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Abstract The cohesin complex mediates DNA-DNA interactions both between (sister chromatid

cohesion) and within chromosomes (DNA looping). It has been suggested that intra-chromosome

loops are generated by extrusion of DNAs through the lumen of cohesin’s ring. Scc2 (Nipbl)

stimulates cohesin’s ABC-like ATPase and is essential for loading cohesin onto chromosomes.

However, it is possible that the stimulation of cohesin’s ATPase by Scc2 also has a post-loading

function, for example driving loop extrusion. Using fluorescence recovery after photobleaching

(FRAP) and single-molecule tracking in human cells, we show that Scc2 binds dynamically to

chromatin, principally through an association with cohesin. Scc2’s movement within chromatin is

consistent with a ’stop-and-go’ or ’hopping’ motion. We suggest that a low diffusion coefficient, a

low stoichiometry relative to cohesin, and a high affinity for chromosomal cohesin enables Scc2 to

move rapidly from one chromosomal cohesin complex to another, performing a function distinct

from loading.

DOI: https://doi.org/10.7554/eLife.30000.001

Introduction
The organisation of chromosomes during interphase has an important role in the regulation of gene

expression. Distal regulatory elements such as enhancers must be brought into proximity with their

target promoters and shielded from inappropriate ones (insulation) (Bulger and Groudine, 2010).

Recent advances in mapping DNA interactions have demonstrated that the human genome is organ-

ised into a series of sub-megabase, self-interacting regions called topologically associating domains

(TADs) whose boundaries correspond to binding sites for the CCCTC-binding factor (CTCF)

(Nora et al., 2012).

There is mounting evidence that the mechanism by which TADs and enhancer-promoter interac-

tions are formed involves cohesin (Kagey et al., 2010; Rollins et al., 1999; Wendt et al., 2008).

This Smc/kleisin complex holds sister chromatids together from their replication until chromosome

segregation in mitosis (Guacci et al., 1997; Michaelis et al., 1997). The core cohesin complex is a

ring-shaped heterotrimer of Smc1, Smc3 and Scc1 (Rad21) subunits (Tóth et al., 1999). Dimerization

via their hinge domains creates V-shaped Smc1/Smc3 heterodimers whose apical head domains

come together to form a composite ABC-like ATPase (Haering et al., 2002). Scc1’s N-terminal

domain binds to the Smc3 neck and its C-terminal domain to the Smc1 head thereby creating a

closed ring (Figure 1a) (Gruber et al., 2003). It has been suggested that cohesin associates with

chromatin by entrapping DNA within the ring’s lumen while sister chromatid cohesion is mediated

by co-entrapment of sister DNAs (Haering et al., 2008).

Cohesin’s association with chromatin is regulated by several proteins among them the HAWKs

(HEAT repeat containing proteins Associated With Kleisins): Scc2 (Nipbl), Pds5 and Scc3 (SA1/2)

(Wells et al., 2017). Initial association of cohesin with DNA is regulated by Scc2 (Ciosk et al., 2000)

and requires ATP hydrolysis (Arumugam et al., 2003). Scc2 is a large (316 kDa) hook-shaped protein
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Figure 1. Scc2 interacts with chromatin independent of the cohesin loading reaction. (a) Model of the cohesin

complex and Scc2 based on crystal structures (Scc2 (PDB: 5T8V), Smc1-Scc1 interface (PDB: 1W1W), Smc3-Scc1

interface (PDB: 4U � 3), Smc3-Smc1 interface (PDB: 2WD5), Scc3 (PDB: 4PJU), coiled coil of Smc3 and Smc1

modelled on dynein (PDB: 3WUQ), Scc1 central domain modelled from Scc2 N terminus (PDB: 4XDN). (b)

Illustration to demonstrate the formation of TADs by loop extrusion. Loops are progressively enlarged until they

reach convergent CTCF sites. (c) Z-projected images from a time-lapse confocal microscopy recording of JF549-

Halo-Scc2 (Scc2JF549) in HeLa cells. Time 0 hr = interphase, 6.5 hr = prophase, 7.75 hr = metaphase, 8

hr = telophase and 8.25 hr = G1. Scale bar = 5 mm. (d) FACS analysis of cells stained with propidium iodide either

6 hr (G2) or 15 hr (G1) after release from a double thymidine block, and cycling cells. (e) Still images from a

fluorescence recovery after photobleaching (FRAP) experiment. Dashed circle represents bleached region. (f) FRAP

curves of Scc2JF549 in G1 and G2. Error bars denote standard error of the mean (s.e.m.). (g) Mean half-life of

chromatin bound Scc2JF549 derived from bi-exponential curve fitting of individual experiments from cells in G1 and

G2. Error bars denote s.e.m. Unpaired t-test was used to compare conditions. n = 14 cells per condition.

DOI: https://doi.org/10.7554/eLife.30000.002

The following figure supplements are available for figure 1:

Figure supplement 1. Curve fitting of FRAP experiments.

Figure 1 continued on next page
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whose N-terminal domain binds Scc4 (Mau2) to form the cohesin loading complex (Kikuchi et al.,

2016). Though essential for loading cohesin onto yeast chromosomes, Scc2 is not required to main-

tain sister chromatid cohesion (Ciosk et al., 2000). Cohesin is released from DNA by Pds5 and Wapl

(Kueng et al., 2006), which open the complex’s Smc3-Scc1 interface (Chan et al., 2012). An equilib-

rium between loading and release gives cohesin rings a mean chromosome residence time of 15–30

min (Gerlich et al., 2006; Hansen et al., 2017).

It has been suggested that cohesin has the ability to extrude loops of DNA in a processive man-

ner and that this process is halted by CTCF bound in one but not the other orientation (Figure 1b)

(Alipour and Marko, 2012; Fudenberg et al., 2016; Nasmyth, 2001; Sanborn et al., 2015). If

CTCF-regulated loop extrusion is responsible for TADs, then cohesin must be capable of translocat-

ing vast distances along chromatin fibres. Experiments in bacteria, yeast and mammalian cells and in

vitro indicate that cohesin and its relatives have the ability to travel along DNA (Busslinger et al.,

2017; Davidson et al., 2016; Hu et al., 2011; Lengronne et al., 2004; Stigler et al., 2016;

Wang et al., 2017). A recent study has shown that cohesin’s close relative condensin can translocate

unidirectionallly along DNA and this motor activity depends on ATP hydrolysis (Terakawa et al.,

2017). Scc2 stimulates cohesin’s ATPase (Murayama and Uhlmann, 2014) and may play a role in

the formation of TADs (Haarhuis et al., 2017). If cohesin’s ATPase is required for its translocation

along chromatin, then Scc2 might be expected to associate also with cohesin rings that have already

loaded onto chromosomes. This has hitherto been addressed by ChIP sequencing (ChIP-Seq) stud-

ies, which have yielded conflicting results. Some found that Scc2 peaks overlap with those of cohesin

only at enhancers and promoters (Fournier et al., 2016; Kagey et al., 2010). Others found little or

no overlap with cohesin and instead detected Scc2 bound to active promoters that do not coincide

with cohesin peaks (Busslinger et al., 2017; van den Berg et al., 2017; Zuin et al., 2014). Despite

these differences none of the studies reported any significant co-localisation with CTCF sites where

the vast majority of cohesin peaks are found. These discrepancies may be due to problems with

crosslinking (Teves et al., 2016) or due to unreliable antibodies. Besides which, previous ChIP-Seq

analyses suffer from a lack of calibration (Hu et al., 2015), which is necessary to distinguish genuine

association from background noise.

Cornelia de Lange syndrome (CdLS) is a severe developmental disorder in which 60% of cases

have heterozygous mutations in Scc2 (Rohatgi et al., 2010). However, cells from patients and a het-

erozygous Scc2 mouse model only display modest reductions in Scc2 expression (Borck et al.,

2006; Kawauchi et al., 2009). It is not known why slightly reduced Scc2 abundance results in such

severe developmental defects, but the level of cohesin on chromatin is unchanged and cohesion is

unaffected in heterozygous Scc2 mice (Chien et al., 2011; Remeseiro et al., 2013). A cohesin-inde-

pendent function in transcription has been suggested for Scc2 (van den Berg et al., 2017;

Zuin et al., 2014) but further CdLS mutations are found in cohesin genes indicating an aetiology

related to the complex (Boyle et al., 2017; Deardorff et al., 2012; Revenkova et al., 2009). These

findings suggest that CdLS is not caused by a reduction in binding of cohesin to DNA but rather a

change in its behaviour once loaded. However, no interaction has been demonstrated between Scc2

and loaded cohesin in vivo.

To determine whether Scc2 interacts with cohesin outside of the loading reaction we turned to

live cell imaging. Using fluorescence recovery after photobleaching (FRAP) and single-molecule

imaging, we show that Scc2 binds dynamically to chromatin, principally through an association with

cohesin. In cells lacking Wapl, cohesin never dissociates from chromatin and accumulates along lon-

gitudinal axes called vermicelli (Tedeschi et al., 2013). We find that Scc2 co-localises with these

axes but unlike cohesin, it turns over with a half-life of approximately one minute. Crucially, a pool of

Scc2 with similar kinetics in wild type cells is greatly reduced after degradation of cohesin. This

implies that a large fraction of chromosomal Scc2 is bound to cohesin at any moment in time. Scc2’s

movement within chromatin is consistent with a ‘stop-and-go’ or ‘hopping’ motion. We suggest that

a low diffusion coefficient, a low stoichiometry relative to cohesin, and a high affinity for

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.30000.003

Figure supplement 2. Curve fitting of FRAP experiments.

DOI: https://doi.org/10.7554/eLife.30000.004
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chromosomal cohesin enables Scc2 to move rapidly from one chromosomal cohesin complex to

another in its vicinity, performing a function distinct from loading.

Results

Scc2 interacts transiently with chromosomes before and after DNA
replication
Because Scc2 is not stably associated with chromosomal cohesin (Hu et al., 2011), it has hitherto

been assumed to only interact with cohesin transiently during the loading process. For this reason as

well as the difficulties of ascertaining the location of proteins with short chromosome residence

times using ChIP-Seq, we investigated Scc2’s dynamics using live-cell imaging. To do this, we

tagged Scc2 at its N-terminus with the HaloTag in HeLa cells using CRISPR/Cas9-mediated homolo-

gous recombination (Stewart-Ornstein and Lahav, 2016). Halo-Scc2 was labelled by transient incu-

bation with the fluorescent dye JF549 conjugated to the HaloTag ligand (Scc2JF549) (Grimm et al.,

2015). Timelapse confocal microscopy confirmed previous findings from immunofluorescence

experiments (Watrin et al., 2006), that Scc2 is nuclear during interphase, dissociates from chromatin

in prophase and is excluded from chromosomes during mitosis (Figure 1c, Video 1).

To compare Scc2’s dynamics at different stages of the cell cycle, we obtained G1 and G2 popula-

tions by releasing cells for different periods of time from a double thymidine block. Cells were pre-

dominantly in G2 6 hr after release, having just completed S phase, while they were predominantly

in G1 15 hr after release, having undergone both DNA replication and mitosis (Figure 1d). The inter-

action between Scc2 and chromatin was measured by bleaching a circle of Scc2JF549 fluorescence

and measuring fluorescence recovery after photobleaching (FRAP) (Figure 1e,f). FRAP experiments

were performed in the presence of an unlabelled HaloTag ligand to prevent relabeling of newly syn-

thesised Halo-Scc2 (Rhodes et al., 2017). Scc2JF549 FRAP curves did not fit a single exponential

function (Figure 1—figure supplement 1). However, a double exponential model fitted the recovery

data from both sets of cells (Figure 1—figure supplements 1 and 2). In G1 cells, 53% of the fluores-

cence recovered with a half-life of 2.9 s and 45% with a half-life of 51 s, while in G2 cells, 57% of the

fluorescence recovered with a half-life of 3.9 s and 41% with a half-life of 56 s (Figure 1g). Our

results indicate that Scc2’s association with chromatin is much more transient and frequent than that

of cohesin which has a residence time of 15–30 min (Gerlich et al., 2006; Hansen et al., 2017). Dur-

ing DNA replication 30% of cohesin becomes stably bound on chromosomes with a residence time

in the hours range (Gerlich et al., 2006). Unlike cohesin, there are only modest differences in Scc2

recovery characteristics between G1 and G2

cells.

Scc2 co-localises with cohesin
vermicelli in WaplD cells
Because cohesin and Scc2 appear evenly distrib-

uted within nuclei by conventional fluorescence

microscopy, it is hard to address whether they

co-localise. Deletion of the cohesin release factor

Wapl results in re-organisation of cohesin into

axial structures called vermicelli (Tedeschi et al.,

2013). We used this phenomenon to determine

whether Scc2 co-localises with chromosomal

cohesin. To this end, we transfected Halo-Scc2

HeLa cells with a plasmid expressing Cas9 and a

guide RNA that together make a double strand

break in WAPL’s M1116 codon, a residue essen-

tial for Wapl’s releasing activity (Ouyang et al.,

2013). This causes deletions in most genes but

also gives rise to M1116 mutations

(Rhodes et al., 2017). Three days post transfec-

tion, immunofluorescence with an antibody

Video 1. Time-lapse live cell microscopy of Scc2JF549 in

wild type HeLa cells. Scale bar = 5 mm.

DOI: https://doi.org/10.7554/eLife.30000.005
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against Scc1 showed that cohesin had re-organised into vermicelli in most cells (Figure 2a). Strik-

ingly, Scc2JF549 largely co-localised with the cohesin vermicelli and not with the majority of DNA that

surrounds these structures (Figure 2a). However, in contrast to cohesin, which is permanently associ-

ated with chromosomes in WaplD mutants (Tedeschi et al., 2013), Scc2JF549 still showed fast FRAP

recovery after Wapl inactivation (Figure 2b, c and d, Figure 2—figure supplement 1, Video 2).

Upon inactivation of Wapl the fraction of cohesin associated with chromatin increases

(Kueng et al., 2006) and the unbound fraction is reduced. In this situation, one would expect the

frequency of Scc2’s association with chromatin to decrease if Scc2 and cohesin interacted only dur-

ing the cohesin loading reaction. This is because there are fewer cohesin complexes available for an

Scc2-mediated loading reaction. In fact, we observed precisely the opposite. The fraction of Scc2

bound to chromatin increased when Wapl was inactivated (Figure 2c), despite less unbound cohesin

being available to load onto DNA. Increased chromatin binding of Scc2 therefore appears to reflect

an association between Scc2 and cohesin that is stably loaded on DNA. Scc2’s continual albeit tran-

sient association with vermicelli may regulate aspects of cohesin function besides loading.

Analysis of the Wapl defective cells was also revealing about Scc2’s behaviour during mitosis.

Most cohesin dissociates from chromosome arms when cells enter M phase (Losada et al., 1998).

This process, which is known as the prophase pathway, involves the same mechanism responsible for

cohesin’s turnover during interphase, namely Wapl-mediated opening of the ring’s Smc3/Scc1 inter-

face (Chan et al., 2012). In cells lacking Wapl, cohesin persists throughout chromosomes until sepa-

rase removes it during anaphase (Kueng et al., 2006) (Figure 2e). This situation presents an

opportunity to address whether the lack of Scc2’s association with chromosomes from prophase till

metaphase is simply due to the lack of cohesin or due to cell cycle regulation of Scc2’s ability to

bind cohesin. In other words, does Scc2 still dissociate from chromosomes in WaplD cells during

mitosis? Time-lapse and immunofluorescence microscopy of Scc2JF549 WaplD HeLa cells demon-

strated that Scc2 dissociates from chromosomes in prophase even in the absence of Wapl activity

(Figure 2e and Video 3). Thus, the prophase release of Scc2 is independent of cohesin release. Acti-

vation of mitotic protein kinases during prophase may abrogate Scc2’s ability to bind to chromo-

somal cohesin.

Scc2 hops along the vermicelli of WaplD cells
Observation of fluorescence recovery after photobleaching a large fraction of the nucleus revealed a

striking phenomenon. Given Scc2’s rapid turnover on chromatin, one would expect Scc2 molecules

that have dissociated from chromatin to reappear rapidly throughout the bleached zone, as is the

case in most FRAP studies on proteins with short chromosome residence times. Surprisingly,

Scc2JF549 behaved very differently. Upon photobleaching one half of a nucleus, fluorescence associ-

ated with Scc2JF549 spread into the bleached zone very slowly, taking longer than five minutes to

equilibrate in zones furthest from the unbleached area (Figure 3a and b). This implies that Scc2’s dif-

fusion through the nucleus is severely restricted. One explanation for this low mobility is that Scc2

diffuses extremely slowly through the nucleoplasm. Alternatively, soluble Scc2 may rebind chromatin

before it diffuses appreciably. In other words, its diffusion is continually punctuated by re-binding

and re-dissociation.

In wild type cells it is difficult to distinguish between these two possibilities, as Scc2 is homo-

geneously distributed. To differentiate between DNA-bound and unbound Scc2, we used Wapl defi-

cient cells where bound Scc2 forms vermicelli. After photobleaching one half of the nucleus where

Scc2JF549 was associated with the cohesin vermicelli, we observed that fluorescence spread in a

gradual fashion into the bleached zone and associated with vermicelli as it did so (Figure 3c). Fluo-

rescence appeared earliest on those vermicelli closest to the unbleached zone and latest on those

furthest from the unbleached zone. In other words, the movement of Scc2JF549 across the nucleus

took place while it was continually associating with and dissociating from vermicelli. Thus, upon dis-

sociation from one cohesin complex, Scc2 rebinds a neighbouring one before it can diffuse an

appreciable distance across the nucleus. It appears therefore to ‘hop’ across the nucleus on chromo-

somal cohesin. Similar hopping behaviour has been suggested to occur for the histone linker H1 and

a class of pioneering transcription factors (Misteli et al., 2000; Sekiya et al., 2009).

To confirm that this behaviour was not an artefact caused by the HaloTag, we repeated the

experiment in HeLa cells expressing a mouse GFP-Scc2 under its endogenous promoter from a
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Figure 2. Scc2 binds to cohesin that is already loaded on DNA. (a) Immunofluorescence microscopy images of

wild type and WaplD Halo-Scc2 HeLa cells. Cohesin was stained with an antibody against Scc1 and Halo-Scc2 with

JF549. Scale bar = 5 mm. (b) Still images from spot FRAP experiments on Scc2JF549 in asynchronous wild type or

WaplD HeLa cells. Dashed circle represents bleached region. Scale bar = 1 mm. (c) FRAP recovery curves from wild

type and WaplD cells. Error bars denote s.e.m. n = 14 cells per condition. (d) Mean half-life of chromatin bound

Scc2JF549 derived from bi-exponential curve fitting of individual experiments from wild type or WaplD cells. Error

bars denote s.e.m. Unpaired t-test was used to compare conditions. n = 14 cells per condition. (e)

Immunofluorescence microscopy images of wild type or WaplD Halo-Scc2 HeLa cells in metaphase. Cells were

stained as in a. Scale bar = 5 mm.

DOI: https://doi.org/10.7554/eLife.30000.006

Figure 2 continued on next page
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stably integrated bacterial artificial chromosome (BAC). Again we observed gradual spreading from

unbleached into bleached zones along vermicelli (Figure 3—figure supplement 1 and Video 4).

Scc2’s chromosomal association depends on cohesin
If an appreciable fraction of chromatin bound Scc2 is indeed associated with cohesin, then Scc2’s

dynamics should be greatly altered by removing cohesin from the cell. Because effective cohesin

depletion will have major ramifications on cell cycle progression, which in itself would affect Scc2’s

dynamics, it is essential to measure the effect in cells in which cohesin has been depleted extremely

rapidly and before cells enter mitosis. To this end, we used an HCT116 human cell line whose cohe-

sin subunit Scc1 is tagged with an auxin-inducible degron (mAID) and a fluorescent mClover tag.

These cells also express the plant F-box protein Tir1 that mediates interaction of the AID degron

with endogenous SCF ubiquitin ligase (Natsume et al., 2016).

To measure Scc2’s dynamics in these cells before and after auxin-mediated Scc1 degradation, we

again used CRISPR to tag Scc2 at its N-terminus with the HaloTag. Addition of auxin induced degra-

dation of Scc1 to levels below detection by microscopy within two hours (Figure 4a and b). To com-

pare the dynamics of Scc2 with those of a protein of similar size, we created a second HCT116 cell

line in which both SCC1 genes were tagged with the HaloTag. The molecular weight of the Smc1,

Smc3, Scc1, Scc3 tetramers is 500 kDa while that of Scc2/Scc4 is 386 kDa. Importantly, 50% of cohe-

sin is not bound to chromatin in interphase cells and known to diffuse freely within the nucleoplasm

due to a low association rate (Hansen et al., 2017).

We initially analysed Scc2JF549 FRAP within nuclei in which one half had been photobleached.

FRAP of Scc2JF549 in Scc1-mAID-mClover Tir1 cells in the absence of auxin revealed slow spreading

of Scc2JF549 into the unbleached half of the nucleus, as previously found in HeLa cells. Crucially,

recovery of Scc2JF549 was much slower than that of the freely diffusing pool of Scc1JF549, confirming

that Scc2’s diffusion through the nucleus is an interrupted process, and not simply a consequence of

its high molecular weight (Figure 4c). Addition of auxin caused complete depletion of Scc1 within

two hours, as measured by mClover fluorescence intensity (Figure 4b). Strikingly, this was accompa-

nied by a major increase in the rate of

Scc2JF549 fluorescence recovery after photo-

bleaching (Figure 4c, Figure 4—figure supple-

ment 1). It is conceivable that the increase in the

rate of recovery upon Scc1 degradation is due

to an interaction between Scc2 and the soluble

pool of cohesin, which could somehow slow dif-

fusion in the nucleoplasm. Because the diffusion

coefficient of unbound Scc2 molecules was in

fact unchanged by the presence or absence of

cohesin in the cell (see below), we conclude that

it is chromosomal cohesin and not the soluble

pool that hinders Scc2’s diffusion.

These data imply that Scc2’s slow movement

through the nucleus is due to it hopping

between neighbouring chromosomal cohesin

complexes. Importantly, the behaviour of Scc2 in

WaplD cells shows that it binds and then rapidly

dissociates from cohesin complexes that are

themselves permanently locked onto chromo-

somes. In other words, Scc2 does not merely

bind to cohesin during the loading process.

Figure 2 continued

The following figure supplement is available for figure 2:

Figure supplement 1. Curve fitting of FRAP experiments.

DOI: https://doi.org/10.7554/eLife.30000.007

Video 2. Spot FRAP of Scc2JF549 in WaplD HeLa cells.

Scale bar = 5 mm.

DOI: https://doi.org/10.7554/eLife.30000.008
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Given that Scc2 is a potent activator of hydroly-

sis of ATP by cohesin (Murayama and Uhlmann,

2014), our discovery that Scc2 cycles on and off

chromosomal cohesin raises the possibility that it

stimulates ATP hydrolysis by chromosomal cohe-

sin complexes not just ones engaged in loading.

To address whether Scc2 can bind to chroma-

tin even in the absence cohesin, we repeated

the FRAP experiment in Scc1-depleted HCT116

cells, but in this case photobleaching just a small

circular area (Figure 4d), as described for

Figures 1c and 2b, which enabled us to model

the recovery curves. These were inconsistent

with a single exponential function but fitted a bi-

exponential function well, indicating that Scc2

interacts with chromatin even in the absence of

cohesin. The lack of cohesin simplified Scc2’s

dynamics and enabled us to calculate a resi-

dence time from the FRAP curves

(Mueller et al., 2008). Model fitting revealed

that in cohesin-depleted HCT116 cells 44% of

Scc2 binds to chromatin with a residence time of

22 s. The unbound fraction moves with a diffu-

sion coefficient of 0.79 mm2/s. This slow diffusion coefficient might indicate that even in the absence

of cohesin, Scc2 moves by effective diffusion (where diffusion is interrupted by transient binding).

Our findings imply that Scc2 binds to chromosomes in two modes: one involving cohesin and a sec-

ond more transient one to other chromatin sites, potentially reflecting the previously reported asso-

ciation with gene promoters (Zuin et al., 2014).

Single-molecule imaging demonstrates Scc2 binding to cohesin in wild
type cells
The FRAP measurements suggest that the association between Scc2 and cohesin has a high on rate

as well as a high off rate and that Scc2 may also have a relatively low diffusion coefficient within the

nucleoplasm. It would also seem that while at a given moment there might be a significant unbound

fraction of Scc2 in the nucleus, this protein cannot diffuse very far as its movement is interrupted by

frequent binding events. To test these predictions, we employed single-molecule imaging to visual-

ise directly the movement of Scc2 molecules and quantify their interactions. The Halo ligand JF549

is sufficiently bright to detect single Halo-Scc2 molecules at 15 ms exposures and ~25 nm localisa-

tion precision inside nuclei of live HCT116 cells (Figure 5a). As previously demonstrated (Liu et al.,

2014), the JF549 dye blinks stochastically, allowing sequential imaging and localisation of thousands

of molecules per cell over the course of a movie. Single molecules were visible for an average of 9

frames (135 ms) before blinking, photobleaching or moving out of the focal plane. In some cases,

molecules were visible for several seconds. By linking localisations to tracks, we constructed maps of

Scc2 movement inside nuclei, where the colour of each track represents the average apparent diffu-

sion coefficient per molecule (Figure 5b). This analysis revealed immobile Scc2 molecules (blue-cyan

tracks) as well as molecules displaying clear displacements between successive frames (yellow-red

tracks) (Figure 5c). The distribution of diffusion coefficients revealed two distinct populations: 37%

displayed a diffusion coefficient compatible with chromatin bound molecules while 63% were mobile

and therefore unbound (Figure 5d and e). The average apparent diffusion coefficient of the

unbound molecules was 0.6 mm2/s, consistent with our results from FRAP.

To compare Scc2’s movement with that of its binding partner cohesin, we performed identical

tracking experiments in HCT116 cells where Scc1-Halo was labelled with JF549. The distribution of

diffusion coefficients for Scc1 was remarkably similar to Scc2, showing distinct subpopulations of

bound and diffusing molecules (Figure 5d and e), as reported previously (Hansen et al., 2017). Tag-

ging Scc1 with Halo also enabled us to compare the stoichiometry of Scc2 and Scc1 proteins. Fluo-

rescence associated with Scc1JF549 was nearly three times that associated with Scc2JF549 (Figure 5f),

Video 3. Time-lapse live cell microscopy of Scc2JF549 in

WaplD HeLa cells. Scale bar = 5 mm.

DOI: https://doi.org/10.7554/eLife.30000.009
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while the relative fractions of chromatin-bound molecules were the same for Scc1 and Scc2

(Figure 5e). Therefore, Scc2 is present at a substoichiometric level relative to DNA-bound cohesin.

Hence there is an abundance of binding sites for Scc2, which may contribute to the gradual spread-

ing of fluorescence, observed by FRAP.

As a direct test for our model that Scc2 repeatedly binds pre-loaded cohesin, we tracked Scc2 in

cells in which the abundance of chromatin-bound cohesin had been perturbed. First, we employed

Wapl deficient HeLa cells where most cohesin is chromatin-bound and found that the fraction of

bound Scc2 molecules increased from 41 ± 3% (wild type) to 55 ± 1% (WaplD) (Figure 6a). Thus,

increasing the abundance of DNA-bound cohesin leads to greater recruitment of Scc2. Next, we

N
e
a
r

F
a
r

N
F

0

0.2

0.4

0.6

0.8

1

0 100 200 300

Time (s)

Near

Far

Pre bleach Post bleach 1 minute

a bPre Post

1m 10m

c

F

N

W
ild

 t
y
p
e
 S

c
c
2

J
F

5
4

9

Scc2JF549 FRAP Curve

Region

10 minutes

R
e

la
ti
v
e

 I
n

te
n

s
it
y

Figure 3. Scc2 hops on chromatin. (a) Stills from half nuclear FRAP of Scc2JF549 in wild type HeLa cells. Dashed

rectangle highlight a region Near (N) to and a region Far (F) from the unbleached half. Scale bar = 2.5 mm. (b)

Half-nuclear FRAP curves of Scc2JF549 in wild type HeLa cells. Recovery curves are shown from two zones within the

bleached region. One zone is Near to the unbleached zone and the other is Far from the unbleached zone. Error

bars denote s.e.m. n = 14 cells per condition. (c) Still images from a half-nuclear FRAP experiment of Scc2JF549 in

WaplD HeLa cells. Dashed rectangle highlight a zone near (N) and a zone Far (F) from the unbleached region

shown in insets. Scale bar = 1 mm in inset.

DOI: https://doi.org/10.7554/eLife.30000.010

The following figure supplement is available for figure 3:

Figure supplement 1. Scc2 hops on chromatin.

DOI: https://doi.org/10.7554/eLife.30000.011
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analysed the effect of depleting cohesin using

auxin-mediated Scc1 degradation in HCT116

cells. As expected, this had the opposite effect,

namely that Scc2 binding decreased from 37 ±

2% (untreated) to 27 ± 2% (with auxin)

(Figure 6b). These findings are fully consistent

with the notion that a sizeable fraction of Scc2 is

bound directly to cohesin at any one time. The

fact that a significant fraction of immobile Scc2

molecules remains after cohesin degradation

merely confirms that Scc2 is capable of binding

sites independently of cohesin. Because of this,

the decrease in the fraction of immobile Scc2

upon cohesin depletion will not in fact reflect the

fraction of Scc2 that is normally associated with

cohesin. This is better estimated from the effect

of cohesin depletion on FRAP recovery curves

(Figure 4c), which can distinguish the two types

of chromosomal association (cohesin-dependent

and independent) because they have different

residence times.

Interestingly, although the relative abundance of unbound Scc2 molecules was reduced by Wapl

deletion and increased by cohesin degradation, the apparent diffusion coefficients of unbound Scc2

molecules remained unchanged in both situations. This indicates that the movement of Scc2 during

the search for binding sites is not affected by the presence or absence of cohesin or by the reorgan-

isation and compaction of chromatin caused by Wapl deletion.

Direct observation and quantification of Scc2-cohesin binding
Single-molecule tracking should enable direct observation of Scc2’s transient binding events in wild

type cells. We examined long-lived tracks of Scc2 and frequently observed instances where the diffu-

sion coefficient changed during the trajectory. Single molecules displayed transient binding events

that lasted a few hundred milliseconds followed by dissociation and intervals of diffusive motion

(Figure 7a). This is direct evidence for the effective diffusion postulated from our FRAP experiments.

However, we also found that many molecules remained immobile on a much longer time-scale. Fur-

thermore, after degrading Scc1 by auxin treatment, Scc2 still displayed transient binding events as

seen in untreated cells. Therefore, we interpret these binding events on a time-scale of ~100 ms as

cohesin-independent chromatin interactions during the target search.

Measuring the binding times of the long-lived immobile species was complicated by photo-

bleaching, which limits how long each molecule can be imaged. To capture long-lived binding events

more efficiently, we imaged Scc2JF549 in movies at a slower frame rate of 1 s/frame and lower laser

intensity. Under these conditions, diffusing molecules are blurred and therefore not detected by the

localisation analysis, whereas stationary or slowly moving molecules are detected as sharp diffrac-

tion-limited spots (Figure 7b) (Mazza et al., 2012; Uphoff et al., 2013). However, the observed

dwell times are biased by loss of signal due to photobleaching, blinking, drift, and localisation errors.

Therefore, we first calibrated the method by measuring the dwell time distribution of chromosomal

Scc1, which is known to be stably bound for tens of minutes (Gerlich et al., 2006). Any loss of bound

Scc1 molecules on a shorter time-scale than its known residence time must be due to the aforemen-

tioned experimental artefacts. We calculated this loss rate by fitting a double-exponential decay to

the measured dwell time distribution of Scc1 and applied this correction factor to calculate binding

time constants for Scc2. The dwell times showed a characteristic double exponential distribution

(Figure 7b). 55% of Scc2 molecules were bound with a half-life of 1 s and 45% bound with a half-life

of 47 s. These values are in reasonable agreement with those obtained from FRAP analysis (53% and

45% with half lives of 2.9 and 51 s, respectively).

Our single-molecule tracking experiments explain the slow spreading of Scc2 fluorescence seen

in FRAP experiments. By resolving chromatin-bound and diffusing subpopulations of Scc2, we have

shown in as direct a manner as possible that Scc2 associates with chromatin-bound cohesin

Video 4. Stripe FRAPof GFP-Scc2 in WaplD HeLa cells.

Scale bar = 2 mm.

DOI: https://doi.org/10.7554/eLife.30000.012
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complexes where it has a residence time of approximately one minute. The high relative abundance

of chromosomal cohesin allows Scc2 to rapidly bind a nearby complex after dissociation. Further-

more, in-between cohesin binding events, Scc2 displays effective diffusion where its movement is

frequently halted by transient chromatin binding on a sub-second time-scale (Figure 7c). This allows

Scc2 to diffuse locally in order to stay in close contact with cohesin complexes.

Discussion
Given that Scc2 is the most frequently mutated protein in Cornelia de Lange syndrome it is critical

to understand the nature of its interactions. Scc2 stimulates cohesin’s ATPase (Murayama and Uhl-

mann, 2014) and may play a key role in translocating cohesin along chromatin fibres (Kanke et al.,

2016), and the possible extrusion of DNA loops (Haarhuis et al., 2017). If this were true one would

expect cohesin and Scc2 to reside at the same locations on chromosomes. However, co-localisation

has not been observed between cohesin and Scc2 at CTCF sites where the majority of cohesin ChIP-
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Figure 4. Depletion of core cohesin subunit Scc1 releases most, but not all, Scc2 from chromatin. (a) Live cell

microscopy images of Scc1-mClover-mAID cells ± auxin (500 mM, 1h30 incubation). Scale bar = 5 mm. (b) Graph of

fluorescence intensity of Scc1-mClover-mAID ± auxin demonstrates Scc1 degradation. n = 14 cells per condition.

(c) Half-nuclear FRAP recovery curves of asynchronous HCT116 cells ± auxin. Error bars denote s.e.m. n = 14 cells

per condition. (d) Spot FRAP recovery curves from asynchronous HCT116 cells ± auxin. Error bars denote s.e.m.

n = 13 cells per condition.

DOI: https://doi.org/10.7554/eLife.30000.013

The following figure supplement is available for figure 4:

Figure supplement 1. Curve fitting of FRAP experiments.

DOI: https://doi.org/10.7554/eLife.30000.014
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Seq peaks are found. Here we applied a very different approach, namely imaging fluorescently

labelled versions of Scc2 in living cells.

Our ability to resolve transient chromatin interactions enabled the surprising discovery that Scc2

frequently rebinds to cohesin complexes that have already been loaded onto DNA. Therefore, Scc2

appears to serve a function apart from its documented role as a cohesin loader. We found that Scc2

co-localises with cohesin along the longitudinal axes of interphase chromosomes observed in WaplD

cells. Under these conditions, cohesin is stably bound to chromatin whereas Scc2 turned over with a

half-life of approximately one minute. If Scc2 formed these vermicelli only because of chromatin rear-

rangement, the fraction of Scc2 bound to DNA should be unchanged. In fact, the abundance of

chromatin-bound Scc2 increased after Wapl deletion. This excludes the possibility that the interac-

tion between Scc2 and chromatin exists merely because of an association of Scc2 and cohesin during

the initial loading reaction or an association with gene regulatory elements. Instead, the simplest

explanation for this behaviour is that Scc2 binds transiently but continually to previously loaded

cohesin complexes. As predicted by this hypothesis, acute cohesin depletion greatly increases

Scc2’s mobility within the nuclei of wild type cells. It also reduces the fraction of chromatin-bound

molecules. This effect is more modest than the effect on mobility because Scc2 also binds to chro-

matin in the absence of cohesin, albeit with a considerably shorter residence time.

These findings beg the question what the function is that Scc2 plays when it binds to loaded

cohesin. One possibility is to stimulate cohesin’s translocation along chromatin fibres and thereby

the extrusion of DNA loops. These processes might require ATPase activity associated with Smc1
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Figure 5. Single-molecule tracking of Scc2 and Scc1 in live cells. (a) Example frame from a tracking movie showing

fluorescent spots of single Scc2JF549 molecules. Standard deviation (Std) of pixel intensities from a movie shows

the spatial distribution of Scc2JF549. (b) Map of Scc2JF549 tracks in an HCT116 cell. Each track shows the movement

of a single molecule; colours represent the average diffusion coefficient per track. (c) Tracks of immobile (D*<0.1

mm2/s) and mobile (D*>0.1 mm2/s) Scc2JF549 molecules. (d) Percentage of molecules classified as immobile

(D*<0.1 mm2/s) for Scc2 and Scc1. n > 10 cells. (e) Log-scale distribution of apparent diffusion coefficients D* for

Scc2 (blue) and Scc1 (green). n > 10 cells. (f) Fluorescence intensity (a.u.) of Scc2JF549 and Scc1JF549. n > 10 cells.
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and Smc3 (Kanke et al., 2016), a reaction that is stimulated by Scc2 (Murayama and Uhlmann,

2014). Further experiments permitting manipulation of Scc2 activity will be required to address what

function Scc2 performs on chromosomal cohesin. Ascertaining whether it facilitates loop extrusion

and thereby formation of TADs will be an important goal.

It is intriguing that ChIP-Seq studies have missed Scc2’s close association with chromosomal

cohesin. We have already mentioned technical reasons why ChIP-Seq may not have revealed Scc2’s

real location. However, there may be an equally important reason. Because Scc2 and cohesin ChIP-

Seq measurements have not been calibrated (Hu et al., 2015), their analyses have focused on local

maxima, on the assumption that these must be genuine signals. We note that the majority of cohesin

ChIP-Seq reads are in fact not situated in peaks but are instead distributed throughout the genome

(Landt et al., 2012). If in fact these reads also represent genuine association, as suggested by cali-

brated ChIP-Seq in yeast (Hu et al., 2015), then by focusing solely on cohesin peaks, ChIP-Seq anal-

yses may have grossly under-estimated Scc2’s co-localisation with cohesin. Indeed, if Scc2 mediates

the ATP hydrolysis necessary to drive loop extrusion, then one would predict that Scc2 would be

associated with cohesin complexes that are engaged in extrusion, which Hi-C studies suggest are

distributed broadly throughout the genome, and possibly not with those that have reached bound-

aries created by CTCF. Thus, the apparent lack of co-localisation between cohesin and Scc2 con-

cluded by ChIP-Seq analyses may in fact be telling us something far more revealing. It is conceivable

that CTCF may actively prevent cohesin’s association with Scc2, stop ATP hydrolysis by cohesin and

thereby halt extrusion of loops beyond CTCF binding sites. In other words, insulation might be

mediated by an effect of CTCF on Scc2-driven ATP hydrolysis.

Cornelia de Lange Syndrome is caused by heterozygous mutations in SCC2 in 60% cases

(Rohatgi et al., 2010). Mouse models of the disorder with a heterozygous deletion of SCC2 display

severe defects but only have a 30% reduction in SCC2 expression (Kawauchi et al., 2009). Consis-

tently, a CdLS case has also been reported in which the patient displayed a clinically significant phe-

notype but only a 15% drop in SCC2 mRNA expression due to a mutation in the 5’ untranslated
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Figure 6. Scc2 binding is altered by the abundance of chromatin-associated cohesin. (a) Maps of Scc2JF549 tracks

in wild type and Wapl deficient HeLa cells with immobile molecules (D*<0.1 mm2/s) in black and mobile molecules

(D*>0.1 mm2/s) in blue. Scale bars = 5 mm. (b) Log-scale distribution of apparent diffusion coefficients D* of Scc2

in wild type and Wapl deficient cells. n > 10 cells. (c) Percentage of immobile Scc2 molecules in wild type and

Wapl deficient cells. Unpaired t-test was used to compare conditions. n > 10 cells. (d) Maps of Scc2JF549 tracks in

HCT116 cells ± auxin-mediated degradation of Scc1. Immobile molecules (D*<0.1 mm2/s) shown in black and

mobile molecules (D*>0.1 mm2/s) in blue. n > 10 cells. (e) Log-scale distribution of apparent diffusion coefficients

D* of Scc2 ± degradation of Scc1 with auxin. n > 10 cells. (f) Percentage of immobile Scc2 molecules ±

degradation of Scc1 with auxin. Unpaired t-test was used to compare conditions. n > 10 cells.
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region (Borck et al., 2006). Why are mice and humans so sensitive to changes in Scc2 expression?

We present three observations, which might help answer this question. Scc2 binds to cohesin on

DNA after loading, Scc2 is substoichiometric relative to cohesin in wild type cells, and Scc2 rapidly

rebinds to cohesin after unbinding. We suggest that the abundance of Scc2 is rate limiting for the

ATPase of cohesin that is engaged in loop extrusion. Thus, a lower abundance of Scc2 in CdLS

means cohesin is visited less frequently by Scc2 and may reduce the processivity of loop extrusion

complexes (Fudenberg et al., 2016), and thereby increasing the chance of unregulated enhancer-

promoter interactions.

During the course of these studies, we noticed a curious property of Scc2, namely the ability to

spread slowly across chromatin. FRAP and tracking of individual Scc2 molecules revealed that Scc2

travels on chromatin by hopping. This feature probably arises because Scc2’s association with cohe-

sin has a high on rate and Scc2 is substoichiometric. As a consequence, when Scc2 dissociates from
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Figure 7. Scc2 hops between cohesin binding sites. (a) Example tracks show dynamic binding and unbinding of

Scc2JF549 on a sub-second time-scale. Intervals of diffusive motion (purple) are frequently interrupted by short

binding events (cyan). The durations of the mobile or bound intervals are shown. Scale bars = 500 nm.

Underneath: Time traces show the instantaneous apparent diffusion coefficient corresponding to each track. (b)

Binding time of immobile Scc2JF549 molecules. Example frames at 1 s exposures showing a blurred diffusing

molecule that produces a sharp spot upon binding until it unbinds or bleaches. Distributions (1 - cumulative

distribution function) of measured dwell times of immobile Scc2 and Scc1 molecules and fitted curves. n > 10 cells.

(c) Model of Scc2 dynamics: Scc2 hops between cohesin that is loaded on DNA. Between binding events with

cohesin it interacts with chromatin in two binding modes. One is very transient and probably non-specific and the

other lasts tens of seconds. The longer interaction may represent Scc2’s cohesin-independent role as a

transcription regulator.
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a cohesin complex it rebinds to one that is in the vicinity before diffusing an appreciable distance

across the nucleus. The gradual spreading of Scc2 along chromosomes described here utilised selec-

tive photobleaching to create a defined zone or source of labelled Scc2, whose diffusion away from

this source was punctuated by repeated dissociation and re-binding events. However, one could

imagine situations where specific loci attract large amounts of a protein that then behaves in a man-

ner similar to Scc2 and diffuses gradually away from its source, creating a gradient within surround-

ing chromatin. We suggest that ‘punctuated diffusion’ or ‘hopping’ of this nature could underlie

several poorly understood long-range chromosomal regulatory phenomena.

Materials and methods

Plasmids
pSpCas9(BB)�2A-Puro (PX459) V2.0 was a gift from Feng Zhang (Addgene plasmid # 62988). The

following oligonucleotides were cloned into pX459 at the BbsI restriction sites to make pX459 SCC2

(Hs) 5’, pX459 SCC1(Hs) 3’ and pX459 WAPL(Hs) M1116 as previously described (Ran et al., 2013).

SCC2(Hs) 5’ TCCAGAAATTCAGGATGAAT

SCC1(Hs) 3’ ATAATATGGAACCTTGGTCC

WAPL(Hs) M1116 GCATGCCGGCAAACACATGG

A poly Glycine-Serine linker, Blasticidin resistance gene (BSD), GSG-P2A (self cleaving peptide)

and the HaloTag were cloned into pUC19 between KpnI and SalI by Gibson Assembly to generate

pUC19 NT-BSD-GSG-P2A-HaloTag. If this sequence is inserted after the start codon of a gene equi-

molar amounts of BSD and N-terminally HaloTagged protein of interest are expressed (Stewart-

Ornstein and Lahav, 2016). The reverse was also assembled to make pUC19 CT-HaloTag-GSG-

P2A-BSD for C-terminal tagging. BSD-GSG-P2A-HaloTag-Linker was cloned between 1 kb sequen-

ces homologous to the five prime end of human NIPBL to make pUC19 SCC2 NT-BSD-GSG-P2A-

HaloTag. HaloTag-GSG-P2A-BSD was cloned between 1 kb sequences homologous to the three

prime end of human SCC1 to make pUC19 SCC1 CT-HaloTag-GSG-P2A-BSD.

Cell culture
Scc1-AC Tir1 cells were a gift from Masato Kanemaki and cultured as previously described

(Natsume et al., 2016). HeLa S3 cells were obtained from ATCC (ATCC Cat# CCL-2.2, RRID:CVCL_

0058). HeLa Kyoto cells expressing mouse GFP-Scc2 from a stably integrated BAC were a gift from

Anthony Hyman and Ina Poser (mouse NIPBL-NFLAP #5701) (Poser et al., 2008). Cell lines were

tested and confirmed to be mycoplasma-free using MycoAlert Mycoplasma Detection Kit (Lonza,

LT07-318). Halo-Scc2 and Scc1-Halo cell lines were generated by cotransfection of the appropriate

pX459 and donor vector using TransIT-LT1 (Mirus Bio, MIR 2306). Two days post-transfection cells

were plated at low density and blasticidin (Invitrogen, R21001) was added to medium at 5 mg/ml for

both HCT116 and HeLa cells. When colonies were clearly visible they were isolated using cloning cyl-

inders and split into two 96-well plates. Homozygous clones were identified by PCR with primers

outside the homology arms of the donor plasmid. To deplete Scc1-mClover-mAID, 500 mM auxin

sodium salt (Sigma, I5148) was added to the medium two hours before imaging.

Fluorescent labelling
JF549-HaloTag ligand was a gift from Luke Lavis (Grimm et al., 2015). HaloTag labelling was as pre-

viously described except 100pM HaloTag-JF549 was used for residence time analysis (Rhodes et al.,

2017). Anti-Scc1 (Millipore Cat# 05–908, RRID:AB_11214315) was used at 1:100 dilution.

Confocal microscopy and FRAP
Confocal live-cell imaging was performed on a spinning disk confocal system (PerkinElmer Ultra-

VIEW) with an EMCCD (Hamamatsu) mounted on an Olympus IX81 microscope with Olympus

60 � 1.4 N.A. objective. During imaging, cells were maintained at 37˚C and 5% CO2 in a humidified

chamber.

For spot FRAP of JF549, ten prebleach images were acquired then a 2.5 mm circle was bleached

with the 568 nm laser (75% laser power) and recovery images were acquired. Fluorescence intensity

measurements were made using ImageJ. Fluorescence intensity was measured in the bleached and
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unbleached regions and a region outside of any cell (background). The background intensity was

subtracted from the bleached and unbleached intensities. The relative intensity between bleached

and unbleached was calculated by dividing background corrected unbleached intensity by the back-

ground corrected bleached intensity. The mean of the relative intensity of prebleach images was cal-

culated and used to normalise all the values so that the relative intensity before bleaching had a

mean of 1. The mean normalised relative intensity of all repeats was calculated for each time point

and plotted.

Single-molecule tracking experiments
For single-molecule tracking experiments, we used a custom TIRF/HiLo microscope described in

(Wegel et al., 2016). Briefly, a fibre-coupled 561 nm laser (Toptica iChrome MLE) was focused into

the back focal plane of an Olympus 100x NA1.4 objective. By translating the position of the focus

away from the optical axis, we controlled the angle of the excitation beam to maximise the signal-

to-noise ratio. JF549 fluorescence was collected by the same objective, split from the excitation

beam using a dichroic mirror and emission filter (Chroma), and focused onto an EMCCD camera

(Andor iXON 897 Ultra) using a 300 mm tube lens. This resulted in a magnification with pixel size of

96 nm. We used an objective collar heater and heated stage insert to maintain a sample temperature

of 37˚C during imaging. After identifying an area for imaging, fluorescence was pre-bleached until

single molecules were sufficiently sparse for localisation and tracking. For rapid tracking of diffusing

and bound molecules, we acquired movies with continuous 561 nm excitation at 50 mW intensity at

the fibre output and a frame rate of 64.5 frames/s and exposure time of 15 ms. Each movie typically

comprised 5.000 frames and contained several nuclei. For experiments to measure single-molecule

binding times, we recorded movies of 300 frames under continuous 1 mW 561 nm excitation and a

frame rate of 1 frame/s and exposure time of 1 s.

Single-molecule tracking analysis
Data analysis was performed in MATLAB (MathWorks) using software that was previously described

(Uphoff et al., 2014). In each frame, fluorescent molecules were detected based on an intensity

threshold, and their localisations determined to 25 nm precision by fitting an elliptical Gaussian Point

Spread Function (PSF). Subsequently, localisations that appeared in consecutive frames within a

radius of 0.48 mm were linked to tracks. A memory parameter allowed for molecules to be tracked if

they blinked or disappeared out of focus for single frames. Tracks with at least four steps were used

to compute apparent diffusion coefficients (D*) from the mean-squared displacement (MSD) on a

particle by particle basis: D*=MSD/(4 dt), where dt is the time between frames. We classified bound

and mobile molecules based on their apparent diffusion coefficient after correcting for the localisa-

tion uncertainty of sigma = 25 nm; Dcorrected = MSD/(4 dt) – sigma2/dt. The fraction of bound or

diffusing molecules was then estimated from the fraction of tracks that were below or above a

threshold of Dcorrected <0.1 mm2/s. Note that D* represents an ‘apparent’ diffusion coefficient that

is not corrected for certain biases in single-particle tracking experiments, such as motion blurring or

diffusion of molecules out of the focal plane. Therefore, we use it only for relative comparisons

between experiments, but not as an absolute measure of the diffusion coefficient.

To estimate binding times from experiments at long exposure times, we tracked localisations

using a radius of 0.192 mm. To exclude diffusing molecules from the analysis, we filtered tracks

based on the apparent diffusion coefficient and the width of the fitted Gaussian function. The

lengths of tracks of stationary molecules with diffraction-limited PSF gave the apparent dwell times

of chromatin-bound molecules. The binding time constants were obtained by fitting the distribution

of dwell times with a double exponential decay function. In order to correct for biases that underes-

timate the true binding times, we followed the procedure described in the main text and in

(Hansen et al., 2017; Uphoff et al., 2013). Specifically, we used the fact that Scc1 is stably bound

(15–30 min) on the time scale of the measurement (<60 s per observed molecule), so that any disap-

pearance of fluorescent Scc1 molecules is due to photobleaching/blinking or movement out of the

focal plane. This apparent dwell time was tBleach = 28.3 s. The binding times of Scc2 were then cal-

culated from the fitted dwell time constants using the equation: tBound = tDwell*tBleach / (tBleach -

tDwell).
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Chan KL, Roig MB, Hu B, Beckouët F, Metson J, Nasmyth K. 2012. Cohesin’s DNA exit gate is distinct from its
entrance gate and is regulated by acetylation. Cell 150:961–974. DOI: https://doi.org/10.1016/j.cell.2012.07.
028, PMID: 22901742

Chien R, Zeng W, Kawauchi S, Bender MA, Santos R, Gregson HC, Schmiesing JA, Newkirk DA, Kong X, Ball AR,
Calof AL, Lander AD, Groudine MT, Yokomori K. 2011. Cohesin mediates chromatin interactions that regulate
mammalian b-globin expression. Journal of Biological Chemistry 286:17870–17878. DOI: https://doi.org/10.
1074/jbc.M110.207365, PMID: 21454523

Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, Nasmyth K. 2000. Cohesin’s binding to
chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Molecular Cell 5:243–254.
DOI: https://doi.org/10.1016/S1097-2765(00)80420-7, PMID: 10882066

Davidson IF, Goetz D, Zaczek MP, Molodtsov MI, Huis In ’t Veld PJ, Weissmann F, Litos G, Cisneros DA,
Ocampo-Hafalla M, Ladurner R, Uhlmann F, Vaziri A, Peters JM. 2016. Rapid movement and transcriptional re-
localization of human cohesin on DNA. The EMBO Journal 35:2671–2685. DOI: https://doi.org/10.15252/embj.
201695402, PMID: 27799150

Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, Minamino M, Saitoh K, Komata M, Katou Y, Clark D, Cole
KE, De Baere E, Decroos C, Di Donato N, Ernst S, Francey LJ, Gyftodimou Y, Hirashima K, Hullings M, Ishikawa
Y, et al. 2012. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature
489:313–317. DOI: https://doi.org/10.1038/nature11316, PMID: 22885700
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