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ABSTRACT Inflammatory diseases, such as inflammatory bowel diseases, are dramati-
cally increasing worldwide, but an understanding of the underlying factors is lacking. We
here present an ecoevolutionary perspective on the emergence of inflammatory dis-
eases. We propose that adaptation has led to fine-tuned host-microbe interactions,
which are maintained by secreted host metabolites nourishing the associated microbes.
A constant elevation of nutrients in the gut environment leads to an increased activity
and changed functionality of the microbiota, thus severely disturbing host-microbe inter-
actions and leading to dysbiosis and disease development. In the past, starvation and
pathogen infections, causing diarrhea, were common incidences that reset the gut bac-
terial community to its “human-specific-baseline.” However, these natural clearing mech-
anisms have been virtually eradicated in developed countries, allowing a constant un-
controlled growth of bacteria. This leads to an increase of bacterial products that
stimulate the immune system and ultimately might initiate inflammatory reactions.
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The human body is associated with a huge diversity of different microbes colonizing
skin, gut, teeth, and even epithelia of the lungs. Together with our microbes, we

form a synergist relation, which is termed holobiont or metaorganism (1, 2). Distur-
bance of this host-microbe homeostasis can lead to dysbiosis (microbial imbalance on
or inside the host) and/or disease development (3–5).

In the last several decades, inflammatory diseases, such as inflammatory bowel
disease (IBD), are on the rise (6, 7). Different hypotheses have been put forward as
potential explanations for this phenomenon, such as the hygiene hypothesis (8), the
keystone-pathogen hypothesis (9), or genetic predisposition (10). Although there is
evidence for different genetic predispositions that are associated with inflammatory
diseases, they can explain only approximately 20% of the disease (11). Eighty percent
is unexplained, and there is a lively debate on whether environmental factors could be
a key trigger for the onset of disease and disease development (10).

It is well documented that inflammatory diseases are accompanied by changes in
microbial density (12) or microbial community composition (13). However, comprehen-
sive sequencing approaches have not yet led to the identification of a key pathogen,
nor to the discovery of a specific pathobiome that is responsible for the disease (14). On
the contrary, it is becoming more and more apparent that our associated microbiota is
not as specific as we thought and that, even within the same individual, microbial
community composition underlies strong temporal variability (13). So far, one common
observation in the context of Western lifestyle and inflammatory disease is a reduction
of microbial diversity (15). Although sequencing depth has dramatically increased by
the development of new technologies, 16S rRNA amplicon sequencing only provides
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an overview of the associated bacterial members. Knowing that there is enormous
variation within the genetic repertoire of bacteria featuring the same 16S rRNA se-
quence, researchers now search for insights into the interplay of bacteria within the gut
by analyzing DNA (metagenomics), RNA (metatranscriptomics), proteins (metaproteom-
ics), and metabolites (metabolomics) in order to elucidate their functional interactions
within metaorganisms. Whether this approach will finally lead to the development of a
more targeted approach to reconstitute natural host-microbe homeostasis in order to
treat inflammatory disease is questionable as it is so far not clear if a disturbed
microbiota is the cause or the consequence of inflammatory diseases (4).

Emerging infectious diseases are on the rise in not only the human population.
Similar trends can be observed in the ocean over the last decade. Time series exist
for only a few species such as corals and oysters, but both show the same overall
pattern—an exponential rise in disease outbreaks (16, 17). Today, disease syndromes
have been described for a variety of aquatic organisms of natural and cultured
populations, including fish, seagrass, seaweeds, sponges, corals, and other inverte-
brates (18–21). As for inflammatory diseases in humans, in many cases the causative
agents are unknown. It is evident, however, that a number of complex diseases in the
aquatic environment are linked to a dysbiotic state of the microbiome (22–25). An-
thropogenic impact, such as urbanization and global climate change, is one factor that
can alter the microbiota of key habitat-forming species, such as corals and seaweeds,
with potential ecological consequences (24, 25).

Here we introduce an alternative perspective and propose that host-secreted me-
tabolites play a major role in maintaining symbiotic interactions by nourishing the
associated microbes. Changes in the environment that interfere with this nutrient
dependency of host-associated bacteria may severely disturb host-microbe interactions
and thus lead to dysbiosis and disease development.

Maintenance of host-microbe homeostasis. To gain a better understanding of
host-microbe interactions, we must consider that all eukaryotic life has evolved in an
aquatic environment under the constant exposure to bacteria. This adaptation has
formed a synergistic relation between the eukaryotic host and its associated microbes.
No surprise that all epithelial surfaces are colonized by bacteria, ranging from marine
algae (26, 27), plankton (28), corals and other marine invertebrates (29), freshwater
polyps (30, 31), and marine vertebrates (32) to humans (33). Host-microbe interactions
take place at epithelial surfaces that are exposed to both the bacterial colonizers and
the surrounding environmental conditions. Surfaces of aquatic organisms, for example,
are permanently subjected to a colonizer pool and have to regulate bacterial coloni-
zation to inhibit invasion and overgrowth by bacteria. Planktonic bacteria, however, are
at certain times growth limited (34, 35), and it is reasonable to assume that it is
advantageous to attach to surfaces. Evidence for this comes from bacterial ectosym-
bionts from marine nematodes, where the evolution of longitudinal cell division
enhances bacterial attachment to its host (36). Whereas this represents a very specific
case, it is known that already the attachment of bacterial cells to nonliving amorphous
surfaces and the formation of biofilms lead to an increase in bacterial growth (37). The
biofilm serves as a trap for nutrients from the surrounding water, providing shelter for
bacterial cells against bacterivores, and facilitates degradation of complex compounds
due to collaboration of diverse bacteria (38). Living attached to a nutrient-rich epithelial
surface, featuring a carbohydrate source such as mucins or polysaccharides, should
therefore constitute a fitness advantage to the bacteria. This colonization process must,
however, be controlled by the host to limit the amount of surface-colonizing organisms
and to select for nonpathogenic or even for beneficial bacteria. Indeed, there are
several studies that have shown antibacterial effects of marine seaweeds (39–41) and
many others regarding the innate immune system of invertebrates and vertebrates that
allow them to sense and shape bacterial colonization (42, 43).

Epithelial colonization: host secretion as nutrient resource. Under natural con-
ditions, diverse bacterial communities cover epithelial surfaces of aquatic organisms. In
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environments that are low in dissolved organic matter (DOM) or particulate organic
matter (POM), host-secreted metabolites can often present the only form of available
nutrients (44). Examples include Hydra, which when kept in artificial Hydra medium
(water plus salts) still features a complex host-associated bacterial community (30).
Another example is corals, which have a mucus that is densely populated by a
phylogenetically distinct bacterial community (e.g., references 2 and 45 to 47). Biomol-
ecules released from the mucus may serve as potent chemoattractants for natural
populations of coral reef bacteria (48). This finding supports the idea that the host is a
major driver in providing access to resources for its surface-associated bacteria. In
general, microbial abundances in coral mucus are roughly 1 order of magnitude higher
than in the surrounding reef waters (49). Interestingly, when comparing the quantity of
host surface-associated bacteria to that of the surrounding environment, we find the
same pattern in aquatic and terrestrial organisms. For both, the abundance of surface-
associated bacteria is always higher than in the surrounding environment (Fig. 1, corals
[panel A] and human skin [panel B]). But there are also differences between the two
systems. For terrestrial life, the rate of encountering bacteria is highly reduced as air
bacterial counts make up only a fraction of reef water counts (Fig. 1, corals [panel A]
versus human skin [panel B]). Further, the nutrient supply to, e.g., the skin environment
from the air is almost zero. Skin-associated bacteria therefore have to live solely from
secreted or surface-shed material. In the human gut, we find the exact opposite. Here
bacterial abundances in the lumen exceed the mucus-associated bacteria by roughly a
factor of 108 (Fig. 1C).

The evolutionary origin of two different microbial niches within the gut. From
an evolutionary perspective (see reference 50), the development of a gut environment
changed the existing host-microbe relationships by introducing another habitat and
food source for the bacteria. The invagination during gastrulation delocalized the
epithelial surface from the outside into the inner part of an organism and separated it
from environmental conditions in the water. Consequently, this led to dramatic envi-
ronmental changes for the associated microbiota due to a restricted exchange with the
surrounding water. For example, oxygen and nutrient supply from the surrounding
water became limited. Instead, associated microbes were less exposed to the diverse
mixture of bacterial colonizers, grazers, and phages than were the plankton community.
This in turn limited the microbial colonization of the gut environment, which became
dependent on the feeding behavior of the eukaryotic host. In general, the uptake of
food does not only allocate new bacteria into the gut, but it also offers an alternative

FIG 1 The relative abundance of bacteria associated with coral mucus (A), the human skin (B), and the mucosa of the gastrointestinal tract (C) in relation to
the adjacent environments seawater, air, and the lumen of the gastrointestinal tract. Abundance data for the different environments were taken from references
19, 65, and 80 to 87.
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nutrient source for the gut microbiota and thus forms an additional habitat for bacteria.
The development of a gut thus led to two different niches with distinct microbial
populations: the gut mucus with its associated residential microbiota (which we here
term “human-specific-baseline” microbiota) and the food that is being digested with its
associated transient microbiota (luminal microbiome). While the growth of mucus-
associated bacterial communities on the outside of organisms is restricted by host-
secreted metabolites, mucus-associated bacteria in the gut are exposed to dynamic
compositional changes of the digested/ingested food depending on: food consump-
tion, food composition, frequency of feeding, digestive processing by the host, and also
the enzymatic activity of the microbiota. Host-derived substances, such as bile acids,
mucus, and urea, are important nutrient sources for the microbiota, with urea serving
as a major nitrogen supply (51). These processes supply additional nutrients for
mucus-associated bacteria and so continuously shape gut environmental conditions
and affect microbial community composition (52–56).

Maintaining homeostasis: natural recurrent clearing mechanisms. In the evolu-
tionary history of animals and humans, hunger was the default state. Finding food was
always a costly endeavor. On evolutionary time scales, food availability was often
limited and not only humans but also other organisms had to adapt to periods of food
shortage (57, 58). There is increasing evidence that humans are well adapted to food
shortages of up to 1 day. After that time, glycogen storage, which serves as an energy
source, gets depleted and metabolism switches to gluconeogenesis (59). Already a
longer nighttime fasting duration reduces the C-reactive protein (CRP) level when
evening dinner contains less than 30% of the daily calorie needs (60). Fasting for even
longer periods of time has been shown to have a huge impact on a variety of processes,
such as changes in cellular pathways, prevention of disease development, and delay in
aging not only in humans but also in animal models (59). Whereas fasting in lower
eukaryotes leads to higher longevity and in rodents it protects against diabetes, cancer,
heart disease, and neurodegeneration, in humans it helps to reduce obesity, hyperten-
sion, asthma, and rheumatoid arthritis (57). While such host metabolic changes induced
by fasting are only partially understood, we here propose that an important factor that
links fasting to our state of health is the effect of fasting on our gut microbiota. From
many animals, including mice, alligators, pythons, and chickens, we know that fasting
induces shifts in the gut microbiome (61). The same is true for hibernation, which has
been shown to alter the diversity and composition of gut microbiota in ground squirrels
(62). The authors could show that hibernation reduced populations of Firmicutes (which
prefer polysaccharides) but increased populations of Bacteroidetes and Verrucomicrobia,
capable of degrading mucin. This supports the idea that during a lack of nutrient
availability, mucin glycans become the primary substrate for microbial metabolism
during hibernation (63). In addition, fasting and hibernation not only lead to a changed
microbiome composition but also suppress the immune system (64), thus increasing
the tolerance of the host to its microbes.

In humans, food supply for the gut bacteria is also reduced during fasting, limiting
uncontrolled growth of unspecific, non-mucus-adapted gut microbiota. Instead, the
microbes that are favored are highly adapted to the gut environment in that they are
able to degrade mucin or exist on host-derived secretions (65, 66). In the last century,
food became permanently available and the amount of available food per capita
increased by up to 10-fold in developed countries by the end of the century (67). These
circumstances presented a new situation in which nutrients were continuously avail-
able not only for modern humans but also for their gut-associated bacteria.

While excessive food supply led to the loss of fasting events in the 20th century,
sanitation conditions were improved at the same time in developed countries. The
introduction of cleansing agents, purification of drinking water, and the invention of
washing machines and refrigerators helped to reduce the risk of gastrointestinal
pathogenic infections. This is in contrast to developing countries, where poor hygiene
conditions and a higher risk for the population of contracting diarrheal diseases are
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found (68). Recurrent gastrointestinal pathogenic infections are accompanied by peri-
ods of diarrhea and so regularly reduce the population of the unspecific luminal
microbiota. During human evolution, this “cleaning” effect might have been important
for maintaining health as it provides the mucosally adapted microbiota with the
opportunity to proliferate. While events of diarrheal infections have been shown to be
followed by a rapid, reproducible, and reversible change in microbial community
structure (69), the effect of diarrheal flushing on total bacterial abundance is not
known. Although mild and short-term forms of diarrhea might be beneficial for human
health, pathogen-induced diarrhea can also have severe consequences, especially in
children, leading to significant morbidity and mortality. Not only diarrhea but also
artificial cleansing of the gut by bowel preparation for colonoscopy has an impact on
the gut microbial community. Due to this procedure, microbial load in the gut is
decreased by about 30-fold (70) and bacterial diversity is reduced in the short term but
restored after approximately 14 days (70–72). Another crucial novelty of the last de-
cades is the use of antibiotics, which have become a key weapon to fight malignant
bacteria. Despite their benefits in combating disease, they massively challenge our
microbiome, leading to the loss of beneficial microbes (73), and likely impair the
restoration of a healthy microbiome.

In general, the lack of natural cleaning mechanisms appears to result in a loss of the
competitive advantage of the mucus-adapted bacteria while simultaneously favoring
the non-mucus-adapted gut microbial bacteria that live on ingested food items of their
host. During microbial breakdown of food residues, small molecules that can cross the
epithelial border and get dispersed in the serum are produced. These molecules can
either be harmful (e.g., uremic toxins) or beneficial (e.g., antioxidants) to the host (74).
Depending on the food composition, the ratio of harmful to beneficial compounds can
shift; so an increased protein fermentation, for example, increases the amounts of
potential toxic compounds, such as ammonia, phenols, amines, indoles, and thiols (75).
Interestingly, dietary shifts in the food quality in a Western-style diet (WSD), which is
easily digestible by humans and microbes, being rich in sugars, fats, and proteins but
having small amounts of fiber, can have adverse health effects, while diets rich in fiber
are beneficial (76). There is initial evidence from a mouse model that the WSD alters the
microbiome composition and so causes an increased penetrability of the mucus layer
(77). By adding fibers to the diet, the authors were able to preserve the barrier function
of the mucus (77). In contrast, a high dietary phosphate content of WSD can exacerbate
intestinal inflammation in experimental colitis (78), pointing to an imbalance in the
C/N/P ratio. The significance of C/N/P ratios in marine environments for the growth of
organisms is well established (79), and it is reasonable to assume that it also plays a
central role in the nutrient and microbiota homeostasis in the human gut.

Excess feeding may disrupt the homeostasis and lead to an altered microbiome,
resulting in disease development: the overfeeding hypothesis. We here propose that
overfeeding of the host-associated bacterial community, particularly with easily digest-
ible, energy-dense, low-fiber-content foods, likely causes dysbiosis and the develop-
ment of disease. Overfeeding uncouples natural host-microbe associations, leading to
an increased activity and changed functionality of the associated microbiota. In previ-
ous times, starvation and also pathogen infections which lead to diarrhea were
common incidences that may have helped to reset the gut microbial community to its
“human-specific baseline.” However, these natural clearing mechanisms have been
almost totally eradicated in developed countries, allowing an uncontrolled growth of
bacteria which are not specifically adapted to the human host mucosal environment.
This may lead to a changed composition and increase of bacterial by-products in the
gut. Moreover, overfeeding by consuming a WSD may also impair the natural nutrient
balance in the gut (C/N/P ratio), leading to an enhanced microbial degradation of the
mucus barrier. Taken together, the reduction of the mucus barrier function and the
increased release of bacterial by-products into the gut elevate nonself recognition of
the host and stimulate the immune system. Additional nonself recognition and stim-
ulation of the immune system anywhere in the body likely initiate an immune response,
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which might contribute to the development of complex disease, such as atopic
dermatitis, asthma, or diabetes.
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