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Abstract

Biodiversity loss is a global ecological crisis that is both a driver of and response to environ-

mental change. Understanding the connections between species declines and other compo-

nents of human-natural systems extends across the physical, life, and social sciences.

From an analysis perspective, this requires integration of data from different scientific

domains, which often have heterogeneous scales and resolutions. Community science proj-

ects such as eBird may help to fill spatiotemporal gaps and enhance the resolution of stan-

dardized biological surveys. Comparisons between eBird and the more comprehensive

North American Breeding Bird Survey (BBS) have found these datasets can produce con-

sistent multi-year abundance trends for bird populations at national and regional scales.

Here we investigate the reliability of these datasets for estimating patterns at finer resolu-

tions, inter-annual changes in abundance within town boundaries. Using a case study of 14

focal species within Massachusetts, we calculated four indices of annual relative abundance

using eBird and BBS datasets, including two different modeling approaches within each

dataset. We compared the correspondence between these indices in terms of multi-year

trends, annual estimates, and inter-annual changes in estimates at the state and town-level.

We found correspondence between eBird and BBS multi-year trends, but this was not con-

sistent across all species and diminished at finer, inter-annual temporal resolutions. We fur-

ther show that standardizing modeling approaches can increase index reliability even

between datasets at coarser temporal resolutions. Our results indicate that multiple datasets

and modeling methods should be considered when estimating species population dynamics

at finer temporal resolutions, but standardizing modeling approaches may improve estimate

correspondence between abundance datasets. In addition, reliability of these indices at

finer spatial scales may depend on habitat composition, which can impact survey accuracy.
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Introduction

Biodiversity loss is a global adversity in ecology [1], and can manifest as local extirpation, pop-

ulation declines and instability, species extinction, and changes in community composition

[2–4]. Species abundance is a population measure that can be used to monitor many of these

aspects of biodiversity loss and indicate risks to ecosystem health [3]. The relationship between

biodiversity and the health of our environment makes biodiversity loss both a driver of and

response to the risk of catastrophic events within coupled human-natural systems [2, 4–6].

With the increasing prevalence of natural disasters and human disturbance [4, 7], investigating

the spillover of risks across human-natural systems is a growing field of research [8–11].

Amidst the “data revolution” with unprecedented data coverage across natural and anthropo-

genic domains [12], a major challenge is integrating heterogeneous spatiotemporal data to bet-

ter understand the interactions between species populations and changes in other parts of

human-natural systems [11].

Oftentimes, due to legislative and political boundaries and resource limitations, species

monitoring efforts are limited to small scale studies in developed countries and regions, result-

ing in coarse resolution and discontinuous data [13]. Some of the most well-known broad

scale population studies of birds in North America are limited to annual surveys, including the

North American Breeding Bird Survey (BBS) [14], Audubon Christmas Bird Count [15], and

Breeding Bird Atlas Surveys [16]. In particular, BBS is the largest and most comprehensive

source of bird abundance data in North America, and is considered a reliable dataset for esti-

mating bird population trends over time [2, 17–19].

Conversely, community science databases compile opportunistic observation data that can

provide greater spatial coverage and finer spatiotemporal resolutions. eBird is a global commu-

nity science network that has been collecting bird count and observation data since 2002 and

has been growing in participation and data availability in recent years [20]. Due to its accep-

tance of historical survey data, a smaller subset of observations preceding the 2000s are also

available. Data are collected through “checklists,” which have fine spatial resolution, global

coverage, and capture finer resolution temporal patterns [21]. Whereas BBS presents estimates

of relative abundance (number of birds per route), eBird checklists are generally reduced to

presence/absence, or “detection” data due to gaps in available count data. Making inferences

from monitoring data requires standardized data collection methods and thorough sample

sizes to account for variation in effort and detection probability. eBird uses semi-structured

community science techniques with established methodologies for accounting for bias and

effort within the data [22]. Its use of complete checklists allows for the assumption of true non-

detections, and metadata on survey effort allow users to standardize the data and account for

variation in detection probability.

eBird detection data have been previously used as proxies of relative abundance to estimate

population trends across years, similar to those based on BBS data [18, 19, 21, 23]. These stud-

ies showed strong, positive correlations between the multi-year trends derived from eBird and

BBS at the national level and within large provincial regions [18, 19]. However, a species’

response to environmental change can occur at finer spatial and temporal resolutions, requir-

ing data at finer scales to detect those critical changes. The goal of this study was to report the

reliability of using these datasets to infer trends in bird abundances at finer spatial and tempo-

ral scales, using a case study of species within the state of Massachusetts. Specifically, we exam-

ined the consistency between relative abundance indices based on eBird and BBS data across

statewide multi-year trends to verify the correspondence in trends found at coarser resolutions

in previous studies [18, 19, 21, 23], and then at two finer temporal resolutions (annual esti-

mates and changes in annual estimates between years) and two spatial resolutions (statewide
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and within Massachusetts towns). For our index comparisons, we used the eBird and BBS

datasets and two eBird modeling approaches to test whether using 1) different modeling meth-

ods and 2) standardized versus semi-structured surveys impacts the consistency of relative

abundance indices at these different spatial and temporal resolutions. If these datasets provide

consistent estimates that reliably reflect population changes at finer scales, it may allow for

more flexibility when integrating with data from other domains to better understand changes

and disturbances in human-natural systems.

Materials and methods

Study region and species

We focused on the state of Massachusetts from 2005–2018 as our study region and time

period. eBird data are primarily available since 2005 [24]. Massachusetts has historically well-

studied bird life and survey coverage across the state. The Massachusetts Division of Fisheries

and Wildlife has been collecting records and monitoring populations of game, rare and endan-

gered bird species since 1978 and Mass Audubon conducted the first North American Breed-

ing Bird Atlas [25]. The engagement of community scientists in protecting native birds has

only been growing in the last decade, with over 180,000 eBird checklists submitted for Massa-

chusetts in 2018, giving the state the 8th highest checklist availability in the US states behind

the leading states of California, Texas, and Florida, despite its smaller geographic area. The

state is home to some of the largest designated Important Bird Areas (IBAs) in New England

and encompasses grassland, freshwater wetland, saltwater marsh, forest, high intensity devel-

opment, and coastline habitat. Massachusetts shoreline and off shore habitats are especially

important stopover sites for pre- and post- bird migrations along the Atlantic coast and sup-

port nesting, feeding, and roosting for endangered coastal species [25, 26].

We chose 14 focal species known to be susceptible to causing electrical outages [27] for a

related analysis. As such, we mean to present our findings as a case study applying eBird data

rather than an assessment of the eBird dataset as a whole. Our species include cavity nesting

species, species that travel and nest in large flocks, woodpeckers that damage the integrity of

utility poles, and raptors which nest and perch near lines [28]. We did not consider species at

the edge of their range or that did not have their year-round or breeding range within Massa-

chusetts to ensure the data captured the state’s regional breeding populations rather than tran-

sient migrants. Nocturnal species were not included because eBird surveys start after dawn

while BBS surveys start just before dawn, making nocturnal species non-comparable between

the two databases. All species occur on greater than 10% of eBird checklists in the study area to

ensure a strong enough sample size for modeling. They include House Sparrow (Passer domes-
ticus), European Starling (Sturnus vulgaris), Turkey Vulture (Cathartes aura), Mourning Dove

(Zenaida macroura), Pileated Woodpecker (Dryocopus pileatus), Downy Woodpecker

(Picoides pubescens), Hairy Woodpecker (Leuconotopicus villosus), Northern Flicker (Colaptes
auratus), Red-bellied Woodpecker (Melanerpes carolinus), Red-tailed Hawk (Buteo jamaicen-
sis), Osprey (Pandion haliaetus), Red-winged Blackbird (Agelaius phoeniceus), Brown-headed

Cowbird (Molothrus ater), and Common Grackle (Quiscalus quiscula). Despite the limited

sample size of our focal species, they cover a broad spectrum of detectability and prevalence

within the state (Table 1), functional distinctness based on life history traits such as nesting

habitat (cavities, trees, shrubs, cliffs), foraging strategy (ground, bark, soaring, diving), and

diet (insectivores, carnivores, scavenger, and granivores), conservation status (invasives such

as European Starling and conservation successes such as Osprey), and occupy a variety of

breeding habitats (forest interior, coastal and open water, open habitat, and developed land).
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Data preparation

eBird. All data preparation and analysis were performed in R statistical language version

4.0.2 [29]. We first compiled and cleaned raw eBird checklist and sampling effort data from

the eBird Basic Dataset (EBD; May 2019 Update) [30] to generate a set of detection data for

each species. We filtered the eBird data with the R-package auk [24] to only include breeding

season (May 1 through July 15) surveys, comparable with BBS protocol. We used additional

auk filtering options to standardize survey effort to 10 surveyors or less, durations of 5 hours

or less, travel distances of 5km or less, “stationary”, “traveling”, or “random” protocol types,

and checklists marked as complete in order to generate detection data [24]. “Random” proto-

col types were reclassified as “traveling” if the corresponding survey distance traveled was

greater than 0 km and “stationary” if distance traveled was listed as 0 km [19]. We removed

checklists with less than five species reported as these often represent a targeted search and can

affect model results [18, 19].

We filtered checklist locations that were within each species’ observed range by only includ-

ing surveys that fell within locations (“location_id”) where the species had at least one observa-

tion within the study period [18]. We zero-filled checklists to create presence-absence data for

each species at all checklists conducted within the range of its survey locations during the

study period, reclassified sub-species and hybrids to the species level, and compiled duplicate

observations made by group surveys into one unique checklist using the auk_zerofill function.

The eBird data Best Practices also recommend sub-sampling the data to reduce spatial and

temporal bias, to balance the proportion of detections to non-detections, and balance sample

sizes across years [22, 31]. More details on how we incorporated these data balancing methods

in our data pre-processing can be found in S1 Appendix.

List length, or the number of species detected on a checklist has been used as an effective

proxy for observer skill and effort when modeling populations with eBird data. It has been

shown to capture variability caused by all of the effort covariates included in the eBird

Table 1. Prevalence of 14 bird species on standardized Massachusetts eBird checklists and BBS transect stops during the 2005–2018 breeding seasons.

Number of Detections Detection Rate

Family Species BBS eBird BBS eBird

Icteridae M. ater 1,419 11,933 0.115 0.354

Q. quiscula 2,024 21,698 0.164 0.568

A. phoeniceus 2,062 22,725 0.167 0.609

Picidae D. villosus 257 6,872 0.021 0.237

D. pubescens 1,266 15,475 0.102 0.418

C. auratus 476 12,898 0.038 0.363

D. pileatus 188 2,860 0.020 0.173

M. carolinus 897 10,401 0.073 0.340

Accipitridae B. jamaicensis 92 8,493 0.008 0.264

Pandionidae P. haliaetus 75 7,117 0.015 0.281

Cathartidae C. aura 65 6,431 0.008 0.218

Sturnidae S. vulgaris 1,344 12,686 0.109 0.380

Passeridae P. domesticus 1,734 13,906 0.109 0.427

Columbidae Z. macroura 4,009 22,057 0.325 0.557

The total number of surveys (eBird checklists and BBS stops) each species was detected on and the detection rate (proportion of surveys with detections out of total

surveys ran) of the species, indicators of species prevalence, from 2005–2018.

https://doi.org/10.1371/journal.pone.0257226.t001
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metadata (e.g., number of observers, survey duration, time observations began, and length of

travel) [18, 19]. Since each observation row in the data is a single species reported within a

checklist, species observations from the complete EBD dataset were grouped by checklist_ids

and counted to generate the number of species observed per checklist, or “list length.”

Breeding Bird Survey. We compiled and filtered raw BBS data using methods similar to

the eBird data in order to generate comparable detection data. BBS data were extracted from

the North American Breeding Bird Survey Dataset 1996–2018, version 2018.0 [32]. We used

raw 50-stop breeding bird data and non-breeding bird data filtered for Massachusetts. We

grouped subspecies into species and filtered for high quality observations based on the “Run-

Type” field indicating if the survey protocol followed USGS standards. The “routedataID” field

was treated as an equivalent to eBird’s “checklist_id”, a unique run of a route, while the

“Route” number was treated as eBird’s “locality_id”, a unique survey location. We filtered all

records to include only routes for each species within its observed range.

Detection data for each species was calculated at each of the 50 stops along a run of a route

to generate data comparable with eBird detection data [19]. Stops with species counts were

given values of 1 to indicate species detections. If the species was not found at a stop along a

route in a particular year, a record for that species was added with a 0 value to represent non-

detections. The resulting BBS detection data for each species contained one survey observation

per row, with each row being a stop within a survey route run in a particular year. These data

were well-balanced across years, and we did not need to apply additional sampling to balance

annual sample sizes.

Both cleaned eBird and BBS detection datasets were spatially joined to Massachusetts town

names by their survey locations. Massachusetts towns were used as a consistent location iden-

tifier for both datasets. Table 1 shows each species’ prevalence in each cleaned dataset.

Modeling annual relative abundances

For our comparisons, we calculated four indices of annual relative abundance from our eBird

and BBS datasets following existing protocols. Our two eBird indices were detection probabil-

ity calculated using a generalized linear mixed model (GLMM) method [18, 19] and a random

forest (RF) approach [21, 22]. Our two BBS indices were detection probability from the pres-

ence-absence data and relative abundance from the count data, both estimated using GLMMs

[18, 19]. Comparing the two BBS indices examined whether detection probability was a reli-

able proxy for relative abundance (individual counts). Comparing the two eBird indices exam-

ined the reliability of two different modeling methods that estimate species detection

probability. Finally, comparing detection probability between both eBird indices and BBS

examined the reliability of estimates derived from different datasets as well as the influence of

modeling methods on this reliability.

eBird detection probability—GLMM method. For our first eBird method, we calculated

detection probability for each species using binomial GLMMs with the package lme4 [19, 33].

We used a modified Laplace approximation method in which the random effects and fixed-

effects coefficients are optimized in the penalized iteratively reweighted least squares step by

setting the number of adaptive Gauss-Hermite quadrature points to zero (nAGQ = 0) [34, 35].

We compared model combinations that included day of year as a quadratic term, time of

day surveys were started, list length, the natural log of list length, as well as additional effort

variables (e.g., survey distance, duration, and number of observers). Models that ranked high-

est (based on lowest log likelihood) used quadratic effects of day of year and used only list

length instead of multiple effort variables. Models using list length and the natural log of list

length varied in rank between species and were selected on a species by species basis. We
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ultimately fit models of detection probability based on the fixed effects of list length, protocol

type, and the interaction of list length and protocol type to account for observation effort. The

interaction between list length and protocol type follows the assumption that changes in sam-

pling methods will change effort as well as species detection rates. We fit year as a factor to gen-

erate separate estimates for each year rather than an overall trend across years [14]. We used

the day of year as a continuous, quadratic term to account for detection variability due to

changes in species activity within the breeding season. Day of year and time of day were cen-

tered so both predictors had means of zero. We included checklist location (Massachusetts

towns) and observer ID as random intercept terms.

We then used the resulting model to estimate Massachusetts town-level annual relative

abundance for each species from 2005–2018. To generate predicted estimates, we used the

time of day and day of year with the highest detection frequency, and the mean list length for

each species, as well as traveling protocol type as input data to simulate a standardized survey

conducted at the optimal time to detect the species. We set the random effect of observer ID to

zero and predicted town-level annual estimates.

eBird detection probability—RF method. For this method we estimated detection prob-

abilities defined by Johnston et al. (2020) and Strimas-Mackey et al. (2020) as the probability

of encountering a species on a standardized eBird checklist [22, 31] (See S1 Appendix for

detailed methodology). We first split the eBird data into testing (20%) and training data (80%),

and used a balanced RF model (R-package ranger [36]) to model species detection as a func-

tion of temporal covariates (year, day of year, and starting time of observations) and list length

to account for survey effort. Similar to previous studies [18, 19], we found list length was the

most important effort predictor variable across all species in the RF (S1 Appendix). Towns

were included to account for spatial variation in detection rates. We calibrated the estimated

detection probabilities with observed detection rates using generalized additive models

(GAM) fit with observed detection rates as the response to predicted detection probabilities.

Using our reserved testing data, we found fair model performance across all species (averaged

across all species models, AUC = 0.85, maximized Kappa = 0.51). Calibrating the models with

the GAMs reduced the mean squared error from 0.15 to 0.13 (averaged across all species mod-

els). Town-level breeding season detection probabilities were predicted for each species by

using an annual, town-level prediction dataset from 2005–2018. Prediction data variables were

standardized by using the mean list length, traveling protocol, and the time of day and day of

each month with maximum detection frequency for each species.

BBS detection probability and relative abundance—GLMM method. We built two

more comparable GLMMs to the eBird model, but using BBS detection and count data to esti-

mate state- and town-level, relative abundance indices for each species. We used a quasi-pois-

son distribution to fit the count data and a binomial distribution for the detection data. We

did not include fixed effects for survey effort because BBS surveys use standardized methods

that already account for survey effort. We used a fixed effect of year as a factor and random

intercepts of town and observer. We account for any additional variation in observer skill by

treating observer ID as a random effect. We predicted across the random effect of observer ID

by setting its effect to zero to estimate town-level relative abundance. The resulting detection

probability estimates were the probability of detecting a species at a random stop along a sur-

vey route in the state or in each town. The relative abundance estimates were the average num-

ber of individuals counted at a random stop along a survey route in the state or in each town.

We recognize these model-estimated relative abundance indices are associated with uncer-

tainty, and that uncertainty likely differs across modeling approaches, species, and datasets. In

order to account for these uncertainties in subsequent analyses, we calculated the standard

errors (SE) for each estimate and used the inverse of these SEs as weights to place greater
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weight on estimates with less uncertainty. We generated SEs for the GLMM model outputs

(eBird and BBS detection probability and BBS relative abundance) via bootstrapping using the

function bootMer and 200 simulations for each annual GLMM estimate. For RF model esti-

mates we simply extracted the SEs from the model predictions. State-level annual estimates

were calculated as the weighted average of town-level estimates in each year, with weights

being the inverse SE of each town-level estimate.

Comparing modeling methods and datasets at finer resolutions

To quantify the reliability between relative abundance indices, we calculated correlation coeffi-

cients between each within- and between-dataset pair of indices and assessed their significance

using the p-values extracted from the corr.test function. For each state-level pairwise compari-

son, we calculated Pearson correlation, or Spearman-Rank correlation when estimates were

not normally distributed (Shapiro-Wilk p< 0.05). For town-level index comparisons, we used

a weighted Pearson correlation using the cor.wt function from R-package psych. We weighted

the matrix of index annual estimates by the inverse SEs for each annual estimate. We first com-

pared relative abundance indices within datasets that used different methodologies. We

assessed whether transforming BBS count data into detection data retained similar estimates

of relative abundance. This was predominantly to ensure that detection data was a proxy of

abundance, allowing for meaningful comparisons across all of our indices. We then compared

the consistency of our two eBird modeling methods (GLMM- and RF-estimated detection

probabilities) to see if these two approaches yielded similar results. Our second set of compari-

sons were between datasets to assess whether differences between eBird and BBS survey struc-

ture affected the precision of their abundance estimates. We tested the correlation of each BBS

index with each eBird index to see whether modeling methods affected this between-dataset

precision.

We assessed how these correlations between our four relative abundance indices changed

across spatiotemporal resolutions. We first confirmed previous findings by examining the con-

sistency in multi-year, statewide trends between indices to compare how the consistency of

indices at this coarser resolution compared to finer spatiotemporal resolutions. We visualized

multi-year trends by plotting the time series of annual estimates for each index with two trend

lines, similar to [19]: a LOESS smooth with a span of two and the slope from binomial general-

ized linear models (GLMs) fit to the annual estimates across years. To quantitatively test corre-

spondence of these multi-year trends, we evaluated whether the slope and 95th percent

confidence intervals of each index’s GLM coefficients overlapped. For these GLMs, we stan-

dardized the four relative abundance indices, centered the year variable, and included a qua-

dratic term for year to account for non-linear patterns observed.

To test how consistent these indices were at finer temporal resolutions, we calculated the

above mentioned correlations between each index’s statewide annual relative abundance esti-

mates and the inter-annual changes in these estimates. We calculated inter-annual changes as

the difference between the annual estimate in the previous year and the present year as a pro-

portion of the estimate in the previous year. We visualized correspondence between indices by

plotting their annual estimates and inter-annual changes in side-by-side time series. Addition-

ally, we used box plots to compare the distributions of correlation coefficients across species

for each pairwise index comparison of annual estimates and inter-annual changes. This com-

pared the overall correlation between each index at these two finer temporal resolutions across

our species samples.

We next investigated the consistency of index annual estimates and inter-annual changes at

finer spatial scales (by town) and whether between dataset index reliability was influenced by
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local spatial attributes. Since BBS count and detection data yielded similar estimates, we only

compared BBS detection probability against both eBird indices. We visualized how correlation

varied across towns by mapping towns shaded by their correlation coefficients. We again used

box plots to compare the distributions (using the complete set of observations across species

and towns) of correlation coefficients between each comparison of eBird and BBS indices. To

test whether any spatial attributes such as birding hot spots or habitat type influenced survey

accuracy, and indirectly the precision of indices between eBird and BBS, we used a linear

mixed model to predict correlation coefficients between indices based on town specific attri-

butes, including the fixed effects of eBird checklist location density (a proxy for birding hot

spots) and the area proportion of habitat types classified as aggregated land cover types (devel-

oped, wetland, herbaceous, deciduous forest, and shrub) from the National Land Cover Data-

base 2016 release [37]. We scaled and centered all predictor variables. Since only the starting

points of BBS routes had available spatial locations (n = 25), we did not have a complete sample

of all towns within Massachusetts. To increase the sample size for the regression analysis, we

combined the town-level correlation coefficients across species (319 observations) and

included species as a random effect.

Results

Comparing indices within datasets at different temporal resolutions

For our within dataset index comparisons, GLMMs using BBS count data and detection data

predicted statewide relative abundance estimates that were highly correlated for all 14 species

(S2 Appendix) and this correlation was consistent at different temporal resolutions (Fig 1). At

a coarser temporal resolution, multi-year trends remained consistent between the two BBS

indices for all species except Q. quiscula, D. villosus, and P. domesticus (Table 2). For finer reso-

lution of annual estimates, correlation (r) between each species’ estimates ranged between

0.61–1.00, p< 0.05. Species also had strong positive correlations between the inter-annual

changes of these two BBS indices (r ranged between 0.6–1.00, p< 0.05) with the exception of

S. vulgaris which had the weakest correspondence between the inter-annual changes in its BBS

indices (r = 0.41, p> 0.05).

In comparison to BBS, within dataset consistency between the two statewide eBird indices

was weaker and correlation further decreased at finer resolutions (Fig 1). Nine of the 14 species

had consistent multi-year trends between eBird indices (Table 2), but at the finest temporal

resolution, the eBird indices showed no significant, positive correlations between inter-annual

changes with the exception of D. pubescens. See S2 Appendix for correlation matrices of the

within dataset indices at annual and inter-annual resolutions for each species.

Comparing indices between datasets at different temporal resolutions

At the coarsest temporal resolution of multi-year trends, relative abundance indices were rela-

tively consistent between datasets, but this consistency was not found across all of our study

species. 12 species (85%) had consistent multi-year trends between at least one index derived

from each dataset (Table 2) (S3 Appendix). Two of these species, D. pileatus and M. carolinus,
had consistent and significant trends across all four indices (Fig 2). At the annual resolution,

these two species in addition to D. villosus, B. jamaicensis, P. haliaetus and P. domesticus (six

total species) had strong positive correlations (r> 0.4) for all between-dataset index compari-

sons (Fig 3). Five more species (a total of 11 species [79%]) showed strong positive correlations

between annual estimates of at least one BBS and eBird index (Table 3). Over all of our study

species, the ebird GLMM-DP method had greater consistency with BBS DP than the RF

method at the annual resolution (Fig 1). However, this correspondence diminished when
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looking at inter-annual changes of these estimates (Table 3) (S2 Appendix). We did not find

strong between-dataset correspondence at inter-annual temporal scales, regardless of the eBird

modeling approach used (Fig 1).

Comparing fine resolution indices between datasets at a smaller spatial

scale

Mapping the correlation between BBS and eBird annual estimates and inter-annual changes

across Massachusetts towns showed that correlation between indices was mostly consistent

across towns (S4 Appendix). Variation in town-level correlation was only found in the eBird

RF and BBS detection probability comparison because we modeled towns as random inter-

cepts for both the eBird and BBS GLMM estimates, which resulted in the same year to year

population changes for all towns. The spatial patterns and magnitude of index correlations

changed across temporal resolutions and species. However, even at this finer spatial scale,

annual estimates of eBird and BBS indices for D. pileatus and M. carolinus (S4 Figs 10, 11 in S4

Appendix, respectively) have high correspondence that is consistent across towns.

We used a linear mixed model to examine whether correspondence between eBird and BBS

indices depended on habitat type and eBird survey density. While accounting for variation

Fig 1. Distribution of correlation coefficients comparing four statewide relative abundance indices for 14 bird species. The box plots show the

distribution of 14 bird species’ correlation coefficients comparing A) the annual estimates and B) inter-annual changes between pairs of four statewide

relative abundance indices: BBS relative abundance from detection and count data (BBS DP-BBS RA), BBS detection probability and eBird GLMM

detection probability (BBS DP-eBird GLMM), BBS detection probability and eBird RF detection probability (BBS DP-eBird RF), and eBird detection

probability from GLMMs and RF models (eBird GLMM-eBird RF).

https://doi.org/10.1371/journal.pone.0257226.g001
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across species, we found a significant relationship between index correspondence and habitat

type when comparing annual BBS GLMM and eBird RF detection probability indices. Towns

with higher proportions of herbaceous habitat (e.g., grasslands) showed greater correspon-

dence between those indices (Table 4). Correspondence between inter-annual changes in BBS

and eBird detection probability did not show significant relationships with our spatial

predictors.

The distribution across species of correlation coefficients between town-level eBird indices

and BBS detection probability were similar to the state level results. The eBird GLMM method

was more strongly correlated with BBS detection probability across species at the annual reso-

lution, and both eBird modeling methods showed little correspondence with BBS at the inter-

annual resolution (Fig 4).

Discussion

Reliable estimates of species abundance are needed to monitor biodiversity loss and changes in

ecosystem health over time. Standardized abundance trends across multiple species are cur-

rently assessed at multi-year time scales, but finer resolutions are needed to better understand

the impacts of disturbances in human-natural systems. We examined whether existing broad

scale species data can be used to delineate finer resolution patterns by comparing multiple

indices of relative abundances based on two bird occurrence datasets. Despite our small sam-

ple of focal species, they represent a wide range of species-specific factors known to influence

detectability and data reliability including forage and nesting habitats, flocking behavior, and

body size [38–42] and we find consistency between indices is variable across these species

(Figs 1 and 4). It is possible that expanding this analysis to more species could help delineate

species patterns. However, our results show diverse patterns even among species within a

Table 2. Multi-year trends (2005–2018) and their 95th percent confidence intervals for Massachusetts populations of 14 study species.

Family Species BBS DP BBS RA eBird DP-GLMM eBird DP-RF

Icteridae M. ater -0.09 (-0.21, 0.02) -0.1 (-0.22, 0.02) 0.13 (0.00, 0.26) 0.20 (0.11, 0.29)

Q. quiscula -0.12 (-0.26, 0.02) -0.13 (-0.26, -0.01) -0.15(-0.27, -0.02) 0.06 (-0.08, 0.21)

A. phoeniceus -0.02 (-0.18, 0.14) -0.01 (-0.16, 0.15) -0.04 (-0.18, 0.11) -0.15 (-0.22, -0.09)

Picidae D. villosus 0.12 (-0.01, 0.25) 0.13 (0.01, 0.26) 0.19 (0.10, 0.28) 0.20 (0.14, 0.27)

D. pubescens 0.07 (-0.08, 0.21) 0.06 (-0.09, 0.21) 0.09 (-0.05, 0.23) 0.14 (0.03, 0.25)

C. auratus 0.10 (-0.04, 0.25) 0.11 (-0.03, 0.25) 0.11 (-0.03, 0.25) 0.15 (0.10, 0.21)

D. pileatus (P) 0.14 (0.02, 0.27) 0.14 (0.02, 0.27) 0.22 (0.17, 0.27) 0.21 (0.17, 0.26)

M. carolinus (P) 0.22 (0.16, 0.28) 0.22 (0.17, 0.28) 0.23 (0.18, 0.27) 0.17 (0.09, 0.25)

Accipitridae B. jamaicensis 0.14 (0.03, 0.25) 0.14 (0.03, 0.25) 0.10 (-0.02, 0.23) 0.16 (0.05, 0.28)

Pandionidae P. haliaetus 0.13 (0.00, 0.28) 0.13 (0.00, 0.28) 0.18 (0.08, 0.28) 0.01 (-0.15, 0.17)

Cathartidae C. aura 0.12 (-0.01, 0.26) 0.09 (-0.05, 0.24) 0.20 (0.11, 0.28) 0.10 (0.02, 0.18)

Sturnidae S. vulgaris -0.08 (-0.18, 0.02) 0.05 (-0.04, 0.15) 0.11 (-0.03, 0.24) 0.19 (0.09, 0.29)

Passeridae P. domesticus 0.03 (-0.12, 0.19) 0.17 (0.05, 0.28) 0.19 (0.10, 0.29) 0.10 (-0.03, 0.24)

Columbidae Z. macroura (NS) 0.03 (-0.12, 0.17) -0.03 (-0.17, 0.11) 0.03 (-0.13, 0.19) -0.04 (-0.19, 0.10)

Multi-year trends are derived from the coefficients of linear models fit to standardized annual estimates of four relative abundance indices across years as a centered,

quadratic polynomial. Species with names in bold showed consistent, positive (P) or non-significant (NS) trends including 95th percent confidence intervals across all

indices from both datasets (Breeding Bird Survey [BBS] and eBird) and modeling methods (GLMM and RF). Trend values in bold indicate a directional, non-zero trend

(positive or negative). Species are grouped into their respective taxonomic families.

DP = Detection Probability

RA = Relative Abundance (from count data)

https://doi.org/10.1371/journal.pone.0257226.t002
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taxonomic group (e.g., Icteridae and Picidae). It is likely that broadening the array of study spe-

cies would only add to the diversity of results in index consistencies and overall conclusions

would be similar.

BBS detection probability was a reliable proxy for relative abundance across temporal reso-

lutions for our study species, with all correlations between BBS indices significant and

Fig 2. Multi-year trends across four relative abundance indices. Four indices of relative abundance within and

between eBird and BBS datasets capture similar multi-year trends across A) Pileated Woodpecker (Dryocopus pileatus)
and B) Red-bellied Woodpecker (Melanerpes carolinus). Trends are plotted as generalized linear regressions and

LOESS smoothed lines fit through annual estimates over time.

https://doi.org/10.1371/journal.pone.0257226.g002
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coefficients�0.60, except for S. vulgaris. A possible explanation is that it is a flocking species

and surveys for such species tend to have higher errors, lower accuracy, and underestimate

true abundance because accurately counting several birds in a flock requires greater observa-

tional skill [42]. Similar flocking species including A. phoeniceus and Q. quiscula also had the

next lowest correlations between annual estimates (r = 0.6). We also compared two well-cited

methods for modeling eBird data [19, 31] that estimate the probability of detecting a species

Fig 3. Correlation matrices of annual relative abundance estimates based on four indices show correspondence

within and between datasets. Data distributions, as well as scatter plots and correlation coefficients are provided for

each index of A) Pileated Woodpecker (Dryocopus pileatus) and B) Red-bellied Woodpecker (Melanerpes carolinus)
annual relative abundance. There was strong correspondence across different indices within and between datasets

(eBird and BBS), suggesting reliable estimates of relative abundance for these species. � indicates the strength of a

significant correlation coefficient (Pearson’s and Spearman’s when data were non-normal).

https://doi.org/10.1371/journal.pone.0257226.g003
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on a survey (a proxy of relative abundance). Despite eight of our study species showing consis-

tent annual estimates, only D. pubescens maintained consistent inter-annual changes across

these two eBird indices (S2 Appendix). This lack of correspondence between different eBird

modeling methodologies was unexpected, and stresses the importance of selecting the appro-

priate modeling method for the questions at hand and understanding their assumptions. Our

results show that using consistent modeling methods (in our case, GLMMs) can increase the

Table 3. Consistency of annual estimates and inter-annual changes between relative abundance indices derived from eBird and BBS datasets.

Annual Estimates Inter-Annual Changes

eBird GLMM eBird RF eBird GLMM eBird RF

Family Species BBS DP BBS RA BBS DP BBS RA BBS DP BBS RA BBS DP BBS RA

Icteridae M. ater -0.05 -0.09 -0.54 -0.54 0.09 0.05 -0.03 -0.01

Q. quiscula 0.26 0.62 0.35 0.49 0.05 0.58 0.27 0.25

A. phoeniceus 0.38 0.41 0.29 0.62 0.19 0.26 0.37 0.87

Picidae D. villosus 0.47 0.53 0.43 0.53 0.19 0.10 0.66 0.79

D. pubescens 0.63 0.55 0.24 0.17 0.21 0.15 -0.05 -0.10

C. auratus 0.27 0.30 -0.23 -0.30 -0.01 -0.09 0.60 0.60

D. pileatus 0.66 0.67 0.51 0.53 -0.13 -0.14 -0.36 -0.29

M. carolinus 0.91 0.92 0.88 0.89 -0.32 -0.19 -0.30 -0.31

Accipitridae B. jamaicensis 0.47 0.52 0.41 0.41 0.23 0.27 -0.07 -0.03

Pandionidae P. haliaetus 0.91 0.85 0.60 0.70 0.77 0.76 0.34 0.45

Cathartidae C. aura 0.45 0.35 0.02 0.24 -0.04 -0.24 -0.13 0.15

Sturnidae S. vulgaris -0.39 -0.10 -0.50 -0.23 0.38 0.19 0.36 -0.20

Passeridae P. domesticus 0.56 0.79 0.45 0.66 0.70 0.50 0.08 0.03

Columbidae Z. macroura 0.45 0.45 -0.01 -0.06 0.41 0.31 -0.36 -0.36

Correlation coefficients (Pearson’s r, and Spearman’s r when data was non-normal) show the consistency of annual estimates and the inter-annual changes between

detection probability from two eBird methods (a GLMM and a RF model) and two BBS relative abundance indices. Species are grouped into their respective taxonomic

families. Bold values indicate significant correlations (p<0.05).

DP = Detection Probability

RA = Relative Abundance (from count data)

https://doi.org/10.1371/journal.pone.0257226.t003

Table 4. Summary of the linear mixed model using weighted Pearson’s correlation coefficients between annual

BBS and eBird RF detection probability indices as a response to spatial attributes summarized within Massachu-

setts towns. Reported are the model estimates and 95th percent confidence intervals. The spatial attribute predictors

are eBird survey density, the number of survey locations per km2 area of each town, and habitat types as the proportion

of land cover area within each town. Town-level index comparisons were combined across 14 study species and species

IDs were included as a random effect to account for species specific effects.

Correlation Coefficient of eBird-BBS Indices

Predictors Estimates 95% CI
(Intercept) 0.15 (0.02, 0.28)

eBird Survey Density -0.01 (-0.04, 0.02)

Deciduous Forest 0.01 (-0.01, 0.02)

Shrub 0.001 (-0.03, 0.03)

Herbaceous 0.04 (0.01, 0.08)

Developed 0.01 (-0.03, 0.05)

Wetland 0.002 (-0.02, 0.02)

Observations 319

Groups 14

https://doi.org/10.1371/journal.pone.0257226.t004
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consistency between relative abundance estimates derived from different datasets. Different

modeling methods (GLMMs and RFs) can alter abundance estimates even when using the

same dataset, however each modeling method may offer advantages at different resolutions.

GLMMs may result in more interpretable estimates at coarser resolutions [18, 19], while the

random forest approach could be seen as more flexible [43] for predicting estimates at finer

resolutions, allowing inclusion of additional predictors of species occurrence [35, 44].

In addition to inconsistent modeling approaches, we found that finer temporal resolutions

also decreased the overall consistency between relative abundance estimates derived from

eBird and BBS observation data. eBird data, once adjusted for effort and bias, have been shown

to reliably capture multi-year population trends similar to structured surveys from the BBS at

regional and national scales [18, 19, 21], although this reliability seems to decline at larger,

global scales [45]. Expanding on these scale dependent findings, we show that multi-year

trends are more consistent across different indices and databases than the finer temporal reso-

lution annual estimates and inter-annual changes. Four of our 14 study species had multi-year

trends that were consistent between eBird and BBS (Table 2), while eight additional species

had consistent multi-year trends between at least one index derived from each dataset. This

index agreement was maintained in the annual estimates, with 11 of 14 species having at least

one significant correlation between indices across databases (Table 3). In particular, two spe-

cies (M. carolinus and D. pileatus) had especially high correspondence across their eBird and

Fig 4. Distribution of weighted Pearson’s correlation coefficients for 14 bird species comparing town-level relative abundance indices between

eBird and BBS. Box plots show the distribution of 14 bird species’ correlation coefficients comparing A) the annual estimates and B) inter-annual

changes of town-level BBS detection probability (DP) with eBird GLMM-DP and RF-DP.

https://doi.org/10.1371/journal.pone.0257226.g004
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BBS annual relative abundance indices, which could be attributed to the strength of their pop-

ulation trends.

In the second Massachusetts Breeding Bird Atlas (BBA), completed in 2011, Red-bellied

Woodpecker (M. carolinus) was the species with the second greatest increase in occupied

breeding area in the state since the previous BBA in the 1970s. Pileated woodpecker (D. pilea-
tus) also had significant increasing BBA trends in the state, consistent with long-term BBS

trends [25, 46, 47]. This finding suggests there may be a minimum effect size in terms of

change in abundance in order for the change to be consistently captured across datasets. Previ-

ous studies have shown relative abundance measures for highly prevalent and rare species are

more difficult to predict because they over- and under-saturate the model with occurrences,

respectively [19]. Other similar studies have shown niche specialization and species distribu-

tion also play roles in the overall detectability of a species and thus the accuracy of its relative

abundance indices [18]. We suggest future studies examining a larger sample of species should

consider how the long-term population trend and the strength of this trend affect the accuracy

of eBird estimates.

Despite some correspondence between annual estimates, the inter-annual changes show

less correspondence between eBird and BBS (Figs 1 and 4). Although the annual estimates for

each year may be similar relative to the range of abundance estimates within the study period,

the differences from one year to the next may be different in magnitude or direction depend-

ing on the dataset and index being used (see S3 Appendix for multi-year trend plots and time

series for each index). An earlier study on the Wood Thrush (Hylocichla mustelina) [21] found

positive correspondence between eBird and BBS inter-annual change when using a standard-

ized start date and range-wide annual relative abundance indices. It is possible that our focus

on a subset of the species range as delineated by state boundaries is not ecologically important,

and correspondence between datasets may improve when the entire range of each species is

considered. It is also possible that dynamics simply differ between species, as patterns differed

among the species in our study as well.

Similarly, we found that correspondence between relative abundance indices at the finer,

town-level spatial scale showed some variation between towns. However, the degree of this

variation was inconsistent between species and temporal resolutions (S4 Appendix). We also

found local spatial attributes such as habitat cover may affect the degree of correspondence

between eBird and BBS abundance indices. This result is consistent with previous findings

that habitat structure can affect observer capabilities by impacting the travel of wind and noise,

and impairing visual observation [38, 40, 48, 49]. We note that our spatial analysis was limited

due to the number of MA towns with BBS routes, and further study is needed to better under-

stand the impact of habitat types and other spatial attributes on the reliability of these abun-

dance estimates.

In absence of agreement among the indices, it is unclear which index or dataset is most

accurate in representing species abundances at these finer temporal and spatial scales. This

finding underlines the importance of validating eBird against structured surveys at finer tem-

poral resolutions. However, the narrow temporal windows of broad scale, structured surveys

[14–16] limits their ability to validate eBird data at intra-annual resolutions. In most cases,

localized monitoring efforts are the best validation data available at these resolutions [50, 51].

Nevertheless, community science projects such as eBird compile finer resolution data at broad

extents, opening opportunities for a more complete understanding of ecosystem health and

diversity in response to finer scale drivers of change such as land use and infrastructure [52,

53]. Integrating species abundance with drivers of ecological change remains a complicated

task due to heterogeneous scales and resolutions across data sources. Community science data
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provides flexibility to consider ecological processes at organism-relevant scales that vary across

species and environmental variables [53].

Conclusion

The results of this case study highlight the need for increased vigilance as future bird popula-

tion studies consider various modeling applications of community science data. By comparing

relative abundance indices across structured and community science databases, we show that

modeling methods, survey structure, and the spatiotemporal resolutions at which they are

applied can all impact relative estimates of species abundance. All of our tested indices proved

to be relatively reliable as proxies of abundance at the coarser scale of multi-year trends. At

finer spatial and temporal scales however, relative abundance estimates derived from different

datasets and modeling methods point to inconsistent pictures of abundance depending on the

species. Therefore the reliability and appropriateness of these various indices depends on the

scale and resolution of the analysis. Our findings indicate that multiple modeling methods and

data sources should be tested and carefully considered when addressing questions that require

species abundance trends at finer spatial and temporal resolutions.
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