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Interleukin 17A promotes diabetic 
kidney injury
Jin Ma1, Yan J. Li1, Xiaochen Chen1, Tony Kwan1, Steven J. Chadban1,2 & Huiling Wu1,2

The role of the pro-inflammatory cytokine IL-17 in the pathogenesis of numerous inflammatory 
disorders is well-documented, but conflicting results are reported for its role in diabetic nephropathy. 
Here we examined the role of IL-17 signalling in a model of streptozotocin-induced diabetic 
nephropathy through IL-17 knockout mice, administration of neutralising monoclonal anti-IL-17 
antibody and in vitro examination of gene expression of renal tubular cells and podocytes under high 
glucose conditions with or without recombinant IL-17. IL-17 deficient mice were protected against 
progression of diabetic nephropathy, exhibiting reduced albuminuria, glomerular damage, macrophage 
accumulation and renal fibrosis at 12 weeks and 24 weeks. Administration of anti-IL-17 monoclonal 
antibody to diabetic wild-type mice was similarly protective. IL-17 deficiency also attenuated up-
regulation of pro-inflammatory and pro-fibrotic genes including IL-6, TNF-α, CCL2, CXCL10 and TGF-β 
in diabetic kidneys. In vitro co-stimulation with recombinant IL-17 and high glucose were synergistic in 
increasing the expression of pro-inflammatory genes in both cultured renal tubular cells and podocytes. 
We conclude that absence of IL-17 signalling is protective against streptozotocin-induced diabetic 
nephropathy, thus implying a pro-inflammatory role of IL-17 in its pathogenesis. Targeting the IL-17 
axis may represent a novel therapeutic approach in the treatment of this disorder.

Diabetic nephropathy (DN) is now the leading cause of end-stage renal disease (ESRD) worldwide1. The rate of 
progression to ESRD in patients with diabetes and chronic kidney disease (CKD) has remained unchanged for 
decades, placing an enormous burden on healthcare systems2. Whilst recent developments demonstrating the 
reno-protective effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors have provided some optimism, 
further insights into the pathogenesis of DN are required to facilitate future development of effective therapeutic 
strategies. Sterile inflammatory processes triggered by innate immune responses are known to contribute to DN 
development and progression3,4. IL-17A is an important regulator of innate immunity and has been implicated in 
the pathogenesis of several inflammatory diseases, but its role in CKD and specifically DN is less clear.

IL-17A is a member of the IL-17 family, which consist of six cytokines (IL-17A to IL-17F), of which IL-17A 
and IL-17F are the predominant isoforms. Members of the IL-17 family are traditionally considered potent 
pro-inflammatory cytokines primarily secreted by Th17 cells, but also produced by other cells including NK cells, 
macrophages neutrophils, dendritic and mast cells. There are five known receptors of the IL-17 family (IL-17RA 
through IL-17RE). IL-17A signals through the IL-17RA/IL-17RC complex5–7. IL-17RA and IL-17RC are found 
on the surface of many cell types including epithelial cells, fibroblasts, endothelial cells, astrocytes, macrophages 
and dendritic cells5,6. Upon activation by IL-17, IL-17Rs recruit Act1, triggering the NF-κB cascade resulting 
in the production of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β), chemokines (CCL2 and CXCL2), and 
pro-fibrotic genes (TGF-β and fibronectin)8,9.

The pathogenicity of IL-17 has been well recognised in several diseases, including psoriasis10, rheumatoid 
arthritis11, multiple sclerosis12, cancer13,14 and diabetes15–17. Patients with diabetic retinopathy have elevated 
plasma IL-17 levels compared to healthy individuals18. Supportive evidence from rat models of Streptozotocin 
(STZ) induced diabetic retinopathy showed suppression with anti-IL-23, anti-IL-17A or anti-IL-17RA antibod-
ies reduced diabetic retinal injury19,20. More recently, IL-17 has been associated with various kidney diseases21 
including lupus nephritis22–24, ANCA-associated vasculitis25–27 and end-stage renal disease28,29. We have previ-
ously reported that IL-17A contributes to the development of kidney allograft rejection with IL-17A deficiency 
attenuating acute and chronic allograft injury, improving renal function and prolonging renal allograft survival30.
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Current literature regarding the specific role of IL-17 in DN has been conflicting. Kim et al. reported atten-
uation of STZ-induced diabetic kidney injury by targeting Th17 cells through mycophenolate mofetil and con-
cluded that modulation of IL-17 may be a viable therapeutic approach to treat DN31. This was corroborated in a 
diabetic rat model in which treatment with the mTOR inhibitor rapamycin attenuated Th17 activity and kidney 
injury32. Kuo et al. demonstrated infiltration of CD4+ IL-17+ T cells in human renal biopsies of both early and 
sclerotic DN, with both T cell infiltration and tissue IL-17A expression correlating with GFR decline33. In con-
trast, Mohamed et al. showed that IL-17A and IL-17F were protective against DN in mouse models34. In this 
study, diabetic IL-17−/− mice displayed aggravated kidney damage compared to wild-type (WT) controls and 
administration of low-dose recombinant IL-17A was effective in the prevention and reversal of DN. This chal-
lenges the conventional notion of IL-17A as a pathogenic pro-inflammatory cytokine, but instead presents its role 
a modulator of inflammation. Therefore, further investigation to clarify the role of IL-17 in the pathogenesis of 
DN is required.

Here we examined the impact of IL-17 deficiency or blockade on the development of DN in vivo, and the 
effects of rIL-17 on kidney cells exposed to glucose in vitro, to demonstrate the involvement of IL-17A in DN and 
its role as a potential target for therapy.

Results
WT and IL-17−/− mice developed equivalent STZ-induced diabetes.  WT and IL-17−/− mice treated 
with STZ displayed a similar profile in the progression of hyperglycaemia (Fig. 1a) and weight gain (Fig. 1b) over 
a 24 week period.

IL-17 deficiency attenuates albuminuria.  Whilst both diabetic WT and IL-17−/− mice developed albuminuria  
within 24 weeks of diabetes induction compared to their non-diabetic controls (Fig. 1c), diabetic IL-17−/− mice 
exhibited significantly reduced albuminuria compare to diabetic WT mice at weeks 12 (127.1 vs 57.9 mg/mmol, 
p < 0.001) and 24 (125.7 vs 87.3 mg/mmol, p < 0.05).

IL-17 deficiency reduced kidney glomerular injury and hypertrophy.  Diabetic WT mice developed 
progressive kidney hypertrophy as shown by 30% and 76% increase of kidney to body weight ratio at week 12 
and 24 respectively, compared to their non-diabetic WT controls (Fig. 2a). The diabetic IL-17−/− mice developed 
similar kidney hypertrophy at 12 weeks however progression was attenuated by 24 weeks compared to diabetic 
WT mice. Diabetic WT mice demonstrated significantly increased glomerular volume compared to non-diabetic 
WT controls at both 12 and 24 weeks, while this was significantly reduced in diabetic IL-17−/− mice compared to 
diabetic WT mice at both time points (Fig. 2b,e). Glomerular hypercellularity was evident at 12 and 24 weeks in 
diabetic WT kidneys, whilst significantly diminished in diabetic IL-17−/− kidneys at both time points (Fig. 2c). 
Computerised morphometric analysis of PAS-stained kidney sections revealed significant mesangial expansion 
in diabetic WT glomeruli, which was attenuated in diabetic IL-17−/− glomeruli (Fig. 2d,e). To evaluate podo-
cyte injury, which typically correlates with albuminuria in DN, we assessed protein expression of the podocyte 
markers podocin and WT1 by immunofluorescence and immunohistochemistry, respectively. Diabetic WT kid-
neys displayed a progressive reduction of podocin expression compared to non-diabetic WT controls over the 
experimental time course (Fig. 2f,g). By comparison, loss of podocin staining was less pronounced in diabetic 
IL-17−/− kidneys compared to diabetic WT kidneys at 24 weeks. A reduction in the number of WT1+ cells was 
seen in diabetic WT kidneys compared to their non-diabetic controls at 12 and 24 weeks. However, loss of WT1+ 
cells in diabetic IL-17−/− kidneys was significantly reduced compared to diabetic WT kidneys at weeks 12 and 24 
(Fig. 2h,i).

IL-17 deficiency protected diabetic kidneys from fibrosis.  The degree of interstitial fibrosis is a strong 
indicator of progression to kidney failure. Diabetic WT kidneys demonstrated significantly more interstitial fibro-
sis than non-diabetic WT kidneys at 12 and 24 weeks. These changes were significantly diminished in diabetic 
IL-17−/− kidneys compared to diabetic WT group. Quantification of interstitial fibrosis using Picro-Sirius Red 
(PSR) and immunohistochemical staining for Type I Collagen (Col-1) revealed substantial interstitial collagen 
deposition in diabetic WT kidneys compared to non-diabetic WT kidneys. Compared to diabetic WT kidneys, 
diabetic IL-17−/− kidneys demonstrate a significant reduction in interstitial collagen deposition at 12 and 24 
weeks, respectively (p < 0.001), (Fig. 3a,b).

IL-17 deficiency attenuated macrophage accumulation in diabetic kidneys.  Immunostaining of 
a pan-macrophage marker, CD68 indicated a dramatically increased number of interstitial macrophages at weeks 
12 and 24 in diabetic WT kidneys compared to non-diabetic WT kidneys (Fig. 3c,f). This accumulation of CD68 
positive cells was reduced in diabetic IL-17−/− kidneys at week 12 and 24 compared to diabetic WT groups.

IL-17 deficiency suppressed expression of pro-inflammatory and pro-fibrotic genes in diabetic 
kidneys.  Gene expression of inflammatory cytokines, chemokines and fibrosis-related genes in the kidney 
were examined by real-time PCR (Fig. 3g). IL-6 and TNF-α mRNA expression were up-regulated in WT diabetic 
kidneys compared with non-diabetic WT controls. In contrast, the up-regulation of IL-6 and TNF-α were not 
observed in diabetic IL-17−/− kidneys. Diabetic WT kidneys also exhibit substantial upregulation of the chemok-
ines CCL2 and CXCL10 compared to non-diabetic WT controls. Chemokine expression was attenuated in dia-
betic IL-17−/− kidneys compared to the diabetic WT group. With regards to fibrosis-related genes, upregulation 
of TGF-β in diabetic kidneys was attenuated in IL-17−/− mice compared to diabetic WT mice, but fibronectin 
expression remained equivocal.
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Treatment with neutralising antibody to IL-17 is also protective against DN.  The protection 
against DN conferred by IL-17 deficiency in knockout mice prompted us to assess the efficacy of a more clinically 
relevant strategy to IL-17 blockade via administration of neutralising anti-IL-17 Ab. Treatment of WT mice with 
anti-IL-17 Ab after the development of diabetes was also renoprotective. Despite developing a similar degree of 
hyperglycaemia to untreated diabetic WT controls (Fig. 4a), anti-IL-17 Ab treatment significantly attenuated 
albuminuria at 12 weeks (Fig. 4b). Consistent with this, reductions in histologic parameters of DN including 
glomerular hypertrophy, hypercellularity, podocyte loss, mesangial expansion and interstitial collagen deposition 
were observed as shown in Fig. 4c–g. No significant difference of CD68+ macrophage accumulation in diabetic 
kidneys was observed in anti-IL-17 Ab treated group compared to WT controls (Fig. 4h).

IL-17A synergises with high glucose to promote inflammation, but not fibrosis in primarily cul-
tured TECs and podocytes.  To confirm whether IL-17 exacerbates the pathological changes in kidney cells 
under hyperglycaemic conditions, primary tubular epithelial cells (TEC) and podocyte cultures were stimulated 
with rIL-17 under normal or high glucose conditions.

In the primary TEC cultures, rIL-17 stimulation significantly upregulated the expression of IL6 and TNFα 
cytokines under normal glucose conditions, and the presence of high levels of glucose did not provided additional 
effect (Fig. 5a,b). Upregulation of CCL2 chemokine by rIL-17 required high glucose conditions, while rIL-17 or 

Figure 1.  WT and IL-17−/− mice developed equivalent degrees of hyperglycaemia, however IL-17 deficiency 
provides partial protection against albuminuria in DN. Streptozotocin (STZ) treatment induced diabetes in WT 
and IL-17−/− mice with similar severity as indicated by blood glucose (a) and body weight (b) profiles over a 
period of 24 weeks. Progressive albuminuria is seen in diabetic mice compared to controls. However, diabetic 
IL-17−/− mice develop significantly less albuminuria than WT mice, with no significant difference compared to 
non-diabetic controls until week 24 (c). Data are shown as means ± SD; *P < 0.05; ***P < 0.001. WT n = 8 and 
IL-17−/− n = 10 for week 12 time point and WT n = 9 and IL-17−/− n = 11 for week 24 time point in diabetic 
groups. Age matched non-diabetic controls n = 5 mice per group at 12 weeks, WT n = 5 and IL-17−/− n = 11 for 
week 24. Data are shown as means ± SD.
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high glucose alone was not sufficient for the upregulation of CCL2 (Fig. 5c). Additionally, rIL-17 upregulated the 
expression of CXCL2, and was further enhanced under high glucose conditions (Fig. 5d). rIL-17 did not alter 
TGFβ expression under either normal or high glucose conditions (Fig. 5e).

Figure 2.  IL-17 deficiency reduces glomerular and interstitial injury in DN. Diabetic IL-17−/− mice are 
relatively protected from glomerular and interstitial injury from DN compared to diabetic WT mice, as 
indicated by decreased kidney to bodyweight ratio (a) glomerular volume (b,e), glomerular hyper-cellularity 
(c,e) and mesangial expansion (d,e). Podocyte damage, assessed by podocin staining is also less severe in 
diabetic IL-17−/− mice compared to WT diabetic mice (f,g). (e) Representative sections of glomeruli from WT 
and IL-17−/−, diabetic and non-diabetic mice at 24 weeks (PAS stained, ×400 magnification). (f) Representative 
sections of glomeruli stained for podocin at 24 weeks (×400 magnification), demonstrating similar staining 
intensity in non-diabetic WT and IL-17−/− mice, reduced staining in diabetic mice, with more pronounced 
reduction in WT versus IL-17−/− diabetic mice. Data are shown as means ± SD; ***P < 0.001, **P < 0.01, 
*P < 0.05. The number of animals per group was defined in Fig. 1.
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Figure 3.  IL-17 deficiency protects diabetic kidneys from interstitial fibrosis, delays macrophage accumulation 
and reduces pro-inflammatory and pro-fibrotic gene expression. Increased interstitial collagen accumulation 
was evident in WT compared to IL-17−/− diabetic mice at both 12 and 24 weeks (d,e). Representative sections 
of kidney from WT and IL-17−/− diabetic and nondiabetic mice at 24 weeks demonstrating the increased 
interstitial collagen deposition in WT diabetic mice being attenuated by IL-17 deficiency using PSR staining 
(a) and immunostaining for Collagen I (b). Interstitial CD68 + macrophage accumulation is also evident 
in diabetic WT but not IL-17 deficient mice, until a mild increase appears at week 24 (f). (c) Representative 
sections of kidney from WT and IL-17−/−, diabetic and non-diabetic mice at 24 weeks stained for CD68. (g) RT-
PCR demonstrates substantial up-regulation of mRNA expression of IL6, TNF-α, CCL2, CXCL10 and TGF-β in 
WT diabetic kidneys at 12 weeks, all of which are diminished in the setting of IL-17 deficiency. Data are shown 
as means ± SD; ***P < 0.001, **P < 0.01, *P < 0.05. The number of animals per group was defined in Fig. 1.
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In podocyte cultures, IL-6 (Fig. 5f) and TNF-α (Fig. 5g) were upregulated by rIL-17, and these upregulations 
were further exaggerated by the presence of high glucose. IL-1β expression was also upregulated by rIL-17 under 
a high, but not normal glucose condition (Fig. 5h). rIL-17 upregulated CCL2 expression in podocytes with or 
without the presence of high glucose (Fig. 5i). rIL-17 downregulated TGF-β expression with the presence of high 
glucose (Fig. 5j).

Figure 4.  Administration of neutralizing IL-17 antibody to WT diabetic mice ameliorates diabetic kidney 
injury. Anti-IL-17 antibody treatment (200 μg per animal, twice a week, starting at 3 weeks post first STZ 
injection) has no impact on blood glucose levels (a), whilst albuminuria is significantly attenuated at week 12 to 
a level comparable to that of IL-17−/− control mice (b). Diabetic glomerular and interstitial changes including 
glomerular volume (c), hyper-cellularity (d), mesangial expansion (e), podocyte injury (f) and interstitial 
fibrosis (g) are diminished with anti-IL-17 antibody treated vs. non-treated diabetic mice. However, anti-IL-17 
antibody treatment does not prevent renal accumulation of CD68 + positive cells (h). Data are present as 
means ± SD. *P < 0.05, **P < 0.01, ***P < 0.001. n = 10 for non-diabetic and diabetic groups, n = 6 for 
anti-IL-17 antibody treated group.
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Discussion
IL-17A is a pleiotropic cytokine implicated in disease processes by promoting inflammation through induction 
of chemokine expression, pro-inflammatory cytokines and matrix metalloproteases. Yet recent studies suggest a 
more complex and often paradoxical role for IL-17 in kidney disease35–37. Our study provides further insights into 
the role of IL-17 in diabetic kidney disease. We observed that genetic depletion of IL-17 did not alter the blood 
glucose profile in diabetic mice, but did attenuate albuminuria, glomerular hypertrophy, interstitial fibrosis and 

Figure 5.  IL-17 and high glucose synergistically promote inflammation in cultured tubular epithelial cells 
(TEC) and podocytes. TECs or podocytes are stimulated with high glucose (5.5 mM glucose + 24.5 mM 
glucose) or recombinant IL-17 (rIL-17) (100 ng/ml) alone or in combination for 24 hours. In the normal glucose 
groups, 24.5 mM mannitol is added to control osmotic pressure. TECs express higher level of TNFα (b) CCL2 
(c) and CXCL2 (d) after co-stimulation with both high glucose and rIL-17, compared to stimulation with either 
effector alone, whilst IL-6 expression only responds to rIL-17 stimulation (a). rIL-17 did not alter TEC TGFβ 
expression under either normal or high glucose conditions (e). In primarily cultured podocytes IL-6 (f) and 
TNFα (g) are up-regulated significantly by the combination of rIL-17 and high glucose, but not by rIL-17 or 
high glucose alone. IL-1β expression is upregulated by rIL-17 under a high, but not normal glucose condition 
(h). rIL-17 alone up-regulated CCL2 expression, with additional high glucose not providing any further effect 
(i). In contrast, rIL-17 downregulates TGF-β expression in the presence of high glucose (j). Data are shown as 
means ± SD; *P < 0.05, **P < 0.001, ***P < 0.0001 (n = 6).
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inflammation within the kidney, suggesting a pathogenic role for IL-17A in a multi-low dose STZ-induced model 
of DN. Similar beneficial effects were achieved by administration of a neutralising IL-17A antibody to diabetic 
WT mice, indicating the favourable alterations seen in IL-17A−/− diabetic mice are specific to IL-17A deficiency.

Albuminuria is both an early marker of DN and reflective of podocyte injury. In DN, reduction in podocyte 
number correlates with the degree of albuminuria, GFR decline and is a strong predictor of eventual disease 
progression38. Studies have linked IL-17 signalling with promotion of podocyte injury in both primary nephrotic 
syndrome and adriamycin-induced nephropathy39,40. Stimulation of podocytes with rIL-17 in vitro induced 
inflammation and apoptosis through secretion of IL-1β and activation of the NLRP3 inflammasome41. In our 
study, primary cultures of podocytes displayed up-regulated expression of pro-inflammatory cytokines and 
chemokines in response to high glucose conditions. Furthermore, stimulation with both rIL-17 and high glucose 
was more effective in increasing the expression of inflammatory cytokines IL-6 and TNFα and the chemokine 
CCL2 than either condition alone, suggesting IL-17 and hyperglycaemia synergistically promote diabetic podo-
cyte injury. This is supported by our in vivo observation of decreased albuminuria in IL-17−/− diabetic mice com-
pared to WT diabetic mice, with decreased podocyte injury demonstrated on immunostaining for the podocyte 
markers WT1 and podocin. Taken together, these findings implicate a role for IL-17 in diabetic podocytopathy.

DN is also characterised histologically by glomerular basement membrane thickening and mesangial expan-
sion. We found depletion of IL-17 by either gene deletion or neutralising antibody administration attenuated 
mesangial expansion in diabetic kidneys. Hyperglycaemia and advanced glycation end products (AGEs) are 
known to stimulate mesangial cells to proliferate and produce extracellular matrix through chemokine signalling 
in DN42,43. Interestingly, IL-17 has also been shown to increase mesangial expression of IL-17Rs and downstream 
pro-inflammatory chemokine expression including CCL244,45. This upregulation of chemokines in mesangial cells 
is known to be critical in renal leukocyte recruitment and mesangial matrix expansion, with therapeutic blockade 
of CCL2 in murine models reducing collagen matrix fraction and macrophage infiltration46. Macrophage infiltra-
tion itself is associated with progression of DN in human and animal models47,48. Under high glucose conditions 
in vitro, renal tubular epithelial cells have been shown to increase the expression of IL-17 together with TGF-β1 
and IL-649. IL-17 enhances the up-regulation of IL-6, TNF-α and CCL2 in mesangial and tubular epithelial cells 
resulting in local macrophage recruitment44,45,50. Our immunohistological data reflects this, with reduced inter-
stitial macrophage infiltration in the diabetic IL-17−/− kidneys compared to WT kidneys. The expression of above 
inflammatory cytokines and chemokines in renal tissue was also diminished by IL-17 deficiency. However whilst 
macrophages are traditionally thought of as effectors of injury in DN, the balance of pro-inflammatory (M1) 
and anti-inflammatory (M2) macrophages is important. Adoptive transfer of M2 polarised macrophages into 
diabetic mice has been shown to result in gradual renal accumulation, which was protective against both renal 
injury and fibrosis51. We found that whilst rIL-17 antibody administration to diabetic mice reduced renal injury, 
this treatment exhibited no impact on macrophage infiltration compared to non-treated mice. This effect may 
represent a shift along the M1/M2 spectrum, with alternatively activated macrophages tilting this balance. Finally, 
we demonstrated that under high glucose conditions, administration of rIL-17 provided additional effect in aug-
menting inflammation in cultured tubular epithelial cells and podocytes, suggesting that IL-17 plays a specific 
role in hyperglycaemic conditions to promote local inflammation and accelerate progression of DN.

The critical role of tubulo-interstitial fibrosis in the progression of DN to ESRD has been well recognised52. 
IL-17 participates in a positive feedback loop with IL-6, inducing the activation of NF-κB signalling which results 
in subsequent overexpression of various chemokines, fibrotic genes including TGF-β, and engagement of signal 
transducer and activator of transcription 3 (STAT3)53,54. STATs may also promote tissue fibrosis by mediating 
overexpression of TGF-β55. Diabetic IL-17−/− mice in our study had substantially reduced expressions of IL-6, 
TGF-β and collagen deposition in the kidney than evident in diabetic WT mice. Interestingly, the pro-fibrotic 
effect of IL-17 we saw on whole kidney tissue in vivo was not reproduced by our in vitro study of TECs and podo-
cytes. Notably in podocytes, the presence of IL-17 even appeared to suppress the expression of TGF-β. This may 
reflect that in vitro conditions do not fully recapitulate the events of in vivo systems. Yet Sun et al. have demon-
strated cell-origin-dependent effects of IL-17 on fibrosis, with inhibitory effects on renal fibroblasts, increased 
activation in pulmonary fibroblasts, and no effect on foetal fibroblasts35. Thus, the possibility of IL-17 exerting 
differential effects in a tissue and cell-specific manner cannot be discounted.

The complex role of IL-17 is further highlighted by a recent report from Mohamed et al.34. In their study, 
IL-17−/− mice exhibited more severe diabetic kidney injury compared to WT mice, with administration of 
low doses of rIL-17A or F being protective against DN. In contrast to our multi-low-dose STZ diabetic model, 
Mohamed et al. used a single high dose of STZ to induce diabetes34. The potential for collateral tissue toxicity 
caused by high dose STZ may confound both the clinical context and interpretation of renal injury56. Although 
the authors’ demonstrated administration of rIL-17 ultimately attenuated diabetic kidney injury in their models, 
the specific cell types influenced by IL-17 were not investigated. Our in vitro studies show rIL-17 suppressed 
TGF-β expression in cultured primary podocytes, raising the possibility that podocytes maybe the cell responsi-
ble for modulating their demonstrated protective effects of IL-17 in DN. This negative association between IL-17 
and TGF-β was also reported in a clinical study of metabolic syndrome57. To confirm such a hypothesis, mice with 
cell-specific knockdown of IL-17 in podocytes and/or tubular epithelial cells will be required36.

In conclusion, our study demonstrates a pro-inflammatory role for IL-17 in mediating podocyte injury, 
mesangial expansion and renal fibrosis in DN. Although recent studies have challenged the traditional pathogenic 
role of IL-17, our results further highlight the complexity of immune mechanisms in diabetic kidney damage. 
Targeting the IL-17 axis may represent a novel therapeutic approach, however clarifying the specific conditions 
under which IL-17 exacerbate or attenuate DN warrant further investigation.
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Methods
Animals.  Male Wild-type (WT) C57BL/6 mice were obtained from the Animal Resource Centre (Perth, 
Australia). IL-17 deficient mice on a C57BL/6 background were provided by Professor Geoffrey Hill (Queensland 
Institute of Medical Research, Brisbane, Australia), with approval from Professor Yoichiro Iwakura (Centre for 
Experimental Medicine, The University of Tokyo, Japan). The mice were housed in a specific pathogen-free facil-
ity at the University of Sydney. Male mice aged 8-9 weeks were used in all experiments. All animal experiments 
were performed with the approval of the animal ethics committee of the University of Sydney. The methods were 
carried out in accordance with the approved guidelines and regulations.

Induction of diabetes.  Male WT and IL-17−/− mice were fasted for 4 hours before administration of intra-
peritoneal streptozotocin (STZ, Sigma-Aldrich) at a dose of 55 mg/kg for 5 consecutive days. Citrate buffer was 
used as a vehicle control. Mice with a blood glucose level over 20 mmol/L were used for assessing diabetic kidney 
injury. Animals were sacrificed 12 (WT n = 10; IL-17A−/− n = 12) and 24 (WT n = 10; IL-17A−/− n = 11) weeks 
after STZ injection. There were 5–10 mice per control group.

IL-17 antibody treatment.  Three weeks after initial STZ administration, once hyperglycemia was well 
established, a group of WT diabetic mice (n = 7) were given intraperitoneal neutralising IL-17A monoclonal 
antibody (clone 17F3, BioXCell) at a dose of 0.2 mg per animal, twice weekly until week 12.

Sample collection.  Mice were placed in metabolic cages for 16 hours prior to sacrifice for collection of urine. 
Blood and tissues samples were harvested at sacrifice. In brief, 1 mL of blood was harvested via intracardiac punc-
ture and processed for serum. The spleen, pancreas and kidney were harvested. Tissue slices were fixed with 10% 
neutral-buffered formalin for paraffin embedding, frozen in OCT compound (Sakura Finetek Inc., Torrance, CA) 
or snap frozen in liquid nitrogen for mRNA extraction.

Quantification of albuminuria and urine creatinine.  Urine albumin was quantified using the Mouse 
Albumin ELISA Quantitation Set (Bethyl Laboratories, Montgomery, TX, USA) as described previously58. Urine 
creatinine was measured enzymatically by the Biochemistry Department of Royal Prince Alfred Hospital, Sydney, 
Australia.

Real-time RT-PCR.  Total RNA was extracted using TRIzol (Invitrogen). cDNA was synthesised using 
oligo(dT)16 primers (Applied Biosystems, Foster City, CA) and the SuperScript III reverse transcriptase kit 
(Invitrogen) according to the manufacturer’s instructions. cDNA was amplified in Universal Master Mix (Applied 
Biosystems) with gene-specific primers and probes, using the Rotor-Gene 6000 system (Corbett Life Science). 
Specific TaqMan primers and probes for IL-6, TNFα, CCL2, CXCL10, TGF-β1, fibronectin, and GAPDH 
have been described previously58,59. Taqman primers and probes for IL-17A (Mm00439619_m1) and IL-17RA 
(Mm00434214_m1) were obtained from Applied Biosystems. All expressed results were normalised to GAPDH 
expression.

Histology.  Periodic acid–Schiff ’s (PAS) and Picro-Sirius Red (PSR) staining were performed on 3 µm and 
5 µm formalin-fixed kidney sections, respectively. Glomerular tuft area (AG) was measured by microscopy 
using DP2-BSW software (V2.2, OLYMPUS). Mean glomerular volume (VG) was calculated using the formula 
described by Weibel and Gomez60; VG = (β/k) × (AG)3/2, where k = 1.1 (size distribution coefficient) and β = 1.38 
(shape coefficient for spheres). In each glomerular tuft, mesangial area was defined as positive staining with 
PAS and enumerated by image analysis software (Image Pro Premier 9.0, Media Cybernetics), expressed as per-
centage of total glomerular area61. Total glomerular cellularity was determined by tallying nuclei in glomerular 
cross-sections using ImageJ software. Interstitial collagen on PSR-stained sections were assessed by point count-
ing using an ocular grid as described by McWhinnie et al.62 in at least 20 consecutive fields (×400 magnification). 
Only interstitial collagen was counted, with vessels and glomeruli excluded. The results were expressed as the 
percentage of positive staining points per field.

Immunohistochemistry.  Staining for WT1 and CD68 were performed on acetone-fixed frozen sections 
(7μm) after endogenous biotin was blocked using a biotin blocker system (DAKO, Carpinteria, CA). To detect 
Type 1 Collagen (Col-1), formalin-fixed sections (5μm) were deparaffinised and antigen retrieval performed by 
boiling sections for 10 minutes in 10 mM sodium citrate buffer (pH 6.0). Sections were then incubated with 10% 
normal horse serum followed by 60 minute incubation with primary antibodies: rat anti-mouse CD68 (ABD 
Serotec Inc., Oxford, UK), rabbit anti-WT1 (Abcam, Cambridge, UK), rabbit anti-Col-1 (Abcam, Cambridge, 
UK) or concentration-matched isotype negative control. Endogenous peroxidase activity in the sections was 
quenched with H2O2 prior to application of biotinylated anti-rat IgG or anti-rabbit IgG (BD Biosciences, 
Pharmingen). A Vector stain ABC kit (Vector Laboratories Inc) was applied to the tissue followed by DAB solu-
tion (DAKO).

Immunofluorescence.  Podocin staining was performed on 7μm acetone-fixed frozen sections. After block-
ing with 10% normal horse serum, sections were incubated with a rabbit anti-NPHS2 antibody (Abcam) at 4 °C 
overnight. For detection, sections were incubated with an Alexa Fluor® 488-conjugated anti-rabbit antibody for 
1 hour.

Quantification of immunostaining.  Glomerular CD68 and WT1+ cells were counted in glomerular 
cross-sections (×400 magnification). Analysis of interstitial CD68+ cells was performed by assessing twenty con-
secutive high-power fields (HPFs; magnification, ×400) of renal cortex in each section. Using an ocular grid, 
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the number of cells staining positively for each antibody was counted and expressed as cells per field. Podocin 
expression was assessed in glomerular cross-sections using Image Pro. The lower threshold for positive glomeru-
lar staining was determined by the highest background fluorescence in the non-glomerular area of each section. 
Results were expressed as a percentage of positive staining per glomerulus58,63. Interstitial Col-1 was assessed by 
point counting using an ocular grid in 20 consecutive fields (×400 magnification) excluding vessels and glomer-
uli. Results were expressed as the percentage of positive staining points per field.

Primary culture of podocytes.  Podocytes were isolated and cultured as described previously64. Briefly, 
the kidneys were perfused with 107 Dynabeads and the cortex was cut into small pieces (1–2 mm3) and digested 
in 2 mg/mL collagenase at 37 °C for 30 min. The collagenase-digested tissue was passed through a 100 µm sieve 
and centrifuged at 200 g. The pellet was resuspended and glomeruli-containing Dynabeads were gathered in a 
magnetic field. The glomeruli were pipetted onto a 40 µm nylon sieve to remove free Dynabeads and collected by 
washing through an inverted nylon sieve.

Isolated glomeruli were seeded onto collagen-coated culture dishes (BD Biosciences) in DMEM/F-12 medium 
containing 5% foetal bovine serum supplemented with 0.5% insulin-transferrin-sodium selenite (ITSS), 100 U/
mL penicillin and 100 mg/mL streptomycin (Invitrogen) and incubated at 37 °C. The cultured cells were exam-
ined for the podocyte markers podocin and nephrin by immunofluroesent staining. Cells were >95% positive for 
these markers. Experiments were commenced after cells had reached 80% confluence.

Primary culture of mouse tubular epithelial cells (TEC).  Mouse kidney TECs were isolated and cul-
tured as described previously65. In brief kidneys were perfused with saline then removed. Kidney cortices were 
dissected into approximately 1 mm3 pieces and digested in HBSS containing 3 mg/mL of collagenase at 37 °C for 
25 minutes, followed by washing in DMEM/F12 medium (Invitrogen). The kidney digest was washed through a 
series of sieves (mesh diameters of 250, 150, 75 and 40 µm) then spun down at 300 g for 5 minutes. The cell pellet 
was re-suspended in defined K1 medium: DMEM/F12 supplemented with 25 ng/mL epidermal growth factor, 
1 ng/mL PGE1, 5 × 10-11 M triiodothyronine, 5 × 10-8 M hydrocortisone (Sigma-Aldrich), ITSS media supple-
ment, 1% penicillin/streptomycin, 25 mM HEPES, and 5% FCS (Invitrogen). The cell suspension was then seeded 
on cell culture Petri dishes and incubated at 37 °C for 2–3 hours to facilitate adherence of contaminating glomer-
uli. The non-adherent tubules were collected and cultured on collagen-coated Petri dishes (BD Biosciences) in K1 
medium. Expression of the epithelial cell marker cytokeratin was verified by immunofluorescent staining with an 
anti-cytokeratin antibody (Sigma-Aldrich). Cells were >95% cytokeratin positive. Experiments were commenced 
after cells had reached 80% confluence.

High glucose stimulation of podocytes or TEC in vitro.  Cultured podocytes or TECs at 80% conflu-
ence were rinsed and incubated with serum-free DMEM/F12 medium with 0.5% ITSS supplement for podocytes, 
or serum free K1 medium for TECs for 24 hours. The cells were exposed to 30 mM D-glucose (Invitrogen) or 
mannitol (5.5 mM glucose + 24.5 mM mannitol) with or without 100 ng/ml rIL-17A (R&D Systems, Inc.MN, 
USA) in fresh 0.5% ITSS-supplemented DMEM/F12 medium for podocytes or K1 medium for TECs for 24 hours. 
After stimulation, the cells were harvested for PCR assay.

Statistical analysis.  All data are presented as mean ± SD. Data between two groups were analysed by t-tests, 
and multiple groups were compared using one- or two-way ANOVA with post-hoc Bonferroni’s correction (Graph 
Pad Prism 6 software, San Diego, CA). A p value less than 0.05 was considered statistically significant.

Data Availability
All data generated during and/or analysed during the current study are available from the corresponding author 
upon reasonable request.
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