Because of the attenuation in food
availability for large herbivores from the wet season through the dry season, we expected to
find the following seasonal patterns shown by both herbivore species:

a. Settlement durations would decrease as food availability within FAs diminished seasonally,
until too little food remained elsewhere.

b. The extent of the FAs exploited would expand as exploitation of food resources became
widened seasonally.

c. Exploitation intensities within FAs (i.e the ratio between settlement duration and size of
FAs) would diminish correspondingly with the seasonal progression.

d. FAs would be more fragmented with more relocation movements during the dry season
than in the wet season, meaning that the proportion of days spent within FAs relative to
roaming interludes between them would decrease as the dry season advanced.

e. Asnon-ruminants with greater tolerance for low food quality, zebra would be less respon-
sive to seasonal variation in food resources than ruminant sable.
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Materials and Methods
The data

GPS collars transmitting location records through the mobile telephone (GSM) network (sup-
plier: http://www.awt.co.za) were placed on one female sable antelope in each of seven distinct
herds inhabiting three widely separated regions of the Kruger National Park in South Africa,
and on one female zebra in each of six distinct herds in one of these regions. The initial collars
were replaced on some of the sable to extend the GPS data coverage over more than one year
(Table 1). Collars initially recorded GPS locations routinely at six-hourly intervals, while re-
placement collars provided hourly data. Because both of these ungulates form cohesive herds,
the movements of the collared individuals represented the movements of the herds with which
they were associated. Location records were sub-sampled to represent the times of day when
the animals were most likely to be engaged in foraging activity, i.e. 08:00 and 20:00 hours, guid-
ed by the bimodal diel activity schedules shown by the two ungulate species [12]. Relocation
movements tended to take place at dawn, shortly before the 08:00 locations, and towards dusk,
preceding the 20:00 locations. Location error was usually not greater than 10 m [30], and fewer
than 6% of scheduled location records were missing. Missing data were reduced to <3% using
positions recorded one hour earlier or later than the standard times if available.

Our research did not entail animal observations. We drew on a database of GPS locations
established by previous studies (http://dataknp.sanparks.org).

Rainfall patterns in Kruger Park defined a wet season extending from October or November
through March or April, and a dry season extending from May into October. Accordingly, we
grouped months into the wet season (December-March), early or cool dry season (April-July),
and late or hot dry season (August-November). Typically less than 20% of the annual rainfall
falls during the dry season months, so that grass growth ceases and remaining grass becomes
progressively brown and dry. The total annual rainfall during the 2005/6 seasonal cycle (July-
June) was about 25% above the long-term mean (1960-2007), and that through 2006/7 was
33% below the mean. The first wet season rain was delayed until early November in 2006, but
occurred in late September in 2007. The seasonal cycle 2003/2004 spanned by the earliest sable
collars placed was exceptionally dry.

Home range estimation

The overall home ranges of the sable and zebra herds were assessed by the kernel density meth-
od [31] using the package adehabitat [32] for R [33]. Ninety percent isopleths were chosen for
the kernel density estimation of the extent of these home ranges. Utilization distributions in
three dimensions were plotted using Systat 11 software [34].

Local change points in spatial location

To identify change points in spatial location, we used the distance of the current position rela-
tive to the distribution of preceding or succeeding positions within adjoining time windows.
Specifically, the local reference points used were the centroids of sets of GPS positions (i.e. the
arithmetic means of latitude and longitude) within these time windows. As a practical mini-
mum, five-day windows were used to provide 10 position records (fewer if 1-2 were missing)
and used initially for assessing the local distribution of distances from the centroid. Departure
from the FA was established looking back over the preceding time window and initiation of set-
tlement with the FA looking forward over the succeeding time window. If the radial distance of
a focal position from the centroid was greater than the mean plus two standard deviations
around this mean of the neighbouring locations, a local change point was flagged. Entries into
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Table 1. Periods during which location data were supplied for the individual females representing distinct herds in the three study areas.

Species
Sable
Sable
Sable
Sable
Sable
Sable
Sable
Zebra
Zebra
Zebra
Zebra
Zebra

Study area

Central
Central
South
South
South
South
North
North
North
North
North
North

doi:10.1371/journal.pone.0128821.t001

GPS collar(s) Herd size Period spanned Duration (months)
Talo1 15 2004-11-26 to 2005-11-05 11.5
Tal02 6 2004-11-26 to 2006-02-23 15
PK81/140/285 7-13 2005-11-14 to 2008-03-27 33.5
PK144 7 2006-05-24 to 2007-03-07 9.5
PK148/284 6-9 2006-05-23 to 2009-03-21 34
PK151/286 7-10 2006-05-23 to 2008-09-29 28
PM143 18-21 2006-05-22 to 2007-12-18 19
PM141 6—7 2006-05-23 to 2007-09-29 16
PM142 67 2006-05-23 t02008-11-06 30
PM147 67 2006-05-22 to 2007-07-07 13.5
PM277 67 2007-06-18 to 2010-10-14 40
PM280 6-7 2007-06-18 to 2008-09-08 15

and exits from FAs identified in this way were generally associated with abrupt contractions or
surges in half-day (12-h) displacement distances. The application of this procedure is illustrat-
ed in Fig 1.

Constraint settings were used to ensure that the FAs identified conformed to the scale of the
patches occupied by each collar-bearing animal. They excluded change points based on distances
too short to be effectively departures, and joined neighbouring FAs too close to be distinct. The
log-frequency distribution of half-day displacements was used initially for guidance, looking for
a breakpoint in this distribution between within-patch and between-patch displacements. For
the sable herd chosen for illustration, the modal half-day displacement was 0.2-0.3 km, and the
break-point between displacement modes seemed to lie around 2 km (S1 Fig). The optimal set-
ting was sought by exploring how the number of FAs distinguished changed following stepped
adjustments to the constraint settings. If the setting was too fine, departures tended to be
flagged prematurely, thereby attenuating some settlement durations below the minimum of
five days. If the setting was too coarse, neighbouring FAs became joined, also reducing the
number of settlement periods identified. The optimal setting lay within the plateau region
where the number of FAs identified was greatest, which closely approximated the number
identified from a supervised classification (S2 Fig). Zebra herds tended to be more mobile in
their half-day displacements than sable (S1 Fig), thereby supporting somewhat greater con-
straining distances (S2 Fig). Marginal overlap between FAs was allowed to accommodate abut-
ting areas exploited during discrete time periods. Allowance was also made for brief excursions
for travel to and from surface water, or perhaps to explore resources available elsewhere. Jour-
neys towards water generally commenced during the early morning when they became neces-
sary, and occasionally animals had not returned to the FA they had been exploiting by evening
[11]. Hence, brief sallies beyond FA limits were labelled as temporary excursions if they en-
dured <2 days.

Analyses applying the local change point (LCP) method were undertaken by means of a
computer program written in TrueBASIC (http://www.truebasic.com), with the data output
saved into files allowing further processing in spreadsheet software (S1 Text). Durations of set-
tlement within FAs were assessed between the times of first entry and subsequent departure,
including temporary excursions. The extent of each FA was approximated initially by ellipses
excluding temporary excursions, and refined by 99% minimum convex polygons (MCP) effec-
tively including all of the remaining locations. Exploitation intensities were derived from the
ratio of the settlement time to the FA extent, excluding excursions. The proportion of days
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Fig 1. Identifying local change points to define settlement periods within foraging areas from
sequential GPS locations. (a) Time traces for latitude (circles) and longitude (triangles) at two times of day
(08:00 h and 20:00 h) for the sable antelope showing (i) foraging area centroids in latitude and longitude
coordinates (broad grey lines), (ii) mean radial distances from the centroid during settlement (dotted lines)
and (jii) settlement constraints represented by the mean radial distance plus two standard deviations (dashed
lines). Labels S and E indicate the start and end of the settlement period. Note excursions slightly beyond the
FA limits before final departure, as well as transient return during the roaming interlude before the next
settlement period. (b) Mapped trajectory of GPS locations of the sable for the same period. Circles represent
morning (08:00) locations and triangles evening (20:00) locations, while dotted lines connect intervening
locations. Filled symbols indicate locations during the settlement period, including brief excursions. The
foraging arena was entered from the south and departure was to the south-east. Ellipse encloses the foraging

area extent of 1.2 km?.

doi:10.1371/journal.pone.0128821.g001
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during which animals remained settled within FAs was assessed by classifying locations as fall-
ing either within FAs (excluding excursions) or during roaming sequences. The product of the
exploitation intensity and proportion of days settled within FAs yielded the compound utiliza-
tion intensity.

Residence times within local circles of fixed radius

Following Barraquand and Benhamou [26], residence times (RTs) were computed for virtual
circles of constant radius sliding along the sequence of foraging locations. RT's represented the
summed time of all portions of the movement path located within the circles, provided that any
time spent outside the circle before re-entering it was less than some threshold period. Arbitrari-
ly, we set the radius for the circles at 1.0 km, equivalent to a patch area of 3.14 km?. This value is
sufficient to encompass several days of foraging by the herds. The time threshold allowed out of
the circle was set to 24 h to accommodate journeys to and from water completed within a day.
The RT series was then segmented using the statistical procedure developed by Lavielle (2005)
to identify the most likely set of change points differentiating blocks of data distinct in RT. To
align the output with that obtained from the LCP method, we set the minimum duration for set-
tlement at 5 days. To accommodate seasonal variation in movement distances, this procedure
was applied to three-month bins of data, retaining a constant circle radius of 1 km within each
block to allow comparison between seasons. However, to avoid arbitrary ends of the last seg-
ment of a given bin, we started the next bin at the last breakpoint date of the previous bin, there-
fore using natural breaks in the movement data. By using the RT as signal for the Lavielle
segmentation procedure the temporal component of settlement periods was taken into account.

Utilization intensity distributions differentiated in time

Following Benhamou and Riotte-Lambert [28], we computed the utilization intensity distribu-
tion (ID) from the RT estimated around each successive location, which corresponds with the
spatial distribution of the mean RT per visit. To be consistent with the Lavielle segmentation
procedure, the kernel smoothing parameter h was set to 333 m to obtain an effective circle radi-
us of 1.0 km around each location. As above, we computed IDs separately for three-month bins
of data, and adjusted divisions between these bins to avoid arbitrary splits of the data. To set
the value of the isopleth used to define the sets of locations falling within FAs for each split of
the data, we looked for an increase in slope of the total area included within putative FAs as the
isopleths were expanded, indicating when outlying points or additional clusters of points be-
came added (S3 Fig). This region was approximated using the 50% kernel. To adapt this meth-
od to FA scale and estimate settlement durations, we took into account the criteria used to
delineate FAs by LCP, i.e. locations were considered to represent temporary excursions if de-
partures from FAs persisted for less than 2 days before return to the same FA. We then re-de-
lineated FAs using 99% MCPs as before, setting a minimum duration of 5 consecutive days for
settlement. The estimation and segmentation of RT and the computation of ID were performed
using the packages adehabitatLT and adehabitatHR [32] for R [30]. The extents of the FAs esti-
mated by the 99% MCP from the LCP approach were compared with those provided by the
50% kernel from the ID method [35].

Results
Comparative patterns of space use

The home range of the northern sable herd is shown plotted as a utilization distribution in
Fig 2A, and compared with the home range of a zebra herd chosen for illustration because its
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Count

Fig 2. Home range utilization distributions of the northern sable antelope herd (A) and of a representative zebra herd in the same region (B),

derived from locations during foraging times of day (08:00 h and 20:00 h). Note that the home range core of the sable herd is located to the north-east of
the range exploited by this zebra herd.

doi:10.1371/journal.pone.0128821.g002

home range overlapped with the range of this sable herd (Fig 2B). The basic home range of this
sable herd, occupied for most of the year, covered an area of about 35 km?, with peaks of use
concentrated in the north-west. During the late dry season, the sable herd moved to a separate
home range 10 km away covering around 10 km?, which was closer to the river in the south
where these animals drank every 3-4 days. Including the corridors of movement to and from
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Table 2. Annual home range sizes of the seven sable and five zebra herds estimated using kernel density (90% isopleths), along with the amalgam-
ated extent of the foraging arenas exploited by these herds over the annual cycle estimated from enclosing ellipses defined by LCP.

Species Study

Sable
Sable
Sable

Sable
Sable
Sable
Sable
Zebra
Zebra
Zebra
Zebra
Zebra

area

Central
Central
South

South
South
South
North
North
North
North
North
North

GPS collar
(s)

Talo1
Tal02

PK81/140/
285

PK144
PK148/284
PK151/286
PM143
PM141
PM142
PM147
PM277
PM280

doi:10.1371/journal.pone.0128821.t002

Annu
(km?)
91.3
26.2
38.4

59.6
26.4
31.7
163.1
35.8
95.0
74.9
345.5
52.6

al home range Amalgamated foraging arenas Foraging arenas as proportion of annual
(km?) range
27.8 0.304
124 0.473
29.2 0.760
19.6 0.329
23.2 0.879
31.5 0.994
52.6 0.323
29.0 0.810
62.0 0.653
27.6 0.368
99.5 0.288
21.7 0.413

the river, the total extent of the annual home range as defined by MCP covered over 150 km?.
The home range of the representative zebra herd showed a concentration of use to the south-
west of the sable home range, and encompassed a smaller total area (under 100 km?) because
there was no seasonal shift. More generally, the spatial extents of the annual home ranges cov-
ered by the zebra herds, defined by 90% isopleths, tended to be larger than those of the sable
herds (Table 2).

The FAs delineated by LCP and ID for the northern sable herd were fairly consistent, al-
though the ID approach sometimes extended settlement periods into adjoining roaming inter-
ludes (Fig 3). Those delineated by RT applying the Lavielle method were less congruent with
those demarcated by the other two methods. The RT method sometimes split settlement peri-
ods, occasionally overlooked shifts between FAs, and subdivided one roaming period. This ap-
proach failed to detect change points when the sable moved directly from one FA to the next
without intervening roaming. All three methods accommodated temporary excursions for 1-2
days during settlement periods. Roaming interludes between FAs were generally brief, lasting
no more than a few days, except during the late dry season and transitional months into the
wet season. Despite some differences in delineation of FAs, the overall proportion of days as-
signed to settlement within FAs (excluding excursions) over the course of the year for the rep-
resentative sable herd was closely similar from LCP (71%) and ID (68%; S1 Table). The FAs
delineated by ID were closely similar to those provided by LCP, except that the bounds of the
kernel density inherently extend slightly beyond the data points (Fig 4). Areas estimated from
ellipses were on average 17% larger than those obtained by MCP.

When applied to GPS data for zebra herds, both the LCP approach and ID distinguished pe-
riods of settlement within FAs from interludes of roaming between them (Fig 5). Again there
was quite close consistency between the settlement periods identified by LCP and ID, while RT
was more deviant and tended to associate change points with brief excursions. Some distinc-
tions in the boundaries assigned to the FAs by LCP and ID were also shown, but no real differ-
ence in spread (Fig 6)

The collared sable and zebra herds showed no consistent difference in the amalgamated ex-
tent of the foraging arenas they exploited over the annual cycle, estimated by LCP (Table 2).
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approximately 1 km apart. Wavy black line indicates the latitude trace and grey line the longitude trace. Broad
grey lines indicate periods of settlement within foraging arenas for 5 days or longer indicated by local change
points in distance (LCP). Broad black lines along the base indicate settlement periods obtained from the local
utilization distribution of locations (ID). Vertical dashed lines indicate change points designated by the
Lavielle (2005) method based on residence times around successive locations (RT);each dashed line
corresponds to the beginning and end of successive segments. Latin numbers above indicate successive
ordering of foraging arena occupation. Coordinates have been projected into UTM

doi:10.1371/journal.pone.0128821.g003

The annual range extent estimated by MCP also showed no consistent relationship with the ex-
tent of the FAs exploited, but rather was affected by how widely the FAs were dispersed.

Derived metrics

For the sable herds, the range in modal durations of settlement within FAs among herds ob-
tained from LCP, on a proportionately expanding scale, was 13-16 days, compared with 6-9
days for zebra herds (Fig 7A). Individual FAs exploited by sable herds mostly encompassed
1.5-4 km?, expanding to as large as 10 km? during the late dry season. Zebra herds more fre-
quently exploited FAs larger than 4 km” than did sable herds, with no seasonal trend apparent.
While settled within FAs, both herbivore species showed half-day displacement distances
about half as great as those exhibited during roaming interludes (0.8-2.3 km vs 2-3.3 km, re-
spectively), and zebra herds generally moved further over 12 h than did sable herds in the same
season (Fig 8).

Correspondingly, exploitation intensities averaged over all herds tended to be greater for
sable than for zebra through all seasons, despite quite wide variation among individual herds
representing these ungulate species (Fig 9A). For sable, exploitation intensities decreased from
the late wet season months through the dry season. For zebra, seasonal variation was slight and
two of the collared zebra herds showed substantially lowered intensities of exploitation during
the early dry season months. The proportion of days spent within FAs decreased for sable
through the latter part of the dry season, while for zebra a more complex pattern was shown,
with lowest settled proportions during the initial months of the dry season and during the tran-
sitional months ending the late dry season (Fig 9B). The compound utilization intensity, i.e.
the product of exploitation intensities within FAs and the proportion of time spent settled with
FAs, showed a clear downward trend through the dry season for sable, while zebra showed little
seasonal variation in this derived measure (Fig 9C). Notably, the over-riding influence came
from changes in utilization intensity rather than in the settlement proportion.

Discussion

The main contributions of this paper have been (1) to demonstrate the existence of patterns of
space use associated with food benefits at a spatio-temporal scale finer than conventionally
considered in home range assessment, but broader than represented by the food patches ex-
ploited during foraging spells, and (2) to present informative metrics that can be derived from
patterns at this scale. Our findings challenge assumptions that the movement patterns of large
mammalian herbivores can be modelled as correlated random walks, informed cognitively
only by what animals have encountered recently. They support contentions that movement
patterns on a day-to-day scale represent the strategic exploitation of familiar localities reliably
providing suitable food, as informed by accumulated experience extending back several years
[36-39]. While these beneficial places are spatially predictable, uncertainty exists in the current
state of the resources presented by these localities, dependent on the erratic spatio-temporal
distribution of rainfall. Sable antelope seem to favour localities that most reliably retain green
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doi:10.1371/journal.pone.0128821.9004

foliage into the dry season, while zebra herds exploit patches that temporarily offer favourable
food more opportunistically [40].

All three of the methods used delineated distinct periods of settlement extending over sever-
al days or weeks during times of the day when foraging activity predominated. However, those
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indicated by RT deviated somewhat from the segmentation provided by LCP and ID, seeming-
ly influenced by the amplitude of half-day displacements as well as by the spatial consistency of
sequential locations. Also, the RT approach sometimes failed to demarcate shifts between spa-
tially separated FAs when these were made without an intervening roaming interlude. The
start and end times for settlement periods within FAs provided by LCP appeared to be more
consistent with our working definition of the settlement state—clusters of locations linked in
time indicating that animals remained effectively stationary during successive foraging spells—
than those yielded by ID. Furthermore, the change-point criterion applied in LCP is conceptu-
ally most consistent with the core concept in movement ecology, i.e. whether animals stay lon-
ger in the same place or move on elsewhere.

An inherent drawback of both RT and ID is the need to assign some arbitrary radius of the
circle or distance used to assess spatial cohesion, because the spatial extents of FAs can vary
quite widely, both seasonally and regionally. An advantage of LCP is that it identifies the dis-
placements indicating departure locally, thereby allowing for temporal and spatial variation in
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product of days of occupation and utilization intensity (C). Circles indicate points for individual sable
herds and square are points for individual zebra herds, while lines indicate mean values averaged over the
sable herds (solid line) and over the zebra herds (dashed line).

doi:10.1371/journal.pone.0128821.g009

the effective size of FAs. Although a minimal time window of five days, providing 10 locations,
was adopted to assess distributions of positions around local centroids sufficiently reliably,
briefer stays for periods of 3-4 days were sometimes delineated, although less reliably through
being dependent on relationships with adjoining locations included within the five-day win-
dow. Constraint settings were applied to ensure that LCP did not delineate FAs too finely, due
to the local stochastics of successive locations. A current disadvantage of LCP is that it has been
implemented in a programming language no longer widely used. Further trials are needed to
warrant translating the True BASIC program into R, which has become the computing lan-
guage of choice. In the meanwhile both RT and ID are readily implementable from free soft-
ware packages, and the new approach labelled T-LoCoH [41] identifying home range segments
using both temporal and spatial cohesion could potentially also delineate temporary settlement
periods.

Another method for identifying change points in movement behaviour is based on estimat-
ing shifts in persistence velocity and/or turning velocity [42]. To indicate settlement within a
foraging arena, there would need to be a substantial and enduring change in both of these po-
tentially inter-dependent aspects of directional persistence at an appropriate scale. In order to
allow for multiple change points, this method would need to be applied within suitably restrict-
ed time windows.

The metrics of foraging performance that we derived, displayed in Figs 7-9, reflect how ef-
fectively the food benefits sought were supplied by the spatial arenas exploited. We expected
that settlement durations would decrease as the amount of acceptable food diminished during
the course of the dry season. In fact the settlement durations of the sable herds within foraging
arenas did not change seasonally in any consistent way. This suggests that the animals widened
their dietary tolerance in response to the diminishing green leaf content remaining in the her-
baceous layer as grasses became dormant [40]. Correspondingly, the extent of the foraging are-
nas exploited by sable did tend to expand during the late dry season. As a consequence, the
exploitation intensity of food resources within these FAs by sable decreased as less acceptable
food remained available as the dry season advanced, and these animals correspondingly in-
creased the time they spent roaming between FAs. We expected that zebra, as non-ruminants,
would be less responsive to seasonal variation in food resources than sable, but were surprised
by how little affected zebra were by the seasonal trends that occur in grass height and green-
ness. This reflects their dietary tolerance for amply remaining brown grass [40]. Unexpectedly,
certain zebra herds spent less time settled within FAs during the initial months of the dry sea-
son rather than later in the dry season. As documented elsewhere [12], zebra also showed a
marked increase in resting at the expense of mobile activities during these same months. Both
patterns are intriguing, but lack any obvious explanation.

Seasonal influences on patterns of FA exploitation complement other measures of move-
ment patterns indicating times of food stress [43]. The derived metrics also provide a founda-
tion for addressing wider ecological issues. Spatial aspects of resource exploitation form an
important aspect of niche separation among large herbivores [44]. It has been postulated that
the group size of mammalian carnivores depends on the richness and dispersion of patches
where prey are concentrated, according to resource dispersion hypothesis [45-46]; an objective
basis for identifying the food patches herbivores exploit has now been provided. Local popula-
tion densities depend on the extent of the seasonal or annual home ranges traversed (with

PLOS ONE | DOI:10.1371/journal.pone.0128821 June 11,2015 18/21



@’PLOS ‘ ONE

Identifying Space Use at Foraging Arena Scale

allowance for range overlap and sharing), determined in turn by the size, spacing and intensity
of exploitation of FAs within these ranges. Hence the differences in resource exploitation at for-
aging arena scale that we identified could help explain why sable antelope are patchily restrict-
ed in their presence within Kruger Park, compared with widely distributed zebra [47].
Accordingly, patterns at this intermediate spatiotemporal scale relating the dispersion of food
resources to home range extents could help forge connections between behavioural ecology,
movement ecology and population ecology.
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