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Abstract
Background: Many studies showed that the prognosis of hepatocellular car-
cinoma (HCC) was significantly associated with the expressions of TP53 and 
LRP1B. However, the potential influence of the two genes on the malignant pro-
gression of HCC is still to be expounded.
Methods: According to the correlation analysis between immune cells and ex-
pression levels of TP53 and LRP1B, we filtered the immune cells to perform un-
supervised clustering analysis. Integration of multi-omic data analysis identified 
genetic alteration and epigenetic alteration. In addition, pathway analysis was 
used to explore the potential function of the differentially expressed mRNAs. 
According to the differentially expressed genes, we established an interaction 
network to seek the hub gene. Least absolute shrinkage and selection operator 
(LASSO) regression analysis was used to build a prognosis model.
Results: The unsupervised clustering analysis showed that the cluster A1 showed 
the highest immune cell levels and the cluster B2 showed the lowest immune cell 
levels. Multi-omics data analysis identified that somatic mutations, copy number 
variations, and DNA methylation levels had significant differences between clus-
ter A1 and cluster B2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis found that the upregulated mRNAs in the cluster A1 
were mainly concentrated in T cell activation, external side of plasma membrane, 
receptor ligand activity, and cytokine−cytokine receptor interaction. Importantly, 
the EPCAM was identified as a critical node in the lncRNAs–miRNAs–mRNAs 
regulatory network correlated with the immune phenotypes. In addition, based 
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1   |   INTRODUCTION

Hepatocellular carcinoma (HCC), a main reason for can-
cer death in the world, is the most important pathological 
classification of liver cancer, comprising 75%–85% of the 
proportion.1 With the rapid development of the sequenc-
ing technologies,2 many studies have revealed that some 
genes significantly affected the prognosis of HCC pa-
tients.3 However, the molecular pathological mechanisms 
underlying the development of HCC are still unclear.

Mutation of TP53, as the antioncogene, is the most 
frequent gene change of HCC patients, and the TP53 
mutation frequency is about 30%.4 Based on the DNA 
destruction events, the cells with TP53 mutation can be 
able to evade apoptosis and turn into the cancer cells.5 
Some studies have shown that the TP53 gene was relevant 
to the levels of serum alpha-fetoprotein (AFP), vascular 
invasion, tumor stage, and tumor differentiation of HCC 
patients, while at the same time it influenced the progno-
sis.6 In addition, TP53 mutation is extremely correlative 
with the tumor immune microenvironment of HCC and 
the different mutation status of TP53 is associated with 
immune responses.7

The LRP1B which is the LDL receptor family member 
is the significantly important tumor suppressor gene. The 
expression level of LRP1B is reduced in many tumors and 
it is among the top 10 mutated genes in the tumor.8 The 
inactivation of the LRP1B promotes cell migration and in-
vasion and the genomic deletion of LRP1B exerts the poor 
prognosis of patients.9,10 The inactivation of LRP1B may 
also bring about the alteration of the tumor microenviron-
ment that could confer the increased tumor growth and 
enhanced tumor invasion ability.11 In recent years, LRP1B 
has been proved to participate the antigen presentation 
and served as a regulatory factor of tumor progression and 
inflammation.12,13

In addition, many studies revealed that the presence 
of synchronous mutations of TP53 and LRP1B was found 
in different cancers.14 Research has shown that TP53 and 
LRP1B mutations acted as the prognostic biomarkers and 
related with higher TMB, which could predict the efficacy 

of immunotherapy in HCC patients.15 Besides, LRP1B 
mutation and TP53 mutation were significantly correlated 
with proportions of tumor-infiltrating immune cells in 
esophageal cancer (EC).16 The above studies indicated 
that TP53 and LRP1B could affect the tumor immune mi-
croenvironment (TIME), but the potential mechanism has 
not been expounded in the detail.

The TIME, acting as a dynamic and complex system, 
is consisted of immune cells, immune matrix, and stro-
mal cells.17 In the tumor microenvironment, immune cell 
imbalance is the crucial factor of HCC progression. Some 
studies have demonstrated that the TIME could regulate 
populations of immune and host cells to affect tumor 
prognosis.18 Importantly, the TIME immune inhibition 
on tumors is controlled with immune cells, including T 
lymphocytes, B lymphocytes, natural killer cells, dendritic 
cells, and macrophages. Nevertheless, immune cells, such 
as macrophages and regulatory T cells, accelerate tumor 
progression. These immune cell components provide bio-
markers of diagnostic, prognostic, and immune therapy 
strategies for numerous patients with tumor, such as HCC 
patients.19

Because of the rapid development of the high-
throughput sequencing, abundantly biological data of 
diseases are available in the diverse databases at current. 
These biological data contain multiple omics data includ-
ing proteomics, metabolomics, and transcriptomics data. 
Each of them represents the different field of cellular 
mechanisms.20 Based on the huge resources, we can dis-
cover the potential mechanisms of the various diseases and 
identify the dependable biomarkers to predict the progno-
sis. Multi-omics data analysis can identify the relationship 
among multiple type biology factors. Compared with the 
single-omics data analysis, multi-omics data analysis has 
significant advantages in revealing the functional mecha-
nisms and causes of complex diseases, providing a more 
well-rounded description for biological processes and ac-
celerating precision medicine progress.

In this study, we explored the association be-
tween immune cells and the expressions of TP53 and 
LRP1B. According to the immune cells, unsupervised 
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on differentially expressed genes between cluster A1 and cluster B2, the prognos-
tic model established by LASSO could predict the overall survival (OS) of HCC 
accurately.
Conclusions: The results indicated that the TP53 and LRP1B acted as the key 
genes in regulating the immune phenotypes of HCC via EPCAM.
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clustering analysis divided patients into different groups. 
Furthermore, multi-omics data analysis revealed the dif-
ferences between two groups. A critical node of the in-
teraction network was selected. In addition, based on the 
different immune status, we established the prognostic 
model for patients with HCC.

2   |   METHODS

2.1  |  Data source

The research design are shown in Figure 1. The clinical 
data and expression data of mRNAs, miRNAs, and lncR-
NAs were downloaded from The Cancer Genome Atlas 
(TCGA) database (https://portal.gdc.cancer.gov/), which 
acted as the training set and contained 374 HCC samples.21 
The protein expression profiles for HCC patients were 
obtained from The Cancer Proteome Atlas (TCPA) data-
base (https://www.tcpap​ortal.org/).22 In addition, three 
datasets including GSE14520, ICGC-FR, and ICGC-JP 
served as independent validation cohorts. GSE14520 in-
cluded 247 HCC samples was downloaded from the NCBI 
Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/).23 ICGC-FR and ICGC-JP datasets 
were obtained from The International Cancer Genome 
Consortium (ICGC) database (https://icgc.org/), there-
into, ICGC-FR and ICGC-JP datasets had 161 and 229 
samples, separately (Tables S1 and S2).24

2.2  |  CIBERSORTx and 
clustering analyses

The CIBERSORT was used to estimate the cell-type 
abundance from RNA-seq data. According to the 

CIBERSORT, CIBERSORTx (https://ciber​sortx.stanf​ord.
edu/) was developed, which added the inference of ex-
pression level cell-type-specific gene. The CIBERSORTx 
“digitally purifies” individual cell types transcriptome 
from a large amount of data without requiring the isola-
tion of single cells.25,26 The expression profiles of TCGA, 
GEO, and ICGC were uploaded on the CIBERSORTx. 
The absolute immune cell scores were calculated by 
the LM22 (22 types of immune cells) gene signature 
of CIBERSORTx.27 The correlation analysis and least 
absolute shrinkage and selection operator (LASSO) re-
gression analysis were used to filter the immune cells, 
which had high correlation with the gene expressions of 
TP53 and LRP1B.28 Based on the immune cells obtained 
above, the unsupervised cluster method was used to dis-
tinguish patients in the TCGA-LIHC set into cluster A 
and cluster B. Then, the cluster A was subdivided into 
A1 and A2 clusters and cluster B was subdivided into 
B1, B2, and B3 clusters. Furthermore, we compared the 
levels of infiltrating immune cells in five clusters. The 
cluster A1 showed the highest immune cell levels and 
the cluster B2 showed the lowest immune cell levels. So, 
the cluster A1 and cluster B2 were selected to study the 
differences of HCC with high immunogenicity and low 
immunogenicity.

2.3  |  Somatic mutations analysis

The data of somatic mutations were downloaded from 
the UCSC Xena browser (https://xenab​rowser.net/).29 
The VarScan2 was used to analyze the somatic muta-
tions of the HCC patients.30 Data were extracted by the 
R Studio (version:3.6.3). Subsequently, gene mutations, 
synergy, and mutual exclusion analysis were explored by 
maftools.31

F I G U R E  1   The flow chart showing 
the multi-omic data analysis between 
cluster A1 and cluster B2, identification 
of hub gene and the establishment of 
prognosis model

https://portal.gdc.cancer.gov/
https://www.tcpaportal.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://icgc.org/
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https://cibersortx.stanford.edu/
https://xenabrowser.net/
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2.4  |  Differential gene analysis and 
functional enrichment analyses

The differentially expressed mRNAs (padj<0.05, 
logFC>1 or logFC<−1), miRNAs (padj<0.05), and 
lncRNAs (padj<0.05, logFC>1 or logFC<−1) between 
cluster A1 and cluster B2 were screened by the Deseq2 
package in R.32 The volcano plots of the differentially 
expressed genes were created. In order to explore the po-
tential function of the differentially expressed genes, the 
functional enrichment analyses were proceeded by the 
clusterProfiler package.33 padjust  <  0.01 was considered 
statistically significant.

2.5  |  Copy number variations 
analysis and DNA methylation analysis

Copy number variations and DNA methylation data 
were collected from the UCSC Xena. The genes with the 
different copy number variations were filtered by the 
p < 0.05. According to the IGV, we visualized the copy 
number variations and gene location information.34 
For DNA methylation analysis, we employed k-nearest 
neighboring (KNN) algorithm from the “impute” pack-
age to fill the missing values. Subsequently, the different 
methylation probes were detected by the “minfi” pack-
age in R.35

2.6  |  Construction of the lncRNAs–
miRNAs–mRNAs network

The miRcode (http://www.mirco​de.org/) database 
was applied to predict the target miRNAs of the dif-
ferentially expressed lncRNAs.36 The target mRNAs 
of miRNAs were predicted using TargetScan (http://
www.targe​tscan.org/), miRDB (http://mirdb.org/), 
and miRTarbase (http://mirta​rbase.cuhk.edu.cn/) 
databases.37–39 The predictive target mRNAs were 
displayed with the Venn diagrams. All target genes 
predicted using miRcode, TargatScan, miRDB, and 
miRTarbase databases were selected. The target net-
works simultaneously predicted by at least two data-
bases acted as the significant regulation networks. 
Based on the lncRNAs–miRNAs and miRNAs–mRNAs 
networks and string database (https://strin​g-db.org/), 
the lncRNAs–miRNAs–mRNAs interaction network 
was constructed and visualized by the cytoscape.40,41 In 
order to seek the core gene of the interaction network, 
we used the cytohubba plug-in and EcCentricity topo-
logical feature.

2.7  |  Construction of the 
prognostic model

In order to filter the prognostic genes from the differen-
tially expressed genes, univariate analysis was first used to 
select genes, which had significant correlations with over-
all survival (OS) (p < 0.005) (Table S3). Based on the “glm-
net” package, the LASSO analysis was applied to construct 
a prognostic model.42 In addition, we used the GSE14520 
to verify the availability of the prognostic model.

3   |   RESULTS

3.1  |  Immunophenotypes associated 
with TP53 and LRP1B expression in HCC

Four independent datasets of gene expression with 1011 
samples were analyzed with CIBERSORTx to evaluate 
the proportions of 22 immune-related cell subtypes of 
each patient. The correlations between the TP53 and 
LRP1B expressions levels and the proportions of im-
mune cells were calculated by Spearman's analysis. 
Twelve immune cells (T cells CD4 memory resting, T 
cells CD4 memory activated, Dendritic cells activated, 
Macrophages M1, T cells CD4 naïve, Eosinophils, T cells 
gamma delta, Mast cells activated, NK cells activated, 
T cells follicular helper, B cells naïve, T cells CD8) had 
strong correlations with TP53 expression level. Eight 
immune cells (NK cells activated, Macrophages M0, T 
cells CD8, Mast cells resting, T cells CD4 memory acti-
vated, B cells naïve, Macrophages M1, T cells regulatory 
[Tregs]) had strong correlations with LRP1B expression 
level (Figure 2). LASSO regression analysis was used to 
further select the immune cells (T cells CD8, NK cells ac-
tivated, T cells CD4 memory activated and Macrophages 
M1), which were associated with TP53 and LRP1B ex-
pression levels. In addition, we found that Macrophages 
M2 had a high correlation with TP53 expression level 
and M1/M2 immune cells represented two extreme di-
rections of immune differentiation. So, Macrophages 
M2 was also selected. Ultimately, five immune cells 
including T cells CD8, NK cells activated, T cells CD4 
memory activated, Macrophages M1 and Macrophages 
M2 were applied in the subsequent analysis.

3.2  |  Stratification of patients by five 
immune cells

According to the five immune cells selected above, the 
unsupervised clustering analysis of the TCGA-LIHC set 

http://www.mircode.org/
http://www.targetscan.org/
http://www.targetscan.org/
http://mirdb.org/
http://mirtarbase.cuhk.edu.cn/
https://string-db.org/
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displayed two distinguished clusters including A and B 
(Figure 3A). The cluster A was separated into A1 and A2 
subclusters and cluster B was separated into B1, B2, and 
B3 subclusters. The cluster A showed a higher proportion 
of infiltrating immune cells than the cluster B. In addi-
tion, the levels of T cells CD8 and T cells CD4 memory 
activate in cluster A1 were higher than the cluster A2, and 
the levels of Macrophages M2 in cluster A1 were lower 
than the cluster A2. The cluster B1 had a higher propor-
tion of NK cells activated. The cluster B3 had a higher 
proportion of Macrophages M1, whereas various immune 
cells of cluster B2 showed lower levels. Furthermore, the 
similar stratification pattern of patients was verified in 
three independent validation sets (Figure 3B–D). Because 
of the highest immune cell levels of cluster A1 and low-
est immune cell levels of cluster B2, we selected the clus-
ter A1 and cluster B2 to study the differences of HCC 
with high immunogenicity and low immunogenicity. In 
order to study the difference of the TP53 in diverse clus-
ters, we analyzed protein and transcript levels using the 
TCPA database and TCGA dataset. However, there was 
no significant difference between clusterA1 and cluster B2 
(Figure S1A,B).

3.3  |  Differences of somatic mutations 
in the diverse immunophenotypes

To study the differences of somatic mutations in the di-
verse clusters, the proportion and quantity of somatic 

mutations of the TCGA-LIHC set were analyzed. The syn-
ergy genes and mutual exclusion genes were researched 
at the same time. First, we analyzed the total mutation 
counts and found that there was no significant difference 
among different clusters, which indicated that the total 
mutation counts had no obvious relationships with im-
munophenotypes (Figure  4A). Moreover, the mutation 
frequency of TTN in cluster A1 was lower than other clus-
ters and the LRP1B mutation was only found in cluster 
A1. The lower mutation frequency of TTN and higher mu-
tation frequency of LRP1B might be associated with the 
high immunity of cluster A1. However, the high mutation 
frequencies of TP53 and CTNNB1 in all clusters showed 
that both genes existed commonly in HCC (Figure  4B). 
In addition, the mutation analysis found that the TP53 
had the synergistic phenomenon with FAT3 and OBSCN, 
but had a mutually exclusive phenomenon with CTNNB1 
(Figure 4C). Furthermore, LRP1B had the synergistic phe-
nomenon with both genes of TTN and CACAN1E.

3.4  |  Differential 
expression of mRNAs and functional 
enrichment analyses

In order to further explore the differences between the 
cluster A1 and cluster B2, the differentially expressed 
genes were obtained from the TCGA-LIHC set. In total, 
798 differentially expressed genes were identified between 
two clusters (Figure 5A). Compared with cluster B2, 349 

F I G U R E  2   Correlation analysis 
between immune infiltrating cells and 
gene expressions and the size of the data 
points indicated significance
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F I G U R E  3   Based on immune cell proportion data, unsupervised cluster analysis of TCGA (A), ICGC-FR (B), ICGC-JP (C), and 
GSE14520 (D). TCGA, The Cancer Genome Atlas; ICGC-FR, The International Cancer Genome Consortium-France; ICGC-JP, The 
International Cancer Genome Consortium-Japan
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F I G U R E  4   Somatic mutations analysis. (A) The total mutation rate of different groups. (B) Analysis of mutation types and mutation 
frequencies of different groups. The top 10 genes of mutation frequencies were visualized. (C) Synergy genes and mutual exclusion genes 
analysis of somatic mutations
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genes were significantly upregulated and 449 genes were 
significantly downregulated in the clusterA1. The Gene 
Ontology (GO) analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis were used to analyze the 
potential function of the differentially expressed genes. 
The GO analysis included biological process (BP), cel-
lular component (CC) and molecular function (MF) re-
vealed that upregulated differentially expressed genes in 
cluster A1 were associated with T cell activation, exter-
nal side of plasma membrane and receptor ligand activ-
ity, while downregulated differentially expressed genes 
in cluster A1 were associated with cell–cell adhesion via 

plasma membrane adhesion molecules, transmembrane 
transporter complex and channel activity (Figure 5B–G). 
The KEGG analysis revealed that upregulated differen-
tially expressed genes in cluster A1 were associated with 
cytokine−cytokine receptor interaction, antigen pro-
cessing and presentation and cell adhesion molecules 
(Figure 5H). We displayed eight pathways with the most 
significant padjust. However, the KEGG analysis revealed 
that the downregulated differentially expressed genes in 
cluster A1 were enriched in two pathways, including neu-
roactive ligand−receptor interaction and nicotine addic-
tion (Figure 5I).

F I G U R E  5   The differential expression of mRNAs and functional enrichment analyses. (A) The volcano plot of the differentially 
expressed mRNAs between cluster A1 and cluster B2. (B–G) The GO analysis: BP (B), CC (C), and MF (D) analysis of the upregulated 
differently expressed mRNAs in cluster A1; BP (E), CC (F), and MF (G) analysis of the downregulated differently expressed mRNAs in 
cluster A1. (H–I) The KEGG analysis: (H) KEGG analysis of the upregulated differently expressed mRNAs in cluster A1; (I) KEGG analysis 
of the downregulated differently expressed mRNAs in cluster A1. BP, biological process; CC, cellular component; GO, gene ontology; MF, 
molecular function; KEGG, Kyoto encyclopedia of genes and genomes
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3.5  |  Differences of copy 
number variations in the diverse 
immunophenotypes

Recently, Davoli et al. offered forceful evidence that 
the copy number variations were related to immune es-
cape,43 which indicated that the genomic alterations could 
strongly impact the immunophenotypes of tumors. The 
genomic analysis showed that several regions (chromo-
somes 1, 16, and 21) had the significant differences of copy 
number variations between cluster A1 and cluster B2. In 
addition, we found 202 genes with copy number gains in 
cluster A1 and 814 genes with copy number gains in clus-
ter B2. Thereinto, 5 of 202 genes were upregulated differ-
entially expressed genes in cluster A1 and 26 of 814 genes 
were upregulated differentially expressed genes in cluster 
B2 (p < 0.05) (Figure S2A). Therefore, the copy number 
variations of these genes might be associated with the im-
munity of cluster A1 and cluster B2.

3.6  |  Differences of DNA methylation 
in the diverse immunophenotypes

To research the differences of the DNA methylation in the 
diverse immunophenotypes, we investigated the differen-
tially methylated sites between cluster A1 and cluster B2. 
We found that 7068 methylation probes had significantly 
higher beta values in cluster A1 and 4045 methylation 
probes had significantly higher beta values in cluster B2 
(p < 0.05). According to the theory that DNA methylation 
negatively regulated the expression of mRNAs, we found 
six differentially expressed mRNAs which showed high 
expression and low DNA methylation in cluster A1 while 
71 differentially expressed mRNAs which showed high ex-
pression and low methylation in cluster B2 (Figure S2B).

3.7  |  Differential expression of 
miRNAs and lncRNAs

According to the study of the miRNAs, we identified 
113 differentially expressed miRNAs between cluster 
A1 and cluster B2 of the TCGA-LIHC set. Thereinto, 87 
genes were significantly upregulated in cluster A1 and 
26 genes were significantly upregulated in the cluster B2 
(Figure  S3A). We predicted the target genes of miRNA 
using three databases including TargetScan, miRDB, 
and miRTarbase databases. The target genes predicted 
simultaneously at least two databases were selected. 
Ultimately, 9532 target mRNAs were obtained for the up-
regulated differentially expressed miRNAs in the cluster 
A1 (Figure  S3B), 1267 target mRNAs were obtained for 

the upregulated differentially expressed miRNAs in the 
cluster B2 (Figure S3C). Next, we identified 322 lncRNAs, 
which were differentially expressed between cluster A1 
and cluster B2. One hundred and sixty-five genes were 
upregulated in cluster A1, while 157 genes were upregu-
lated in cluster B2 (Figure S3D). We predicted the target 
miRNAs of the differential expressed lncRNAs by miR-
code database. According to TargetScan, miRDB, and 
miRTarbase database, we predicted the target mRNAs of 
the miRNAs. The target mRNAs simultaneously predicted 
by at least two databases were also filtered. Ultimately, 66 
target mRNAs were obtained for the upregulated miRNAs 
in the cluster A1 (Figure S3E) and 708 target mRNAs were 
obtained for the upregulated miRNAs in the cluster B2 
(Figure S3F). The common miRNAs between the differ-
ential expressed miRNAs and target miRNA and the com-
mon mRNAs between the differential expressed mRNAs 
and target mRNAs were selected. According to the above 
lncRNAs, miRNAs, and mRNAs, an interaction network 
was built that summarized potential molecular character-
istics of different tumor immunophenotypes (Figure S3G).

3.8  |  Identification of the hub gene

In order to identify the key gene in the mRNAs–miRNAs–
lncRNAs network, we used the cytohubba plug-in of the 
Cytoscape and found that epithelial cell adhesion mole-
cule (EPCAM) acted as a vital node within the network, 
which indicated that the EPCAM played an important 
influence on the difference of the immunophenotypes. 
The relevant network of EPCAM was visualized by the 
Cytoscape (Figure 6A). Moreover, EPCAM had a signifi-
cantly higher expression in the cluster B2 than the clus-
ter A1 (Figure 6B). To study the effect of other epigenetic 
factors on the EPCAM, the analysis of copy number vari-
ations and DNA methylation discovered that there was 
no significant difference of EPCAM between cluster A1 
and cluster B2. The above results confirmed that the copy 
number variations and DNA methylation made no dif-
ference in the expression of the EPCAM. In addition, the 
correlation analysis showed that the EPCAM expression 
level had a negative association with T cells CD8, T cells 
CD4 memory activated, Macrophages M1, and T cells 
Folliculcar, which indicated this gene might provide a 
clue on the immunoregulation (Figure 6C).

3.9  |  Construction of the 
prognostic model

To explore the prognosis-related genes from the differen-
tially expressed genes between cluster A1 and cluster B2, 
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the LASSO Cox regression was used to select the most rel-
evant prognosis genes including CLDN6, MYCN, PNMA3, 
FCER1G, and MSC to build the prognostic model. As ex-
pected, the high-risk group had a poorer prognosis than 
the low-risk group (Figure  7A). Figure  7B showed the 
risk score of patients in the high-risk group and low-risk 
group. Figure 7C showed the survival time and survival 

status of patients in the high-risk group and low-risk 
group. Furthermore, compared with the low-risk group, 
the prognosis-related gene expression levels of high-risk 
group were higher (Figure 7D). To test whether the prog-
nosis model had a similar prognostic function in other 
dataset, we applied the prognostic model to an independ-
ent validation set (GSE14520). Patients in the GSE14520 

F I G U R E  6   The analysis of the EPCAM gene. (A) The EPCAM related mRNAs and miRNAs. The red represented the hub gene, the 
green represented mRNAs, and the blue represented miRNAs. (B) The difference of EPCAM expression level between cluster A1 and cluster 
B2. (C) Correlation analysis between immune infiltrating cells and EPCAM expression level
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were also divided into high-risk group and low-risk group 
and survival rates were calculated. Patients in the low-risk 
group had a better prognosis than the high-risk group, 
which was consistent with the consequence obtained 
from the training set (Figure  S4). The receiver operator 
characteristic (ROC) curve was used to assess the prog-
nosis model. For 1-year, 3-year, and 5-year survival times, 
the area under the curve (AUC) values of the model in 
the training set were 0.691, 0.668, and 0.672, respectively. 
The sensitivity was 0.436, 0.428, and 0.867, respectively. 
The specificity was 0.903, 0.848, and 0.449, respectively 
(Figure  S5A). For 1-year, 3-year, and 5-year survival 
times, the AUC values of the model in the validation set 
were 0.643, 0.585, and 0.58, respectively. The sensitivity 
was 0.667, 0.565, and 0.469, respectively. The specificity 
was 0.634, 0.654, and 0.745, respectively (Figure S5B).

4   |   DISCUSSION

In the past few years, the prognosis and genetic altera-
tions of HCC patients have been deeply and extensively 
explored. TP53 and LRP1B genetic markers have been 
shown to play a vital part in prognostic and were broadly 
used in prognostic signatures.44 Furthermore, some stud-
ies indicated that the TP53 and LRP1B mutations could 

influence the immune microenvironment of cancer. 
However, the potential molecular mechanisms of TP53 
and LRP1B and different immunophenotypes are still 
unknown. In this research, according to the expressions 
of the TP53 and LPR1B, we built the different immune 
phenotypes with higher (cluster A1) or lower immune 
cell levels (cluster B2). In addition, the integrated analysis 
of multi-omics information was performed to emphasize 
the differences of the genome and epigenetic patterns be-
tween cluster A1 and cluster B2. EPCAM was identified as 
a pivotal factor in regulating tumor immune phenotypes. 
In addition, based on the expressions of relevant immune 
candidate genes, we set up a prognostic model and proved 
its prognosis value.

Although many studies indicated that the TP53 and 
LRP1B could affect the prognosis of HCC patients, the 
impacts of TP53 and LRP1B on the immune were poorly 
understood. In the previous research, Cooks et. al demon-
strated that colon cancer cells with TP53 mutation could 
release exosomes to change tumor immune status by re-
programming macrophages.45 The mutation of LRP1B 
was correlated with ameliorative immunotherapy out-
comes for melanoma and non-small cell lung cancer 
(NSCLC) patients. Patients with the mutation of LRP1B 
often had the enrichment of genes, which were associated 
with antigen processing and presentation and cell cycle 

F I G U R E  7   The construction of a prognostic model. (A) KM survival curve of patients with HCC in the training cohort. (B) Risk scores 
distribution of patients in the training cohort. The red points represented patients in the high-risk group. The green points represented 
patients in the low-risk group. (C) Survival time and survival status of patients in the training cohort. The red points represented 
patients with dead status. The green points represented patients with alive status. (D) The expression levels of prognostic genes in the 
training cohort. The red color represented that this gene was upregulated in patients and the green color represented that this gene was 
downregulated in patients. The depth of the color represented the level of expression. The “high” represented patients in the high-risk group 
and the “low” represented patients in the low-risk group. KM, Kaplan–Meier; HCC, hepatocellular carcinoma
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checkpoints.46 Therefore, more researches are needed to 
explore the underlying relationship between two genes 
and immune cells of HCC. We applied correlation analysis 
and lasso analysis to filter the immune cells, which were 
associated with TP53 and LRP1B. This double screening 
made the result more precise.47

Multi-omics data analysis has significant advantages 
to reveal potential correlations among multiple biology 
factors and the functional mechanisms. According to the 
multi-omics data analysis, we found that the EPCAM was 
the key gene to regulate the immune microenvironment. 
The expression level of EPCAM was considered to be 
closely associated with clinical outcomes in HCC. EPCAM 
has high expressions in numerous human cancers, which 
originate from epithelial.48 However, the function and the 
expression regulation of EPCAM are still unknown. It has 
been shown that recurrence of HCC was promoted, at least 
partly, by cancer stem cells (CSCs). CSCs contained specific 
biomarkers like EPCAM, which were participated in their 
effect to escape the immune system, to facilitate tumor 
growth and to generate colonies.49 The IFN-γ derived from 
NK cells could promote HCC occurrence and development 
by the EPCAM-EMT axis in the HBs-Tg mice, indicating 
the significance of congenital immunity in the pathogen-
esis of HBV-related HCC.50 Furthermore, based on the 
upregulated of CEACAM1 expression level, EPCAM liver 
CSCs could control NK cell-mediated cytotoxicity.51

Finally, based on differentially expressed genes among 
cluster A1 and cluster B2, we established a prognostic 
model, including CLDN6, MYCN, PNMA3, FCER1G, and 
MSC. The CLDN6 gene acted as the oncogene in HCC and 
enhanced cancer cell invasion, migration, and proliferation 
through EGFR/AKT/mTOR signaling pathway.52 In neu-
roblastoma (NB) patients, the MYCN, as the potential bio-
marker, could predict the therapeutic efficacy susceptibility 
of NK cell-mediated immunotherapy.53 In addition, the gene 
sets of immune-associated pathways were usually enriched 
in renal cell carcinoma (RCC) patients, which had highly ex-
pressed FCER1G.54 These indicated that immune-associated 
pathways could affect the prognosis of HCC patients.

We also recognized this study still had limitations. The 
somatic mutations, DNA methylation, and CNV variation 
failed to provide additional clues for the differential ex-
pression of the hub gene. In addition, there are no protein 
expression data of EPCAM, its different expression at the 
protein level cannot be analyzed. This result is needed to 
be further verified by the vast amounts of data.

5   |   CONCLUSION

In summary, we integrated multi-omics information to 
demonstrate that TP53 and LRP1B served as the critical 

genes associated with the immune phenotypes and this 
process was meditated through the EPCAM. The immune-
related model was an important predictor to predict the 
prognosis of the HCC patients and may provide better in-
sights into the immunological therapy.
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