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Abstract

Bacterial secondary metabolites are widely used as antibiotics, anticancer drugs, insecticides and food additives. Attempts to
engineer their biosynthetic gene clusters (BGCs) to produce unnatural metabolites with improved properties are often
frustrated by the unpredictability and complexity of the enzymes that synthesize these molecules, suggesting that genetic
changes within BGCs are limited by specific constraints. Here, by performing a systematic computational analysis of BGC
evolution, we derive evidence for three findings that shed light on the ways in which, despite these constraints, nature
successfully invents new molecules: 1) BGCs for complex molecules often evolve through the successive merger of smaller
sub-clusters, which function as independent evolutionary entities. 2) An important subset of polyketide synthases and
nonribosomal peptide synthetases evolve by concerted evolution, which generates sets of sequence-homogenized domains
that may hold promise for engineering efforts since they exhibit a high degree of functional interoperability, 3) Individual BGC
families evolve in distinct ways, suggesting that design strategies should take into account family-specific functional
constraints. These findings suggest novel strategies for using synthetic biology to rationally engineer biosynthetic pathways.

Citation: Medema MH, Cimermancic P, Sali A, Takano E, Fischbach MA (2014) A Systematic Computational Analysis of Biosynthetic Gene Cluster Evolution:
Lessons for Engineering Biosynthesis. PLoS Comput Biol 10(12): e1004016. doi:10.1371/journal.pcbi.1004016

Editor: Christos A. Ouzounis, Hellas, Greece

Received April 10, 2014; Accepted October 31, 2014; Published December 4, 2014

Copyright: � 2014 Medema et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This work was supported by an HHMI Predoctoral Fellowship (PC), a Boehringer Ingelheim Fonds (http://www.bifonds.de) travel grant (MHM), Grant
10463 from the GenBiotics programme of the Dutch Technology Foundation STW (http://stw.nl/) to ET (MHM), a Medical Research Program Grant from the W.M.
Keck Foundation (http://www.wmkeck.org/) (MAF), a Fellowship for Science and Engineering from the David and Lucile Packard Foundation (http://www.packard.
org/) (MAF), DARPA award HR0011-12-C-0067 (http://www.darpa.mil/) (MAF), and NIH (http://www.nih.gov/) grants OD007290, AI101018, AI101722 and
GM081879 (MAF). This project has been funded in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Department of Health and Human Services, under Contract No.: HHSN272200900018C. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: MAF is on the scientific
advisory board of Warp Drive Bio.

* Email: fischbach@fischbachgroup.org

. These authors contributed equally to this work.

¤ Current address: Max Planck Institute for Marine Microbiology, Bremen, Germany

Introduction

Bacterial secondary metabolites are widely used as pharmaceu-

tical, agricultural, and dietary agents. They consist of many classes

of compounds including polyketides (PKs), nonribosomal peptides

(NRPs), ribosomally synthesized and post-translationally modified

peptides (RiPPs), terpenoids, saccharides, and a plethora of

hybrids. The genetic basis for this rich molecular diversity can

be found in biosynthetic gene clusters (BGCs), physically clustered

groups of genes that encode the enzymatic pathways necessary to

construct specific chemicals [1,2].

The diversity of extant natural products and BGCs raises

important questions about their evolutionary origin. These include

the basic question of how Nature invents new molecules, and a

series of applied questions relevant to biotechnology: for example,

the evolutionary modularity of NRP and PK BGCs has long been

seen as a feature that might allow large libraries of new compounds

to be generated by mixing and matching their constituent domains

and modules [3]. However, although there have been notable

successes [4–6], the majority of combinatorially generated pathways

appear to be nonfunctional [4]. More recently, advanced synthetic

biology approaches to pathway engineering have been frustrated by

the complexity and unpredictability of metabolic enzymes, partic-

ularly NRPSs and PKSs [7,8]: unlike LEGO bricks, their

constituent domains and modules do not ‘fit’ together universally,

but only function effectively in specific pathway contexts.

Regardless of these apparent constraints to genetic change,

Nature appears to have been quite successful at engineering

biosynthetic pathways through the process of gene cluster

evolution: even a conservative estimate suggests that the number
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of broad biosynthetic gene cluster families that have evolved

exceeds 6,000 [8], most of which contain multiple BGCs that

synthesize derivatives of a common scaffold. Hence, a detailed

study of evolutionary patterns within various BGC families has the

potential to offer a new inroad into effective BGC engineering,

through mimicry of Nature’s evolutionary design strategies.

So far, insights into the key principles underlying the evolution

of BGC architectures and repertoires have been derived from

limited case studies [9–13], which lack sufficient detail about the

generality of the underlying mechanisms. Here, we systematically

quantify the strategies that make evolution so successful at

engineering BGC diversity. Through a detailed computational

analysis of a recently generated dataset of 732 known and 10,724

predicted prokaryotic BGCs [8], we find that the rates of

evolutionary events, such as insertions, deletions and duplications

within BGCs, are much higher than those seen in comparable

gene clusters involved in primary metabolism. Furthermore,

distinct sub-clusters consisting of co-evolving genes appear to

constitute relatively independent building blocks that play key

roles in the evolution of larger BGCs encoding the biosynthesis of

complex metabolites. Finally, BGC families encoding the produc-

tion of polyketides and nonribosomal peptides evolve in family-

specific modes, in many of which we observe an unexpectedly

large role for concerted evolution [14,15] driven by internal

recombinations. Based on these observations, we offer several

recommendations for establishing new modes of evolution-guided

BGC engineering.

Results/Discussion

BGCs are rapidly evolving genomic entities
The large diversity of BGCs observed throughout the prokary-

otic tree of life [8] suggests that BGCs evolve rapidly. Indeed,

when we systematically quantified different evolutionary events by

mutually comparing all gene clusters in our data set (Table S1),

we found not only that they may have been transferred

horizontally at high frequency (Fig. 1a and Figure S1), but

also display exceptionally high rates of insertions, deletions,

duplications and rearrangements (Fig. 1b). While the percentage

of gene cluster pairs related by an indel is independent of gene

cluster size, the distribution of indel sizes shows a long tail that

includes 195 indels of 10 kb or more (Fig. 1c). As expected, these

large indels are more commonly found in larger gene clusters,

where they indicate either the merger of one gene cluster fragment

with another or the loss of a gene cluster fragment from a larger

cluster (see examples in Figure S2). Phylogenetic profiling [16]

showed that many such BGC fragments – here termed sub-clusters

– appear to evolve in a correlated fashion: 884 different motifs of

adjacent Pfam domains (out of 7,641 found) were shown to co-

evolve significantly more often than not (P,0.001), based on the

x2 test. These motifs comprise 591 different Pfam domains and

have an average length of 5.3 domains (Table S2). As expected,

they include many well-known and widely conserved motifs that

appear to be linked to specific sub-functionalities of gene clusters,

such as precursor biosynthesis, transport or synthesis of a specific

chemical moiety, and motifs belonging to modular BGC

architectures of NRPSs and PKSs (e.g., C-A-T and KS-AT-T

[17]).

Sub-cluster sharing enables evolutionary
‘recombineering’ of BGCs

Earlier evidence has suggested complex mosaic patterns of sub-

cluster sharing for some BGCs, such as those involved in the

production of glycopeptides [18]. To further explore the role of

sub-cluster sharing in the evolution of BGCs, we manually

compiled a set of 35 BGCs that are rich in sub-clusters that have

a known connection with a specific chemical moiety. We then used

this data set to construct a network in which the nodes represent

BGCs and the edges denote a sub-cluster that a pair of BGCs has

in common (Fig. 2). Three observations were particularly notable

(Fig. 2). First, .60% of the coding capacity of some BGCs (e.g.,

those encoding vancomycin and rubradirin [19]) is composed of

individually conserved sub-clusters (note that this is not entirely

reflected in the depiction of the rubradirin gene cluster in Fig. 2b,

where only those sub-clusters are highlighted that are shared with

other depicted BGCs). This supports a ‘‘bricks and mortar’’ model

of gene cluster evolution in which gene clusters are composed of

large, modular ‘‘bricks’’ (sub-clusters) that encode key building

blocks and individual genes (the ‘‘mortar’’) that encode functions

such as tailoring, regulation and transport. During evolution, both

bricks and mortar (scaffold and tailoring) may remain the same,

only the tailoring may change or the scaffold itself may change.

Second, the same sub-cluster commonly appears in otherwise

unrelated BGCs, and multiple unrelated sub-clusters can be found

in a single parent gene cluster, indicating that sub-clusters are

independent evolutionary entities. Third, sub-clusters are not

static; they are loosely organized around a core set of genes, but

gene gain/loss leads to chemical changes in the corresponding part

structure: for example, gene clusters encoding molecules such as

everninomicin [20], simocyclinone [21] and polyketomycin [22]

have different variants of deoxysugar sub-clusters, which lead to

subtle variations in the final chemical structures.

Although the complex patterns of sub-cluster sharing, in which

various sub-clusters are shared between otherwise completely

different gene clusters (Fig. 2), indicate that BGCs may evolve by

the successive merger of sub-clusters, this does not mean that every

case where sub-clusters are shared points to an independent sub-

cluster transfer event. For example, the KS domains of the diverse

range of ansamycin type I PKS BGCs that harbor AHBA sub-

clusters are almost completely monophyletic (Figure S3),

indicating that the macrolactam- and AHBA-producing sub-

clusters have been co-evolving for a long time (instead of multiple

Author Summary

Bacterial secondary metabolites mediate a broad range of
microbe-microbe and microbe-host interactions, and are
widely used in human medicine, agriculture and manufac-
turing. Despite recent advances in synthetic biology,
efforts to engineer their biosynthetic genes for the
production of unnatural variants are frustrated by a high
failure rate. In an effort to better understand what types of
genetic changes are most likely to lead to successful
improvements, we systematically analyzed the ways in
which biosynthetic genes naturally evolve to generate new
compounds. We show that large gene clusters appear to
evolve through the merger of sub-clusters, which function
independently, and are promising units for cluster engi-
neering. Moreover, a subset of gene clusters evolve by
concerted evolution, which generates sets of interoperable
domains that may enable predictable domain swapping.
Finally, many biosynthetic gene clusters evolve in family-
specific modes that differ greatly from each other. Overall,
this quantitative perspective on the ways in which gene
clusters naturally evolve suggests novel strategies for
using synthetic biology to engineer the production of
unnatural metabolites.
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independent AHBA sub-cluster acquisitions having occurred in

different macrolactam-producing polyketide BGCs). Hence, the

multi-hybrid rubradirin gene cluster might have arisen from a

rifamycin-like ancestor (most rubradirin KS domains are mono-

phyletic with rifamycin KS domains, see Figure S3) that already

harbored the combination of a modular type I PKS sub-cluster

and an AHBA biosynthesis sub-cluster, and which then acquired

new sub-clusters for the biosynthesis of the aminocoumarin, 3,4-

dihydroxydipicolinate and nitrosugar moieties (which are not

found in any other closely related ansamycins). Contrary to the

shared evolutionary histories of AHBA and ansamycin type I PKS

sub-clusters, a clear example of sub-cluster transfer between BGCs

of different types can be seen for 6-methylsalicylic acid (MSAS)/

orsellinic acid (OSAS) sub-clusters, as inferred from a maximum-

likelihood phylogenetic tree of MSAS/OSAS-producing iterative

PKSs (Figure S4). The topology of this tree strongly indicates that

MSAS/OSAS sub-clusters have largely evolved independent of

the scaffold types of their parent gene clusters (Figure S4), and

that they have been transferred between multiple types of BGCs

during their evolutionary past. In conclusion, in the context of the

bricks-and-mortar analogy, some bricks move around between

different structures more often than others. Finally, we should note

that there are also BGC families which evolve over long periods of

time without major changes to the gene cluster architecture or the

scaffold of the core molecule made: for example, the large family

of over .1,000 aryl polyene BGCs that we described recently [8]

has not undergone any major sub-cluster transfers, aside from the

inclusion of the dialkylresorcinol sub-cluster in the BGCs from

some CFB group bacteria. The products of many of these BGCs

are likely to be entirely identical, while remaining differences

between the molecules mostly concern differential tailoring of the

same scaffold.

Evolution from one scaffold to another
Many chemical scaffold types of secondary metabolite classes

are quite distinct, which raises the question of how BGC families

encoding the synthesis of distinct scaffolds are related. To assess

this question, we calculated the proportion and similarity of Pfam

domains shared between all pairs of BGCs within our data set of

732 known gene clusters using multiple sequence alignments for

each Pfam domain (Fig. 3) and looked specifically for close

homologues of BGCs just outside their immediate family. Even

though of course sequence similarity alone does not provide

conclusive evidence on evolutionary histories, the analysis did

suggest that unexpected evolutionary connections might exist

between natural products of different scaffold types.

For example, the Streptomyces gene cluster encoding the

lipopeptide antibiotic daptomycin [23] is surprisingly similar to

Mycobacterium glycopeptidolipid (GPL) gene clusters [24] (Figure
S5). When we performed a more in-depth analysis through a

phylogenetic analysis of condensation domains, we indeed found

that GPL domains consistently cluster together with domains from

the NRPSs that synthesize daptomycin (Figure S6). Although

both daptomycin and the GPLs are lipopeptides, the Mycobacte-
rium GPLs are shorter (tetrapeptide vs. tridecapeptide), cell-wall-

associated rather than diffusible, linear rather than cyclic, and

originate from an actinomycete genus that is not closely related to

Streptomyces.
Likewise, one of the strongest matches for the gene cluster

encoding the immunosuppressant rapamycin [25], apart from the

closely related FK520 [26] and meridamycin [27,28] BGCs, was

the gene cluster for pladienolide [29], a polyketide of unrelated

structure with a distinct biological activity (inhibition of the

splicing factor SF3b instead of TOR). Strikingly, based on

phylogenetic trees of their constituent ketosynthase (KS) and

Figure 1. The rapid and dynamic evolution of BGCs differs from the evolution of ribosomal gene clusters and primary metabolism.
a, Distributions of the best matching sequence homologs with respect to organism similarity (based on 16S rRNA) for predicted BGCs and histidine
operons suggest significant differences in the ways they evolve. b, Number of detected rearrangements, indels and duplications plotted against the
average percent identity in the aligned gene cluster pairs from which the events were deduced for predicted BGCs (top) and ribosomal gene clusters
(bottom). Ribosomal gene clusters were selected for comparison based on their relatively large sizes (,10–15 kb) compared to primary metabolic
operons; to obtain a fair comparison with BGCs, only gene clusters of sizes 5–15 kb were taken into account. Counts are based on a systematic
comparison of all gene clusters in our data set that share regions of .1000 bp with .70% identity, in which events were inferred from alignments of
such 1000 bp blocks. Of the 10,096 BGC pairs meeting these criteria, 1,750 had a rearrangement, 1,140 had an indel, and 135 had a duplication, each
of which were far more common than the corresponding evolutionary events in gene clusters encoding the translation apparatus. Interestingly, while
indels and rearrangements could be detected in ,16% and ,19% of BGCs of all sizes, duplications are found far more commonly in gene clusters
with sizes of .40 kb (7.6%) than in gene clusters with sizes of 10–20 kb (0.3%), suggesting a possible role for duplication and divergence in the
evolution of large gene clusters. c, Size distribution of inserted/deleted fragments during recent gene cluster evolution, based on the indel analysis.
doi:10.1371/journal.pcbi.1004016.g001
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Figure 2. Complex BGC architectures evolve through new combinations of sub-clusters that are shared between multiple gene
cluster types. a, Network of sub-clusters shared among 34 known BGCs. Nodes represent BGCs, and node size indicates the number of sub-clusters
present in the gene cluster that are shared with other BGCs within the network. Edges represent shared sub-clusters, coded by color. The pattern of
sharing indicates that many sub-clusters are regularly transferred between BGCs of different types. In the interpretation of this analysis, it should be
kept in mind that in rare cases different biosynthetic routes (and hence, different sub-clusters) exist towards the same moiety. b, A sub-network from
a showing the shared sub-clusters among the BGCs for rubradirin, rifamycin, simocyclinone, everninomicin, and polyketomycin, as well as the
chemical moieties encoded by the sub-clusters.
doi:10.1371/journal.pcbi.1004016.g002
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acyltransferase (AT) domains, the meridamycin gene cluster is

more closely related to the pladienolide BGC than to those

encoding rapamycin and FK520, the molecules to which it is often

compared (Fig. 3). These examples suggest that closely related

sets of protein domains can be reconfigured by evolution to yield a

new scaffold that is chemically and biologically distinct.

Figure 3. Unexpected evolutionary relationships within the rapamycin family. a, Distinct scaffolds produced by pathways from related
BGCs. The scatter plot shows the relationship between the sequence homology of a pair of BGCs (x-axis) and the structural homology of their small
molecule products (y-axis), compared to rapamycin and its BGC. Each circle represents a gene cluster and its small molecule product. Meridamycin
and FK520 are closely related to rapamycin, as are their BGCs. While the pladienolide BGC is closely related to the rapamycin BGC, the structure of
pladienolide itself is not very similar to that of rapamycin. In particular, pladienolide has a much smaller macrocycle and lacks shikimate- or
pipecolate-derived moieties, and, as a result, binds to a distinct protein target. Structural similarity is estimated by the Tanimoto coefficient using
linear-path fingerprints (FP2) from Open Babel [67], while sequence homology is represented as the Jaccard index defined on pairs of Pfam domains
that share sequence identities within the top 10th percentile of all-pair sequence identities. The number of domain pairs that share sequence
identities within the top 10th percentile and sequence identity of all domain pairs are shown as point sizes and colors, respectively. b, The role of
concerted evolution in homogenizing domains within a BGC. Phylogenetic trees of KS and AT domains from the rapamycin, FK520, meridamycin, and
pladienolide BGCs are shown (for detailed trees with accession numbers and bootstrap values, see Figure S11). The KS and AT sequences largely
cluster into BGC-specific clades; for the AT domains, this is even the case for two different clusters encoding the same compound (meridamycin),
showing the ability of concerted evolution to homogenize domains within a BGC. c, Chemical structures of rapamycin, meridamycin, FK520 and
pladienolide. The sub-structure shared among rapamycin, meridamycin and FK520 is colored red, and the domains responsible for the biosynthesis of
this sub-structure in each molecule are indicated with red circles in b.
doi:10.1371/journal.pcbi.1004016.g003
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Concerted evolution in the rapamycin family
The phylogenetic trees of KS and AT domains from our data

set of known BGCs revealed another unexpected finding: in spite

of the structural similarity of rapamycin and FK520, 63% of the

constituent domains of their polyketide synthases (PKSs) cluster

into entirely separate clades (Fig. 3b, see also Figure S8 which

shows that relevant bootstrap values are almost all above 90). Even

more remarkably, 14 out of 16 domains responsible for the

biosynthesis of the sub-structure shared between these two

molecules (shown in red in Fig. 3c) do not cluster together with

the corresponding domain from the assembly line for the other

molecule. This pattern of homology is consistent with a

phenomenon called ‘concerted evolution’, the homogenization of

DNA sequences within a given repetitive family caused by high

rates of internal recombination [14,15]. Given the similar sizes and

architectures of the gene clusters and the structural similarity of

their products, this is a much more parsimonious explanation for

the patterns observed than convergent evolution of multiple

similar gene clusters through successive duplication of an ancestral

single-module PKS. Notably, previous phylogenetic analyses of

PKS domains have also observed BGC-specific clades of PKS

domains [10,30], but not to the extent observed here for such

closely related gene clusters: the fact that such a strong pattern is

even observed for the AT domains of two different gene clusters

that encode the same molecule [27,28], meridamycin, shows that

the underlying process may operate on very short time scales, and

that recombination can remove almost all traces of independent

evolution of these PKS modules. In the case of the rapamycin

family, recombinations are likely to occur neutrally and have no

effect on the structure of the small molecule product (rapamycin,

meridamycin and FK520), whereas in other cases, single

crossovers within or between gene clusters may dramatically

change the modular architecture of a synthase [30]. Near-neutral

changes brought about by gene conversion may occur at higher

rates for some domains or domain types than for others: in the

meridamycin gene clusters, no signs of gene conversion could (yet)

be observed for KS domains, even though gene conversion

manifested itself clearly when comparing the meridamycin clusters

with those encoding rapamycin, FK520 and pladienolide. On the

contrary, AT domain gene conversion was widespread even

between the two meridamycin gene clusters. We speculate that for

these BGCs, gene conversion events get fixated in the population

at lower rates for KS domains because not all KS sequences work

equally well for different polyketide chain lengths that occur at

different points of the assembly line, so that the changes brought

about by a conversion event are less neutral than for AT domains.

Mapping of rapamycin family PKS sequence mutations onto the

3D structure of an AT- and KS-containing protein further

supports this hypothesis (Figure S7a), showing widespread

sequence variability at almost every position in the AT domains,

except for the residues near the substrate binding site (Figure
S7b). Mutations in KS domains, on the other hand, are mostly

restricted to the regions in vicinity (around the core) of the

substrate-binding site and the dimerization interface (Figure S7c),

suggesting their importance in influencing substrate selectivity.

An unexpectedly large role for concerted evolution
Concerted evolution is not peculiar to the rapamycin family

(Figure S8). For the gene clusters encoding the biosynthesis of the

mutually closely related macrolides erythromycin [31], oleando-

mycin [32] and pikromycin [33], BGC-specific branching

appeared to occur for both KS and AT domains, similar

to the pattern for rapamycin, FK520, meridamycin and

pladienolide. However, for the ansamycin antibiotics macbecin

[34], geldanamycin [35] and herbimycin [36], and the antifungals

pimaricin [37], nystatin [38] and amphotericin [39], BGC-specific

branching occurs only for AT domains, and not for KS domains.

Finally, corroborating earlier observations [40], domains from the

trans-AT PKS gene clusters encoding pederin [41] and psymberin

[42] do not show any BGC-specific branching at all. We observed

that certain NRPS gene clusters also show signs of concerted

evolution: a clear BGC-specific branching pattern pointing to

concerted evolution can be seen for the A domains and most of the

C domains of the gene clusters encoding the biosynthesis of the

closely related calcium-dependent lipopeptides daptomycin [23],

A54145 [43] and CDA [44]. However, the glycopeptide gene

clusters encoding the biosynthesis of balhimycin [45], teicoplanin

[46] and A40926 [47] showed no such pattern at all: almost all

domains cluster in groups corresponding to domains in the same

positions in the assembly line. Collectively, these observations

suggest that concerted evolution is a key mechanism driving the

evolution of NRPS and PKS gene sequences, but the extent to

which it happens depends on family-specific functional constraints

as well as on the presence of other evolutionary forces acting upon

a gene cluster. Our qualitative model of PKS/NRPS evolution

(Fig. 4), which summarizes the interplay of concerted evolution

with other evolutionary mechanisms, is relevant to PKS/NRPS

engineering efforts: the highly homologous sets of domains

generated by concerted evolution are more likely to be mutually

interoperable than domain sets chosen at random, and might

therefore be attractive building blocks for synthetic biological

engineering of biosynthetic pathways.

Distinct mechanisms of PKS/NRPS BGC evolution
To understand more generally how PKS and NRPS BGCs

evolve, we set out to measure the contributions of concerted

evolution, duplication, and divergence to the evolution of all

multimodular PKS and NRPS BGCs in both our known and

predicted BGC data sets. We first collected and quantified 25

different features describing the nature of gene cluster sequences

and the relationships among their constituent domains (see

methods for details). A principal component analysis (PCA) and

hierarchical clustering using these features can distinguish many of

the well-known gene cluster families from our data set of known

BGCs (Figure S9, Fig. 5a). Two features in particular, the

‘internal similarity index’ and the ‘vertical evolution index’,

explain much of the variation in terms of the modes of evolution

of different classes of gene clusters (Fig. 5b). At the level of

individual domains, we find that there are four primary

mechanisms by which NRPS and PKS BGCs evolve (Fig. 5c–f,
Figure S10). Firstly, gene clusters encoding glycopeptides,

calcium-dependent lipopeptides and macrolides/polyethers ap-

pear to be most repetitive, pointing to a history of module

duplications and/or a prominent influence of concerted evolution.

The syringopeptin NRPS [48] and mycolactone PKS [49] are

extreme examples of this: both are likely to have evolved recently

by subsequent module duplications and concerted evolution.

Secondly, we sometimes observed gradients of the internal

homology p-values from the N- to C-termini of large synthases,

suggesting that some gene clusters evolve to encode the synthesis of

larger molecules by iterative duplication of their most N-terminal

module, would have the effect of extending an intermediate NRP

or PK by the addition of a new starter unit. Thirdly, a group of

BGCs including the ones that encode the polyketides psymberin

[42] and erythrochelin [50] show a ‘vertical’ type of evolution, in

which the domains appear to evolve independently, with perhaps

occasional domain swapping with related gene clusters, as has

been suggested previously [40]. Finally, there are many gene

Computational Analysis of Biosynthetic Gene Cluster Evolution
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clusters showing a ‘mixed’ mode of evolution, in which one or

more of the above mechanisms are combined. For example, NRP

siderophore gene clusters show some signs of internal recombina-

tions, but at the same time many domains show no high mutual

similarity. Like the trans-AT PKS gene clusters, they seem to have

a higher tendency to recruit domains from dissimilar gene clusters.

This recruitment over larger evolutionary distances appears to be

a general feature of NRPS gene clusters as opposed to PKS gene

clusters, and might be related to the wider range of possible

substrates for NRPSs, which often require BGC-specific sub-

pathways for the synthesis of a dedicated monomer [51].

Birth and death of biosynthetic gene clusters during
evolution

The observation of so many different evolutionary mechanisms

of gene cluster evolution begs the question which circumstances

lead to the birth and death of BGCs over evolutionary time. Are

all BGCs that are detected bioinformatically also still intact and

functional, or might many of them have degenerated and entered

a nonfunctional state? The absence or presence of nonfunctional

genetic units (e.g., pseudogenes or pseudo-gene-clusters) is largely

governed by the evolutionary population dynamics of the species.

Many bacteria live in large effective population sizes and have

relatively short generation times, leading to very strong purifying

selection and, consequently, rigorous genome streamlining [52].

Hence, BGCs that become nonfunctional will be quickly lost in

such organisms if they do not provide any evolutionary advantage.

Notably, some bacteria in fact occur in smaller population sizes

and/or regularly go through population bottlenecks, leading to

altogether different evolutionary dynamics [53]: in such cases, a

range of pseudogenized gene clusters can sometimes still be

observed that have not been purged from the genome yet [54]. On

the whole, however, these appear to be rather the exception than

the rule [55].

Concerning the birth of new gene cluster architectures, large

effective population sizes and short generation times also suggest

that BGC modifications should immediately confer an evolution-

ary advantage in order to be maintained; on the other hand,

frequent changes in population size may affect the probability of

mutations to be fixated in the population [56]. Alternatively,

neutral mutations could hitchhike with strongly adaptive muta-

tions within or close to the same gene cluster. Concerning the

physical growth of gene clusters, it should be noted that new

enzymes may already be recruited to a biosynthetic pathway

before their genes are physically recruited to the gene cluster, and

such an addition to a pathway could evolve through, e.g., positive

selection acting on promiscuous enzyme activities or substrate

specificities [57]. The precise reason for and evolutionary

mechanism of clustering of biosynthetic genes in bacteria itself is

still largely an unanswered question [58].

Implications for biosynthetic engineering
Our analysis of BGC evolution will enable new approaches to

BGC engineering informed by the mechanisms by which BGCs

evolve naturally. Our results suggest that efforts to engineer the

biosynthesis of unnatural natural products could be more

successful by observing the modes by which specific BGC classes

evolve in nature.

For example, conglomerate molecules consisting of multiple

different chemical moieties could be designed by engineering

BGCs consisting of novel combinations of sub-clusters. Such an

effort could be guided by information taken from evolutionary

Figure 4. Qualitative model for the evolution of NRPS/PKS domains. After modules are duplicated, they may get ‘trapped’ in a cycle in which
small sequence divergences are counterbalanced by internal recombinations that drive concerted evolution. Through strong diversifying selection (or
sufficient drift), domains may break out of this cycle towards domain sequences that are protected from concerted evolution by functional
divergence and subsequent stabilizing selection on the new function, or by reduced internal recombination rates due to larger sequence differences
between the domains. The abovementioned sequence divergence may occur through cumulative mutation or through recombination with other
gene clusters (or other modules within the same gene cluster).
doi:10.1371/journal.pcbi.1004016.g004
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comparisons, which would offer suggestions about which sub-

clusters are most likely to function together, based on how often

evolution has successfully forged combinations between them.

Furthermore, our evolutionary analysis of NRPS and PKS gene

clusters suggests that concerted evolution has created sets of

domains within gene clusters that are highly homologous. These

domain sets are more likely to be mutually interoperable than

domain sets chosen at random, and might therefore be of great

utility in future engineering efforts.

Also, evolutionary strategies towards generating larger and

more complex compounds could be mimicked by N-terminally

extending certain types of NRPS/PKS gene clusters by duplicat-

ing and then carefully modifying the first assembly-line module.

Overall, in combination with new synthetic biology techniques

that may soon enable the rapid assembly of thousands of clusters

from a common set of parts [59–61], our results suggest a new

approach for re-engaging gene cluster engineering in a manner

informed by the mechanisms by which gene clusters have naturally

evolved.

Methods

Comparison of HGT with primary metabolism
To remove highly similar genomes from these analyses, we used

the AMPHORA [62] (August 10th, 2010) dataset, which contains

gene sequences from 562 organisms for 30 universally conserved

genes. Genes from these organisms were compared using sequence

identities based on MUSCLE [63] multiple sequence alignments.

This resulted in 30 distances between each pair of organisms. The

distributions of distances of all pairs were tested for normality

using a Shapiro-Wilk test. An organism distance map was then

built with distances defined as the mean distances of AMPHORA

Figure 5. Diverse and distinct modes of evolution for PKS and NRPS BGCs. a, Scatter plot showing the first two principal components
resulting from a PCA analysis of different evolutionary characteristics of BGCs encoding different classes of NRPs and PKs. The first two principal
components describe 63% of the variance. BGCs encoding members of the same family (e.g., lipopeptides, glycopeptides or macrolides) tend to
cluster together, suggesting that their family members evolve in similar ways, while different families cluster apart from each other, suggesting
distinct modes of evolution. Colors indicate distinct classes of BGCs. b, Scatter plot showing two features of BGCs – internal similarity index and
vertical evolution index – that, of the 25 measured features, underlie most of the variation. The internal similarity index indicates how similar domains
in a BGC are to other domains within the same BGC. The vertical evolution index indicates how closely related a BGC is to the BGCs harboring the
closest relatives of its constituent domains (see Methods for more details). Colors indicate distinct classes of BGCs, as in panel a. c–f, Domain
architecture plots of PKSs and NRPSs show distinct modes of evolution: c, Internal duplication with concerted evolution; d, N-terminal additions by
module duplication and recombination; e, domain swapping with other BGCs; and f, mixed evolution. Geometric shapes indicate domain types (see
legend); domain colors indicate the internal homology p-value of each domain to its closest relative within the same gene cluster, within the total
distribution of all similarities between domains of the same type in the entire data set: hence, domains colored red are most similar, while domains
colored blue are most dissimilar.
doi:10.1371/journal.pcbi.1004016.g005
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genes. The resulting distance map was clustered using default

settings in MCL [64], and only one member of each cluster was

kept for further analyses. This left us with total of 408 organisms.

To search for histidine and tryptophan biosynthetic operons, we

modified ClusterFinder [8]. Pfam [65] IDs associated with the

histidine biosynthesis pathway (PF00475, PF00815, PF01174,

PF01502, PF01634, PF04864, PF08029, and PF08645) or with the

tryptophan biosynthesis pathway (PF00218, PF00290, PF00465,

PF00697, PF01220, PF01264, PF01487, PF04715, and PF08501)

were acquired from JGI IMG [66]. Trp or His operons were

defined as gene clusters containing at least one of these domains

with a probability .0.5 and containing at least two of the domains

in total. Among 408 organisms searched, 350 His and 288 Trp

biosynthesis operons were identified in 271 and 248 different

organisms, respectively. The average number of domains per

predicted gene cluster were 2.9 and 3.1, respectively.

Best matching sequence homologs of a query protein domain

from a biosynthetic or primary metabolic gene cluster were

obtained using MUSCLE [63] multiple sequence alignments. The

distance between the organism containing the query protein

domain and the organism with the best matching sequence

homolog was determined based on 16S rRNA sequence similarity.

Best matching sequence homologs of all protein domains that are

in Pfam are included in the organism similarity histograms

(Fig. 1a).

Phylogenetic profiling
For each BGC, a two-dimensional array of the size correspond-

ing to the numbers of consecutive protein domains that are in

Pfam database (rows) and 408 selected organisms (columns) (see

‘‘Comparison of HGT with primary metabolism’’) was created.

The cells in the array consisted of sequence identities between a

given domain from a BGC and the most homologous domain

(which is also predicted as part of a BGC) from a given organism.

Next, we calculated a Pearson product-moment correlation

coefficient (correlation coefficient) for each possible pair of protein

domains (rows), resulting into a new matrix, a correlation matrix,

of the size corresponding to the number of protein domains (rows

from the initial array) in both dimensions. To take rearrangements

into account, we reordered rows and columns of the correlation

matrix based on hierarchical clustering of the correlation matrix in

both dimensions. We then parsed linear motifs that are likely to

evolve in a correlated fashion by selecting consecutive pairs of

domains in this reordered correlation matrix (consecutive fields on

the first offset diagonal) with correlation coefficient .0.5. The

analysis was repeated by setting the correlation coefficient cutoff to

.0.65 and .0.8. Each motif was divided into all possible sub-

motifs of sizes between 2 domains and the total number of

domains in a motif. To determine the significance of a (sub)motif

occurrence, we next compared the number of (sub)motif

occurrences to the number of all possible (sub)motif occurrences

in all BGCs that did not pass the correlation coefficient cutoff.

Pearson’s x2 test with Bonferroni correction was applied to test for

statistical significance, with the null hypothesis stating that the two

values are equal.

Analysis of recent evolution of BGCs
We performed an all-versus-all alignment of nucleotide

sequences of known and predicted BGCs using the blastn

algorithm. Gene cluster sequences were divided into blocks of

1 kb, and then mapped to the most homologous blocks from other

gene clusters, as well as from the same gene cluster (to test for

genomic duplications). 56% of the blocks (118,320 out of 212,176)

did not map to any homologous regions in the same or other

BGCs with .70% identity. Evolutionary events (insertions/

deletions, duplications and rearrangements) were detected by a

custom-made Python script (Data S1) comparing each alignment

of two-gene clusters having at least three matching blocks with .

70% identity. Rearrangements were defined as an identified

difference in the order of 1-kb blocks in an otherwise conserved

(piece of) gene cluster, such as when A1-A2-A3-A4-A5 matches to

B1-B4-B3-B2-B5 in an alignment of two BGCs A and B. Indels

were defined as 1-kb blocks present in one gene cluster but not in

the other gene cluster, such as when A1-A2-A3-A4-A5-A6

matches to B1-B2-B5-B6 in an alignment. To make these

inferences more reliable, a constraint was used that the flanking

regions (of size . = 2 kb) of each indel breakpoint must be

homologous between query and hit gene cluster, and the block

order must be conserved between them. Finally, duplications were

defined as 1-kb blocks that had the best hit towards another block

in its own gene cluster, and having a higher copy number in one

gene cluster than in the other, such as when A1-A2-A3-A2-A3-A4-

A5 aligns to B1-B2-B3-B4-B5, while the mutual sequence identity

between the A2 and A3 pairs is higher than between any of the

A2/A3 blocks and B2 or B3.

Comparison of sequence vs. structural similarity of gene
clusters and their products

For a given BGC pair, we first calculated sequence identities

between all Pfam domain pairs of each Pfam ID, using MUSCLE

[63] multiple sequence alignments. A BGC sequence similarity

index was defined as the Jaccard index with the size of the

intersection represented by the number of Pfam pairs whose

sequence identities were higher than the best 10% alignments of

all Pfam domains of the same Pfam ID. Taking into account the

underlying distributions of sequence identities between all domain

sequences prevented misinterpretation of simpler sequence simi-

larity metrics (e.g., an absolute sequence identity threshold) when

different evolutionary rates apply to different protein families. We

define structural similarity of a given BGC product pair as the

Tanimoto coefficient between the two SMILES strings, using

linear-path fingerprints (FP2) from Open Babel [67].

Sub-cluster analysis of known gene clusters
Sub-clusters with known functions from experimentally charac-

terized gene clusters were manually collected from the literature.

Sub-cluster sharing between gene clusters from the training set was

calculated using blastp [68]. The minimum requirement used to

identify a shared sub-cluster between two BGCs was sharing either

75% of the genes with .45% average sequence identity, 50% of

the genes with .50% average sequence identity, or 25% of the

genes with 70% identity. To account for different modes of

sequence evolution of different sub-cluster types, these values were

adjusted with sub-cluster type-specific cutoffs to obtain a good

match between genetic similarity and chemical similarity (Table
S3). The final sub-cluster sharing network was drawn with

Cytoscape [69].

Multimodular NRPS/PKS gene cluster evolution
To study patterns of evolution in multimodular NRPS and PKS

gene clusters, a range of features was calculated describing key

characteristics of these gene clusters. The first set of features was

based on the topologies of intra-BGC domain similarity networks

(with protein domains and sequence similarity representing nodes

and edges, respectively) and consisted of the average clustering

coefficient, average sequence similarity, graph transitivity, number

of 2–4 node cliques, number of connected components in a graph
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with sequence similarity .50%, and average neighbor degree. We

also included as features the number of different Pfam domain

types in a BGC, the total number of domains in a BGC, the

average number of domains per gene, and the averages and

standard errors of best-matching pair sequence identities and

internal BGC similarity indices. Two evolutionary indices were

also added: the internal similarity index and the vertical evolution

index. To obtain the internal similarity index of a gene cluster, we

calculated for each of its NRPS/PKS domains the p-value of its

closest blastp match inside the gene cluster, given the distribution

of the percent identities of all within-gene-cluster blastp hits of all

domains of that domain type in the complete set of gene clusters.

The internal similarity index was then calculated from these

numbers as the mean of all inverse p-values. The same inverse p-

values were used for plotting the internal domain similarity across

gene clusters. The vertical evolution index of a gene cluster was

calculated as the average difference between the p-value of the top

10 percent identities of a domain’s blastp hits to all domains from

other gene clusters with the p-values of the Lin distances of the

gene clusters to the host gene clusters of each of the top 10 hit

domains. Consequently, gene clusters with domains with highly

similar closest hits to domains in dissimilar gene clusters get a low

value, while gene clusters with domains with dissimilar closest hits

to domains in similar gene clusters get a high value.

PCA analysis was performed with the aforementioned features

as an input. Compound types were assigned using the classifica-

tions taken from the primary literature.

Supporting Information

Figure S1 The rapid and dynamic evolution of BGCs
differs from the evolution of tryptophan operons.
Distributions of the best matching sequence homologs with respect

to organism similarity (based on 16S rRNA) for predicted BGCs

and tryptophan operons suggest significant differences in the ways

they evolve, The distribution of all organism-organism similarities

(background organism similarities) is trimodal, which may explain

why, similarly, the distributions of the best-matching sequence

homologs for predicted BGCs and tryptophan operons are also

trimodal.

(PDF)

Figure S2 Examples of insertions/deletions in BGCs.
Three gene cluster alignments of highly similar BGCs (.70% at

the nucleotide level) are shown that are likely to represent

relatively recent insertions/deletions in BGCs with functional

consequences. In the upper panel, genes that putatively encode

one or more sugar moieties have been inserted/deleted from a

saccharide biosynthesis gene cluster. In the middle panel, a

germacradienol synthase has been replaced by another type of

terpene synthase, a pentalenene synthase, as well as an AMP-

dependent synthetase. In the lower panel, a gene cluster related to

the well-known coelibactin gene cluster from Saccharopolyspora
spinosa is shown, which has acquired a MSAS polyketide synthase,

a cytochrome P450, a carboxamide synthase and a 3-oxoacyl-

(ACP) synthase compared to the coelibactin gene cluster from

Streptomyces coelicolor. These genes are predicted to encode a

polyketide moiety that might be attached to the NRP siderophore

synthesized by the coelibactin NRPS machinery.

(PDF)

Figure S3 Phylogeny of ansamycin KS domains. A

FastTree [70] phylogenetic tree of all KS domains from the

divergolide, hygromycin, maytansinoid, rubradirin, rifamycin and

macbecin gene clusters (which all have an AHBA sub-cluster), was

generated with the 10 closest BLAST hits of each domain (outside

those to KS domains within the same data set, and after removal

of redundancy). Except three, all KS domains cluster mono-

phyletically with other ansamycin KS domains (i.e., other KS

domains from gene clusters with an AHBA sub-cluster). Other

related KS domains cluster in separate clades.

(PDF)

Figure S4 Phylogenetic tree of MSA/OSA iterative
PKSs. Maximum likelihood phylogenetic tree (constructed with

RAxML [71]) of all known bacterial naphthoic acid/6-methylsa-

licylic acid/orsellinic acid synthases, with a fungal 6-methylsa-

licylic acid synthase used as outgroup. The core scaffold/type of

the parent BGC in which the MSAS/OSAS sub-cluster resides is

denoted with colored squares at the right.

(PDF)

Figure S5 Similarity between daptomycin and its BGC
and other BGCs and their small molecule products. Node

sizes correspond to the number of Pfam domains with sequence

identity to one of the daptomycin genes higher than the top 10th

percentile of the background Pfam sequence identity distribution,

and node colors denote the average sequence identity for such

Pfam domain pairs.

(PDF)

Figure S6 GPL condensation domains clade with dap-
tomycin condensation domains in a phylogenetic tree.
The tree shown was reconstructed using the maximum likelihood

method in MEGA [72], after structure-based multiple sequence

alignment with PROMALS3D [73]. The C-domain of the GPL

starter module clades together with the C-domain of the

daptomycin starter module, and the other GPL C-domains clade

together with the DCL C-domains from the daptomycin assembly

line. A C-domain of the glycopeptide balhimycin (which is closely

related to vancomycin) also groups with these domains.

(PDF)

Figure S7 Mutations in AT and KS domains mapped
onto their crystal structures. a, We aligned sequences of AT

and KS domains from 4 BGCs (Fig. 3a) on a crystal structure of a

KS-AT didomain from module 3 of the 6-deoxyerthronolide B

synthase (PDB ID: 2QO3) [74]. For each position in the

alignment, we assessed sequence variability by calculating entropy

based on the amino acid frequencies (color-coded from white to

red in chain A; chain B of the homodimer is shown as backbone

trace only). b, While most of the domain shows a high tendency

towards mutations, visual inspection reveals a relatively conserved

region at the acetate-binding site of the AT domain. c, Mutations

in the KS domain, however, appear to cluster in several regions of

the structure, including the region around the substrate-binding

site (here, denoted by the binding site of the inhibitor cerulenin)

and at the homodimer interface. The entropy was not calculated

in the regions that fall outside of the Pfam-annotated domains, nor

in the indel-rich regions (marked black). The figures were

generated using UCSF Chimera [75].

(PDF)

Figure S8 Evidence for concerted evolution in various
PKS and NRPS gene clusters. Phylogenetic trees of KS/AT

and C/A domains, respectively, involved in the biosynthesis of

several families of related polyketide or nonribosomal peptide

molecules show various degrees of concerted evolution. For

example, trees of the AT and KS domains of macrolide

biosynthesis enzymes show a high rate of BGC-specific branching

(suggestive of concerted evolution), while hardly any such

branching is observed in trees of the C and A domains of
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glycopeptide biosynthetic enzymes. Phylogenetic trees were

constructed in MEGA5 [72] with the neighbor-joining method

(100 bootstrap replicates), based on alignments of the domain

amino acid sequences generated with MUSCLE [63]. For tree

construction, all positions containing gaps and missing data were

eliminated.

(PDF)

Figure S9 Clustered heat map of features based on
protein sequence alignments and domain-similarity
network topologies. Features include the average number of

Pfam domains per gene, means and standard deviations of the

clustering coefficient and the network transitivity (see Methods for

more details). At least four distinct clusters of BGCs appear from

the heat map that have different evolutionary characteristics.

(PDF)

Figure S10 Domain architectures of all 658 BGCs
encoding multimodular PKS and NRPS enzymes. The

domains are colored by the p-value of the homology to their

nearest neighbor within the same gene cluster. BGCs that are

mostly red contain domains that are highly similar to other

domains in the same gene cluster, whereas BGCs that are mostly

blue contain domains that are dissimilar from other domains

within the same gene cluster.

(PDF)

Figure S11 Detailed phylogenetic trees of KS and AT
domains of polyketide synthases from the rapamycin
family. The tree was reconstructed using the neighbor-joining

method in MEGA [72], using 100 bootstrap replicates.

(PDF)

Table S1 Overview of evolutionary events detected
between alignments of gene cluster pairs sharing at
least three matching 1 kb-sized blocks in alignments
with thresholds of .70% identity (top) or .80% identity
(bottom). The numbers of observed indels, duplications and

rearrangements are given for BGCs of several sizes classes: 1–

10 kb, 11–20 kb, 21–30 kb, 31–40 kb and 40+ kb, or in

cumulative combinations of these size classes (.10 kb, .20 kb,

.30 kb, .40 kb).

(XLSX)

Table S2 Results from the phylogenetic profiling anal-
ysis at three different cross-correlation cutoffs. The first

and second column of each table show a number of co-evolving

and non-coevolving motifs, followed by p-values from a Chi2-test

(in which the first two numbers were assumed to be equally

distributed), a string of Pfam IDs that constitute a motif, and their

description.

(XLSX)

Table S3 Sub-cluster type-specific cut-offs to determine
sub-cluster sharing between BGCs. Suitable cut-offs were

determined by a manual comparison of known sub-clusters to their

corresponding known chemical moieties, and cut-offs were set at

those sequence identities where the chemistry produced by the

enzymes encoded by the sub-clusters was (nearly) identical.

(XLSX)

Data S1 Python script and associated data files that
were used to identify insertions/deletions, duplications
and rearrangements in homologous gene clusters.

(ZIP)
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